首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Legionella pneumophila is able to survive inside phagocytic cells by an internalization route that bypasses fusion of the nascent phagosome with the endocytic pathway to allow formation of a replicative phagosome. The dot/icm genes, a major virulence system of L. pneumophila, encode a type IVB secretion system that is required for intracellular growth. One Dot protein, DotL, has sequence similarity to type IV secretion system coupling proteins (T4CPs). In other systems, coupling proteins are not required for viability of the organism. Here we report the first example of a strain, L. pneumophila Lp02, in which a putative T4CP is essential for viability of the organism on bacteriological media. This result is particularly surprising since the majority of the dot/icm genes in Lp02 are dispensable for growth outside of a host cell, a condition that does not require a functional Dot/Icm secretion complex. We were able to isolate suppressors of the Delta dotL lethality and found that many contained mutations in other components of the Dot/Icm secretion system. A systematic analysis of dot/icm deletion mutants revealed that the majority of them (20 of 26) suppressed the lethality phenotype, indicating a partially assembled secretion system may be the source of Delta dotL toxicity in the wild-type strain. These results are consistent with a model in which the DotL protein plays a role in regulating the activity of the L. pneumophila type IV secretion apparatus.  相似文献   

2.
H Nagai  C R Roy 《The EMBO journal》2001,20(21):5962-5970
Legionella pneumophila requires the dot/icm genes to create an organelle inside eukaryotic host cells that will support bacterial replication. The dot/icm genes are predicted to encode a type IV-related secretion apparatus. However, no proteins have been identified that require the dot/icm genes for secretion. In this study we show that the DotA protein, which was previously found to be a polytopic membrane protein, is secreted by the Dot/Icm transporter into culture supernatants. Secreted DotA protein was purified and N-terminal sequencing of the purified protein revealed that a 19 amino acid leader peptide is removed from DotA prior to secretion. Extracellular DotA protein did not fractionate in membrane vesicles. Structures containing secreted DotA protein were visualized by electron microscopy and were shaped like hollow rings. These data indicate that the large poly topic membrane protein DotA is secreted from L.pneumophila by a unique process. This represents the first target secreted by the dot/icm-encoded apparatus and demonstrates that this transporter is competent for protein secretion.  相似文献   

3.
Legionella pneumophila, a causative agent of bacterial pneumonia, survives inside phagocytic cells by avoiding rapid targeting to the lysosome. This bacterium utilizes a type IVB secretion system, encoded by the dot/icm genes, to replicate inside host cells. DotL, a critical component of the Dot/Icm secretion apparatus, functions as the type IV coupling protein. In contrast to most dot/icm genes, which are dispensable for growth on bacteriological media, dotL is required for the viability of wild-type L. pneumophila. Previously we reported that DeltadotL lethality could be suppressed by inactivation of the Dot/Icm complex via mutations in other dot/icm genes. Here we report the isolation of non-dot/icm suppressors of this phenotype. These DeltadotL suppressors include insertions that disrupt the function of the L. pneumophila homologs of cpxR, djlA, lysS, and two novel open reading frames, lpg0742 and lpg1594, that we have named ldsA and ldsB for lethality of DeltadotL suppressor. In addition to suppressing DeltadotL lethality, inactivation of these genes in a wild-type strain background causes a range of defects in L. pneumophila virulence traits, including intracellular growth, implicating these factors in the proper function of the Dot/Icm complex. Consistent with previous data showing a role for the cpx system in regulating expression of several dot/icm genes, the cpxR insertion mutant produced decreased levels of three Dot/Icm proteins, DotA, IcmV, and IcmW. The remaining four suppressors did not affect the steady-state levels of any Dot/Icm protein and are likely to represent the first identified factors necessary for assembly and/or activation of the Dot/Icm secretion complex.  相似文献   

4.
Legionella pneumophila, the causative agent of Legionnaires' disease, is a ubiquitous freshwater bacterium whose virulence phenotypes require a type IV secretion system (T4SS). L. pneumophila strain JR32 contains two virulence-associated T4SSs, the Dot/Icm and Lvh T4SSs. Defective entry and phagosome acidification phenotypes of dot/icm mutants are conditional and reversed by incubating broth-grown stationary-phase cultures in water (WS treatment) prior to infection, as a mimic of the aquatic environment of Legionella. Reversal of dot/icm virulence defects requires the Lvh T4SS and is associated with a >10-fold induction of LpnE, a tetratricopeptide repeat (TPR)-containing protein. In the current study, we demonstrated that defective entry and phagosome acidification phenotypes of mutants with changes in LpnE and EnhC, another TPR-containing protein, were similarly reversed by WS treatment. In contrast to dot/icm mutants for which the Lvh T4SS was required, reversal for the ΔlpnE or the ΔenhC mutant required that the other TPR-containing protein be present. The single and double ΔlpnE and ΔenhC mutants showed a hypersensitivity to sodium ion, a phenotype associated with dysfunction of the Dot/Icm T4SS. The ΔlpnE single and the ΔlpnE ΔenhC double mutant showed 3- to 9-fold increases in translocation of Dot/Icm T4SS substrates, LegS2/SplY and LepB. Taken together, these data identify TPR-containing proteins in a second mechanism by which the WS mimic of a Legionella environmental niche can reverse virulence defects of broth-grown cultures and implicate LpnE and EnhC directly or indirectly in translocation of Dot/Icm T4SS protein substrates.  相似文献   

5.
Coxiella burnetii is an obligate intracellular pathogen that replicates in large endocytic vacuoles. Genomic sequence data indicate that 21 genes encoding products that are similar to components of the Legionella pneumophila Dot/Icm type IV secretion system are located on a contiguous 35 kb region of the Coxiella chromosome. It was found that several dot/icm genes were expressed by Coxiella during host cell infection and that dot/icm gene expression preceded the formation of large replicative vacuoles. To determine whether these genes encode a functional type IV secretion system, we have amplified the Coxiella dotB, icmQ, icmS and icmW genes and produced the encoded proteins in Legionella mutants in which the native copy of each gene had been deleted. The Coxiella dotB, icmS and icmW products restored dot/icm-dependent growth of Legionella mutants in eukaryotic host cells. The Coxiella IcmQ protein and the Legionella IcmR protein did not interact, which could explain why the Coxiella icmQ gene was unable to restore growth to a Legionella icmQ mutant. Thus, Coxiella encodes functional components of a type IV secretion system expressed in vivo that is mechanistically related to the Legionella Dot/Icm apparatus. These studies suggest that a dot/icm-related secretion system could play an important role in creating the specialized vacuole that supports Coxiella replication.  相似文献   

6.
Bacterial pathogens often subvert eukaryotic cellular processes in order to establish a replicative niche and evade host immunity. Inhibition of phagosome lysosome fusion is a strategy used by several intracellular bacteria that grow within mammalian cells. It was shown recently that Legionella pneumophila possesses a cytolytic activity that results from the insertion of pores in the macrophage membrane upon contact, and that this activity requires the dot/icm gene products, which are necessary for intracellular growth and phagosome trafficking. Other bacteria that inhibit phagosome lysosome fusion, such as Mycobacterium tuberculosis , demonstrate similar cytolytic activities, which suggests that formation of pores in the phagosome membrane may account for the defects observed in phagosome trafficking. In this study, we identify a new class of L. pneumophila mutant that retains the pore-forming activity found in virulent bacteria, but is defective in phagosome lysosome fusion inhibition and intracellular growth. These data indicate that cytolytic activity is not sufficient for L. pneumophila -induced alterations in phagosome trafficking. Rather, the pore may be a vehicle that facilitates delivery of bacterial-derived effector molecules to the host cell cytoplasm.  相似文献   

7.
Coxiella burnetii, the causative agent of human Q fever, is an intracellular pathogen that replicates in an acidified vacuole derived from the host lysosomal network. This pathogen encodes a Dot/Icm type IV secretion system that delivers bacterial proteins called effectors to the host cytosol. To identify new effector proteins, the functionally analogous Legionella pneumophila Dot/Icm system was used in a genetic screen to identify fragments of C. burnetii genomic DNA that when fused to an adenylate cyclase reporter were capable of directing Dot/Icm-dependent translocation of the fusion protein into mammalian host cells. This screen identified Dot/Icm effectors that were proteins unique to C. burnetii, having no overall sequence homology with L. pneumophila Dot/Icm effectors. A comparison of C. burnetii genome sequences from different isolates revealed diversity in the size and distribution of the genes encoding many of these effectors. Studies examining the localization and function of effectors in eukaryotic cells provided evidence that several of these proteins have an affinity for specific host organelles and can disrupt cellular functions. The identification of a transposon insertion mutation that disrupts the dot/icm locus was used to validate that this apparatus was essential for translocation of effectors. Importantly, this C. burnetii Dot/Icm-deficient mutant was found to be defective for intracellular replication. Thus, these data indicate that C. burnetii encodes a unique subset of bacterial effector proteins translocated into host cells by the Dot/Icm apparatus, and that the cumulative activities exerted by these effectors enables C. burnetii to successfully establish a niche inside mammalian cells that supports intracellular replication.  相似文献   

8.
Ge J  Shao F 《Cellular microbiology》2011,13(12):1870-1880
Legionella pneumophila, the causative agent of Legionnaires' disease, infects and replicates in macrophages and amoebas. Following internalization, L. pneumophila resides in a vacuole structure called Legionella-containing vacuole (LCV). The LCV escapes from the endocytic maturation process and avoids fusion with the lysosome, a hallmark of Legionella pathogenesis. Interference with the secretory vesicle transport and avoiding lysosomal targeting render the LCV permissive for L. pneumophila intracellular replication. Central to L. pneumophila pathogenesis is a defect in the organelle trafficking/intracellular multiplication (Dot/Icm) type IV secretion system that translocates a large number of effector proteins into host cells. Many of the Dot/Icm effectors employ diverse and sophisticated biochemical strategies to manipulate the host vesicular transport system, playing an important role in LCV biogenesis and trafficking. Similar to other bacterial pathogens, L. pneumophila also delivers effector proteins to modulate or counteract host innate immune defence pathways such as the NF-κB and apoptotic signalling. This review summarizes the known functions and mechanisms of Dot/Icm effectors that target host membrane trafficking and innate immune defence pathways.  相似文献   

9.
The icm/dot genes in Legionella pneumophila are essential for the ability of the bacteria to survive within macrophages in lung infections such as Legionnaires' disease, or amoebae in nature. The 22 genes of the complex, thought to encode a transport apparatus for transfer of effector molecules into the host cell cytoplasm, are located in two chromosomal loci. We demonstrate that these genes are present in all the L. pneumophila strains examined herein, but display a wide range of sequence variation among the different strains, none of which are clearly associated with virulence potential. The strains fall within seven phylogenetic groups, but discrepancies among the gene trees indicate a complicated evolutionary history for the icm/dot loci, with perhaps two independent gene acquisition events and subsequent genomic rearrangements. Significant findings include a probable t-SNARE domain in IcmG that may indicate a direct role for this putative inner membrane protein in altering the host's membrane fusion machinery, a potential functional domain in the central hydrophobic portion of IcmK that may allow it to participate in forming the pore of the secretion complex, and strict conservation of the amino acid physicochemical characteristics in the IcmP region corresponding to the trbA domain that could play a role in molecular transfer.  相似文献   

10.
To date, 24 Legionella pneumophila genes (icm and dot genes) have been shown to be required for intercellular growth and host cell killing. A previous report indicated that the regulation of these genes is complicated and probably involves several regulatory proteins. In this study, a genetic screen performed in Escherichia coli identified the CpxR response regulator as an activator of the L. pneumophila icmR gene. Construction of an L. pneumophila cpxR insertion mutant showed that the expression of icmR is regulated by CpxR. In addition, a conserved CpxR binding site (GTAAA) was identified in the icmR regulatory region and L. pneumophila His-tagged CpxR protein was shown to bind to the icmR regulatory region using a mobility shift assay. Besides its dramatic effect on the icmR level of expression, the CpxR regulator was also found to affect the expression of the icmV-dotA and icmW-icmX operons, but to a lesser extent. The role of CpxA, the cognate sensor kinase of CpxR, was also examined and its effect on the icmR level of expression was found to be less pronounced than the effect of CpxR. The RpoE sigma factor, which was shown to coregulate genes together with CpxR, was examined as well, but it did not influence icm and dot gene expression. In addition, when the cpxR mutant strain, in which the expression of the icmR gene was dramatically reduced, and the cpxA and rpoE mutant strains were examined for their ability to grow inside Acanthamoeba castellanii and HL-60-derived human macrophages, no intracellular growth defect was observed. This study presents the first evidence for a direct regulator (CpxR) of an icm-dot virulence gene (icmR). The CpxR regulator together with other regulatory factors probably concerts with the expression of icm and dot genes to result in successful infection.  相似文献   

11.
The Dot/Icm type IV secretion system of Legionella pneumophila translocates numerous bacterial effectors into the host cell and is essential for bacterial proliferation within macrophages and protozoa. We have recently shown that L. pneumophila strain AA100/130b harbours 11 genes encoding eukaryotic-like ankyrin (Ank) proteins, a family of proteins involved in various essential eukaryotic cellular processes. In contrast to most Dot/Icm-exported substrates, which have little or no detectable role in intracellular proliferation, a mutation in ankB results in a severe growth defect in intracellular replication within human monocyte-derived macrophages (hMDMs), U937 macrophages and Acanthamoeba polyphaga. Single cell analyses of coinfections of hMDMs have shown that the intracellular growth defect of the ankB mutant is totally rescued in cis within communal phagosomes harbouring the wild type strain. Interestingly, distinct from dot/icm structural mutants, the ankB mutant is also rescued in trans within cells harbouring the wild type strain in a different phagosome, indicating that AnkB is a trans-acting secreted effector. Using adenylate cyclase fusions to AnkB, we show that AnkB is translocated into the host cell via the Dot/Icm secretion system in an IcmSW-dependent manner and that the last three C-terminal amino acid residues are essential for translocation. Distinct from the dot/icm structural mutants, the ankB mutant-containing phagosomes exclude late endosomal and lysosomal markers and their phagosomes are remodelled by the rough endoplasmic reticulum. We show that at the postexponential phase of growth, the LetA/S and PmrA/B Two Component Systems confer a positive regulation on expression of the ankB gene, whereas RpoS, LetE and RelA suppress its expression. Our data show that the eukaryotic-like AnkB protein is a Dot/Icm-exported effector that plays a major role in intracellular replication of L. pneumophila within macrophages and protozoa, and its expression is temporally controlled by regulators of the postexponential phase of growth.  相似文献   

12.
Legionella pneumophila is the causative agent of Legionnaires' disease, a severe pneumonia. Dependent on the icm/dot loci, L. pneumophila survives and replicates in macrophages and amoebae within a specialized phagosome that does not fuse with lysosomes. Here, we report that phagocytosis of wild-type L. pneumophila is more efficient than uptake of icm/dot mutants. Compared with the wild-type strain JR32, about 10 times fewer icm/dot mutant bacteria were recovered from HL-60 macrophages in a gentamicin protection assay. The defect in phagocytosis of the mutants could be complemented by supplying the corresponding genes on a plasmid. Using fluorescence microscopy and green fluorescent protein (GFP)-expressing strains, 10-20 times fewer icm/dot mutant bacteria were found to be internalized by HL-60 cells and human monocyte-derived macrophages (HMMPhi). Compared with icm/dot mutants, wild-type L. pneumophila infected two to three times more macrophages and yielded a population of highly infected host cells (15-70 bacteria per macrophage) that was not observed with icm/dot mutant strains. Wild-type and icmT mutant bacteria were found to adhere similarly and compete for binding to HMMPhi. In addition, wild-type L. pneumophila was also phagocytosed more efficiently by Acanthamoeba castellanii, indicating that the process is independent of adherence receptor(s). Wild-type L. pneumophila enhanced phagocytosis of an icmT mutant strain in a synchronous co-infection, suggesting that increased phagocytosis results from (a) secreted effector(s) acting in trans.  相似文献   

13.
Type-IV secretion systems are devices present in a wide range of bacteria (including bacterial pathogens) that deliver macromolecules (proteins and single-strand-DNA) across kingdom barriers (as well as between bacteria and into the surroundings). The type-IV secretion systems were divided into two subgroups and Legionella pneumophila and Coxiella burnetii are the only two bacteria known today to utilize a type-IVB secretion system for pathogenesis. In this review we summarized the available information concerning the icm/dot type-IVB secretion systems by comparing the two bacteria that possess this system, the proteins components of their systems as well as the homology of proteins from type-IVB secretion systems to proteins from type-IVA secretion systems. In addition, the phenotypes associated with mutants in the L. pneumophila icm/dot genes, their relations to properties of specific Icm/Dot proteins as well as the protein substrates delivered by this system are described.  相似文献   

14.
Many bacterial pathogens require a functional type IV secretion system (T4SS) for virulence. Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Dot/Icm T4SS to inject a large number of protein substrates into its host, thereby altering phagosome trafficking. The L. pneumophila T4SS substrate SdeA has been shown to require the accessory factor IcmS for its export. IcmS, defined as a type IV adaptor, exists as a heterodimer with IcmW and this complex functions in a manner similar to a type III secretion chaperone. Here we report an interaction between IcmS and the previously identified virulence factor LvgA. Similar to the icmS mutant, the lvgA mutant appears to assemble a fully functional Dot/Icm complex. Both LvgA and IcmS are small, acidic proteins localized to the cytoplasm and are not exported by the Dot/Icm system, suggesting they form a novel type IV adaptor complex. Inactivation of lvgA causes a minimal defect in growth in the human monocytic cell line U937 and the environmental host Acanthamoeba castellanii. However, the lvgA mutant was severely attenuated for intracellular growth of L. pneumophila in mouse macrophages, suggesting LvgA may be a critical factor that confers host specificity.  相似文献   

15.
The entire nucleotide sequence of the transfer region of IncI1 plasmid R64 was determined together with previously reported sequences. Twenty-two transfer genes, traE-Y and nuc, were newly identified in the present study. The protein products of 17 genes were detected by maxicell experiments or by the T7 RNA polymerase expression system. Mutagenesis experiments indicated that 16 genes were indispensable for R64 transfer both in liquid and on surfaces. In summary, the R64 transfer region located within an approximately 54 kb DNA segment was shown to encode the most complex transfer system so far studied. It contains at least 49 genes and may produce 58 different proteins as a result of shufflon DNA rearrangement and overlapping genes. Among the 49 genes, 23 tra, trb and nik genes have been shown to be indispensable for R64 conjugal transfer in liquid and on surfaces. Twelve additional pil genes are required only for liquid matings. The amino acid sequences of 10 R64 tra/trb products share similarity with those of the icm/dot products of Legionella pneumophila that are responsible for its virulence, suggesting that the R64 transfer and L. pneumophila icm/dot systems have evolved from a common ancestral genetic system.  相似文献   

16.
Legionella pneumophila is a facultative intracellular pathogen capable of replicating in a wide spectrum of cells. Successful infection by Legionella requires the Dot/Icm type IV secretion system, which translocates a large number of effector proteins into infected cells. By co-opting numerous host cellular processes, these proteins function to establish a specialized organelle that allows bacterial survival and proliferation. Even within the vacuole, L. pneumophila triggers robust immune responses. Recent studies reveal that a subset of Legionella effectors directly target some basic components of the host innate immunity systems such as phagosome maturation. Others play essential roles in engaging the host innate immune surveillance system. This review will highlight recent progress in our understanding of these interactions and discuss implications for the study of the immune detection mechanisms.  相似文献   

17.
The intracellular pathogen Legionella pneumophila avoids fusion with lysosomes and subverts membrane transport from the endoplasmic reticulum to create an organelle that supports bacterial replication. Transport of endoplasmic reticulum-derived vesicles to the Legionella-containing vacuole (LCV) requires bacterial proteins that are translocated into host cells by a type IV secretion apparatus called Dot/Icm. Recent observations have revealed recruitment of the host GTPase Rab1 to the LCV by a process requiring the Dot/Icm system. Here, a visual screen was used to identify L. pneumophila mutants with defects in Rab1 recruitment. One of the factors identified in this screen was DrrA, a new Dot/Icm substrate protein translocated into host cells. We show that DrrA is a potent and highly specific Rab1 guanine nucleotide-exchange factor (GEF). DrrA can disrupt Rab1-mediated secretory transport to the Golgi apparatus by competing with endogenous exchange factors to recruit and activate Rab1 on plasma membrane-derived organelles. These data establish that intracellular pathogens have the capacity to directly modulate the activation state of a specific member of the Rab family of GTPases and thus further our understanding of the mechanisms used by bacterial pathogens to manipulate host vesicular transport.  相似文献   

18.
To investigate the involvement of RelA in the regulation of Legionella pneumophila virulence, a deletion substitution was constructed in the relA gene. The relA knockout resulted in an undetectable level of ppGpp in the cells during the stationary phase, but the original level was restored when the relA gene product was supplied on a plasmid. The effect of the relA mutation was examined with two systems that are known to be expressed during the stationary phase in L. pneumophila. Pigment production was found to be dependent on the relA gene product, and only one-half as much pigment was produced by the relA mutant as by the wild-type strain. Flagellum gene expression was also found to be dependent on the relA gene product, as determined with a flaA::lacZ fusion. However, the relA gene product was found to be dispensable for intracellular growth both in HL-60-derived human macrophages and in the protozoan host Acanthamoeba castellanii. To determine the involvement of the relA gene product in expression of L. pneumophila genes required for intracellular growth (icm/dot genes), nine icm::lacZ fusions were constructed, and expression of these fusions in the wild-type strain was compared with their expression in relA mutant strains. Expression of only one of the icm::lacZ fusions was moderately reduced in the relA mutant strain. Expression of the nine icm::lacZ fusions was also examined in a strain containing an insertion in the gene that codes for the stationary-phase sigma factor RpoS, and similar results were obtained. We concluded that RelA is dispensable for intracellular growth of L. pneumophila in the two hosts examined and that both RelA and RpoS play minor roles in L. pneumophila icm/dot gene expression.  相似文献   

19.
Legionella pneumophila is the Gram-negative bacterial agent of Legionnaires' disease, an acute, often fatal pneumonia. L. pneumophila infects alveolar macrophages, evading the antimicrobial defences of the phagocyte by preventing fusion of the phagosome with lysosomes and avoiding phagosome acidification. The bacteria then modulate the composition of the vacuole so that it takes on the characteristics of the endoplasmic reticulum. Similar events occur when the bacteria infect unicellular protozoa. It is thought that replication in fresh water protozoa provides an environmental reservoir for the organism. Several effector proteins are delivered to the host by the Icm/Dot type IV secretion system (TFSS). Some of these have been shown to participate in the trafficking of the Legionella phagosome. Here we describe the ability of the Icm/Dot TFSS to translocate two effectors, LepA and LepB, that play a role in the non-lytic release of Legionella from protozoa. We report that translocation of the Lep proteins is inhibited by agents that depolymerize actin filaments and that effectors may be secreted into the extracellular medium upon cell contact. Depletion of the Lep proteins by deletion of their genes results in increased ability to lyse red blood cells. In contrast, overexpression of Lep-containing hybrid proteins appears to specifically inhibit the activity of the Icm/Dot TFSS and may prevent the delivery of other effectors that are critical for intracellular multiplication.  相似文献   

20.
Only a limited number of bacterial pathogens evade destruction by phagocytic cells such as macrophages. Legionella pneumophila is a Gram-negative γ-proteobacterial species that can infect and replicate in alveolar macrophages, causing Legionnaires' disease, a severe pneumonia. L. pneumophila uses a complex secretion system to inject host cells with effector proteins capable of disrupting or altering the host cell processes. The L. pneumophila effectors target multiple processes but are essentially aimed at modifying the properties of the L. pneumophila phagosome by altering vesicular trafficking, gradually creating a specialized vacuole in which the bacteria replicate robustly. In nature, L. pneumophila is thought to parasitize free-living protists, which may have selected for traits that promote virulence of L. pneumophila in humans. Indeed, many effector genes encode proteins with eukaryotic domains and are likely to be of protozoan origin. Sustained horizontal gene transfer events within the protozoan niche may have allowed L. pneumophila to become a professional parasite of phagocytes, simultaneously giving rise to its ability to infect macrophages, cells that constitute the first line of cellular defence against bacterial infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号