首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human La autoantigen (hLa) protein is a predominantly nuclear phosphoprotein that contains three potential RNA binding domains referred to as the La motif and the RNA recognition motifs RRMs 1 and 2. With this report, we differentiated the contribution of its three RNA binding domains to RNA binding by combining in vitro and in vivo assays. Also, surface plasmon resonance technology was used to generate a model for the sequential contribution of the RNA binding domains to RNA binding. The results indicated that the La motif may contribute to specificity rather than affinity, whereas RRM1 is indispensable for association with pre-tRNA and hY1 RNA. Furthermore, RRM2 was not crucial for the interaction with various RNAs in vivo, although needed for full-affinity binding in vitro. Moreover, earlier studies suggest that RNA binding by hLa may direct its subcellular localization. As shown previously for RRM1, deletion of RNP2 sequence in RRM1 alters nucleolar distribution of hLa, not observed after deletion of the La motif. Here we discuss a model for precursor RNA binding based on a sequential association process mediated by RRM1 and the La motif.  相似文献   

2.
Sla1 is a Schizosaccharomyces pombe homolog of the human La protein. La proteins are known to be RNA-binding proteins that bear conserved RNA recognition motifs (La and RRMs), but their biological functions still have not been fully resolved. In this study, we show that the S. pombe La homolog (Sla1) is involved in regulating sexual development. Sla1 truncated in the C terminus (Sla1ΔC) induced ectopic sporulation in the ras1Δ strain and several other sporulation-deficient mutants. The C terminus contains a nuclear localization signal. While full-length Sla1 localizes in the nucleus, Sla1ΔC is found throughout the cell, suggesting the cytoplasmic localization of Sla1ΔC is involved in its sporulation-inducing activity. Further deletion analysis of Sla1 indicated that a small region (35 amino acids) that includes a portion of RRM2 is sufficient to induce sporulation. The La motif (RRM1) is not involved in this activity. Strikingly, Sla1ΔC induced haploid meiosis in a heterothallic strain, similar to the pat1-114 or mei2-SATA mutation. Sla1ΔC induced sporulation in a mei3 disruptant but not in a mei2 disruptant, indicating that Sla1ΔC requires Mei2 to induce haploid meiosis. Deletion of the chromosomal sla1 gene lowered the temperature sensitivity of the pat1-114 mutant. Two-hybrid analysis indicated that Pat1 interacts with Sla1ΔC but not full-length Sla1. Thus, Sla1ΔC may block Pat1 activity. This block would remove the inhibition on Mei2, which would then drive the cell into haploid meiosis. Finally, Sla1 was degraded prior to the start of meiosis when we monitored Sla1 in cells in which meiosis was synchronously induced. The ability of truncated Sla1 to induce ectopic meiosis represents a very novel function that has hitherto not been suspected for the La family of proteins.  相似文献   

3.
Human SAP 49, a subunit of the multimeric splicing factor 3b (SF3b), contains two RNA recognition motifs (RRMs) and binds another SF3b subunit called SAP 145, whose yeast homologue is CUS1. Here we show that the predicted yeast open reading frame YOR319w (HSH49) encodes an essential yeast splicing factor. Using bacterially expressed proteins, we find that yeast HSH49 binds CUS1. Mutations that alter putative RNA-binding residues of either HSH49 RRM are lethal in vivo, but do not prevent binding to CUS1 in vitro, suggesting that the predicted RNA-binding surfaces of HSH49 are not required for interaction with CUS1. In vivo interaction tests show that HSH49 and CUS1 associate primarily through the N-terminal RRM of HSH49. Recombinant HSH49 protein has a general RNA-binding activity that does not require CUS1. The parallels in structure and interaction between two SF3b subunits from yeast implies that the mechanism of SF3b action is highly conserved.  相似文献   

4.
Conversion of a nascent precursor tRNA to a mature functional species is a multipartite process that involves the sequential actions of several processing and modifying enzymes. La is the first protein to interact with pre-tRNAs in eukaryotes. An opal suppressor tRNA served as a functional probe to examine the activities of yeast and human (h)La proteins in this process in fission yeast. An RNA recognition motif and Walker motif in the metazoan-specific C-terminal domain (CTD) of hLa maintain pre-tRNA in an unprocessed state by blocking the 5'-processing site, impeding an early step in the pathway. Faithful phosphorylation of hLa on serine 366 reverses this block and promotes tRNA maturation. The results suggest that regulation of tRNA maturation at the level of RNase P cleavage may occur via phosphorylation of serine 366 of hLa.  相似文献   

5.
Transport across the nuclear envelope is mediated by transport receptors from the Importin beta family. We identified Exportin 1 from Arabidopsis (AtXPO1/AtCRM1) as the nuclear export receptor for proteins carrying leucine-rich nuclear export signals (NESs). AtXPO1 shares 42-50% identity with its functional homologues from humans and yeasts. We functionally characterised AtXPO1 by its interaction with NESs of animal and plant proteins, which is inhibited by the cytotoxin leptomycin B (LMB), and also by its interaction with the small GTPase Ran1 in the yeast two-hybrid system. Furthermore, we demonstrated the existence of a nuclear export pathway for proteins in plants. For the characterisation of nuclear export activities, we established an in vivo assay based on the localisation equilibrium of a GFP reporter protein fused to both a nuclear localisation signal (NLS) and an NES motif. Using this in vivo assay we demonstrated that the NES of the heterologous protein Rev is also functional in plants and that its export is inhibited by LMB. In addition, we identified a leucine-rich NES in the Arabidopsis protein AtRanBP1a. The NES, which is located at the carboxy terminus of the protein, is disrupted by mutating three long chain hydrophobic amino acid residues to alanine (L176A, L179A, V181A). In BY-2 protoplasts the NES of AtRanBP1a is functionally indistinguishable from the Rev NES. Our results demonstrate that the machinery for the nuclear export of proteins is functionally conserved in plants.  相似文献   

6.
The nuclear export of proteins and RNAs has been studied in heterokaryons or by microinjecting test substrates into nuclei of HeLa cells or Xenopus oocytes. We have previously shown that the two movement proteins BR1 and BL1 encoded by the plant pathogenic squash leaf curl virus act in a coordinated manner to facilitate virus cell-to-cell movement and that one of these (BR1) is a nuclear shuttle protein. By using a novel in vivo cell-based assay for nuclear export in which nuclear-localized BR1 is trapped by BL1 and redirected to the cortical cytoplasm, we demonstrate that residues 177 to 198 of BR1 contain a leucine-rich nuclear export signal (NES) of the type found in the Rev protein encoded by the human immunodeficiency virus and in Xenopus TFIIIA. We further show that the TFIIIA NES can functionally replace the NES of BR1 in both nuclear export and viral infectivity. These findings suggest that this basic pathway for nuclear export is highly conserved among plant and animal cells and in yeast.  相似文献   

7.
Systemic autoimmune diseases are characterized by the production of high titer autoantibodies specific for ubiquitous nuclear self-Ags such as DNA, Sm, and La (SS-B), so the normal mechanisms of B cell tolerance to disease-associated nuclear Ags have been of great interest. Mechanisms of B cell tolerance include deletion, anergy, developmental arrest, receptor editing, and B cell differentiation to the B-1 subtype. However, recent studies in our laboratory have suggested that B cell tolerance to the nuclear autoantigen La is limited in normal mice, and tolerance may reside primarily in the T cell compartment. To test this hypothesis, we created Ig transgenic mice expressing the IgM H chain from an mAb specific for a xenogeneic epitope within human La (hLa). These mice were bred with hLa-transgenic mice that constitutively express hLa in a manner comparable to endogenous mouse La. Between 5-15% of transgenic B cells developing in the absence of hLa were specific for hLa, and these cells were neither depleted nor developmentally arrested in the presence of endogenous hLa expression. Instead, these autoreactive B cells matured normally and differentiated into Ab-forming cells, capable of secreting high titer autoantibody. Additionally, the life span of autoreactive hLa-specific B cells was not reduced, and they were phenotypically and functionally indistinguishable from naive nonautoreactive hLa-specific B cells developing in the absence of hLa. Together these data suggest a lack of intrinsic B cell tolerance involving any known mechanisms indicating that these autoreactive B cells are indifferent to their autoantigen.  相似文献   

8.
9.
The RNA binding and export factor (REF) family of mRNA export adaptors are found in several nuclear protein complexes including the spliceosome, TREX, and exon junction complexes. They bind RNA, interact with the helicase UAP56/DDX39, and are thought to bridge the interaction between the export factor TAP/NXF1 and mRNA. REF2-I consists of three domains, with the RNA recognition motif (RRM) domain positioned in the middle. Here we dissect the interdomain interactions of REF2-I and present the solution structure of a functionally competent double domain (NM; residues 1-155). The N-terminal domain comprises a transient helix (N-helix) linked to the RRM by a flexible arm that includes an Arg-rich region. The N-helix, which is required for REF2-I function in vivo, overlaps the highly conserved REF-N motif and, together with the adjacent Arg-rich region, interacts transiently with the RRM. RNA interacts with REF2-I through arginine-rich regions in its N- and C-terminal domains, but we show that it also interacts weakly with the RRM. The mode of interaction is unusual for an RRM since it involves loops L1 and L5. NMR signal mapping and biochemical analysis with NM indicate that DDX39 and TAP interact with both the N and RRM domains of REF2-I and show that binding of these proteins and RNA will favor an open conformation for the two domains. The proximity of the RNA, TAP, and DDX39 binding sites on REF2-I suggests their binding may be mutually exclusive, which would lead to successive ligand binding events in the course of mRNA export.  相似文献   

10.
11.
By sequence-specific binding to 3' UUU-OH, the La protein shields precursor (pre)-RNAs from 3' end digestion and is required to protect defective pre-transfer RNAs from decay. Although La is comprised of a La motif and an RNA-recognition motif (RRM), a recent structure indicates that the RRM beta-sheet surface is not involved in UUU-OH recognition, raising questions as to its function. Progressively defective suppressor tRNAs in Schizosaccharomyces pombe reveal differential sensitivities to La and Rrp6p, a 3' exonuclease component of pre-tRNA decay. 3' end protection is compromised by mutations to the La motif but not the RRM surface. The most defective pre-tRNAs require a second activity of La, in addition to 3' protection, that requires an intact RRM surface. The two activities of La in tRNA maturation map to its two conserved RNA-binding surfaces and suggest a modular model that has implications for its other ligands.  相似文献   

12.
13.
Proliferating cell nuclear antigen (PCNA) plays an essential role in eukaryotic DNA replication, and numerous DNA replication proteins have been found to interact with PCNA through a conserved eight-amino acid motif called the PIP-box. We have searched the genome of the yeast Saccharomyces cerevisiae for open reading frames that encode proteins with putative PIP-boxes and initiated testing of 135 novel candidates for their ability to interact with PCNA-conjugated agarose beads. The first new PCNA-binding protein identified in this manner is the 5' to 3' DNA helicase RRM3. Yeast two-hybrid tests show that N-terminal deletions of RRM3, which remove the PIP-box but leave the helicase motifs intact, abolish the interaction with PCNA. In addition, mutating the two phenylalanine residues in the PIP-box to alanine or aspartic acid reduces binding to PCNA, confirming that the PIP-box in RRM3 is responsible for interaction with PCNA. The results presented here suggest that the RRM3 helicase functions at the replication fork.  相似文献   

14.
Recognition of polyadenylate RNA by the poly(A)-binding protein.   总被引:32,自引:0,他引:32  
R C Deo  J B Bonanno  N Sonenberg  S K Burley 《Cell》1999,98(6):835-845
The cocrystal structure of human poly(A)-binding protein (PABP) has been determined at 2.6 A resolution. PABP recognizes the 3' mRNA poly(A) tail and plays critical roles in eukaryotic translation initiation and mRNA stabilization/degradation. The minimal PABP used in this study consists of the N-terminal two RRM-type RNA-binding domains connected by a short linker (RRM1/2). These two RRMs form a continuous RNA-binding trough, lined by an antiparallel beta sheet backed by four alpha helices. The polyadenylate RNA adopts an extended conformation running the length of the molecular trough. Adenine recognition is primarily mediated by contacts with conserved residues found in the RNP motifs of the two RRMs. The convex dorsum of RRM1/2 displays a phylogenetically conserved hydrophobic/acidic portion, which may interact with translation initiation factors and regulatory proteins.  相似文献   

15.
Cloning of the entire set of an organism's protein-coding open reading frames (ORFs), or 'ORFeome', is a means of connecting the genome to downstream 'omics' applications. Here we report a proteome-scale study of the fission yeast Schizosaccharomyces pombe based on cloning of the ORFeome. Taking advantage of a recombination-based cloning system, we obtained 4,910 ORFs in a form that is readily usable in various analyses. First, we evaluated ORF prediction in the fission yeast genome project by expressing each ORF tagged at the 3' terminus. Next, we determined the localization of 4,431 proteins, corresponding to approximately 90% of the fission yeast proteome, by tagging each ORF with the yellow fluorescent protein. Furthermore, using leptomycin B, an inhibitor of the nuclear export protein Crm1, we identified 285 proteins whose localization is regulated by Crm1.  相似文献   

16.
AU-rich elements (AREs) located in the 3' UTRs of the messenger RNAs (mRNAs) of many mammalian early response genes promote rapid mRNA turnover. HuR, an RRM-containing RNA-binding protein, specifically interacts with AREs, stabilizing these mRNAs. HuR is primarily nucleoplasmic, but shuttles between the nucleus and the cytoplasm via a domain called HNS located between RRM2 and RRM3. We recently showed that HuR interacts with two protein ligands, pp32 and APRIL, which are also shuttling proteins, but rely on NES domains recognized by CRM1 for export. Here we show that heat shock induces increased association of HuR with pp32 and APRIL through protein-protein interactions and that these ligands partially colocalize with HuR in cytoplasmic foci. HuR associations with the hnRNP complex also increase, but through RNA links. CRM1 coimmunoprecipitates with HuR only after heat shock, and nuclear export of HuR becomes sensitive to leptomycin B, an inhibitor of CRM1. Export after heat shock requires the same domains of HuR (HNS and RRM3) that are essential for binding pp32 and APRIL. In situ hybridization and coimmunoprecipitation experiments show that LMB treatment blocks both hsp70 mRNA nuclear export and its cytoplasmic interaction with HuR after heat shock. Together, our results argue that upon heat shock, HuR switches its export pathway to that of its ligands pp32 and APRIL, which involves the nuclear export factor CRM1. HuR and its ligands may be instrumental in the nuclear export of heat-shock mRNAs.  相似文献   

17.
Yra1p is an essential nuclear protein which belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p contributes to mRNA export in vivo and directly interacts with RNA and the shuttling mRNP export receptor Mex67p in vitro. Here we describe a second nonessential Saccharomyces cerevisiae family member, called Yra2p, which is able to complement a YRA1 deletion when overexpressed. Like other REF proteins, Yra1p and Yra2p consist of two highly conserved N- and C-terminal boxes and a central RNP-like RNA-binding domain (RBD). These conserved regions are separated by two more variable regions, N-vr and C-vr. Surprisingly, the deletion of a single conserved box or the deletion of the RBD in Yra1p does not affect viability. Consistently, neither the conserved N and C boxes nor the RBD is required for Mex67p and RNA binding in vitro. Instead, the N-vr and C-vr regions both interact with Mex67p and RNA. We further show that Yra1 deletion mutants which poorly interact with Mex67p in vitro affect the association of Mex67p with mRNP complexes in vivo and are paralleled by poly(A)(+) RNA export defects. These observations support the idea that Yra1p promotes mRNA export by facilitating the recruitment of Mex67p to the mRNP.  相似文献   

18.
The human cytomegalovirus protein pUL69 belongs to a family of regulatory factors that is conserved within the Herpesviridae and includes the proteins ICP27 of herpes simplex virus type 1 and EB2 of Epstein–Barr virus. ICP27 and EB2 have been shown to facilitate the nuclear export of viral mRNAs via interacting with the cellular mRNA export factor REF. Furthermore, direct RNA-binding of these proteins was found to be essential for their stimulating effects on mRNA export. Recently, we demonstrated that pUL69 shares common features with ICP27 and EB2 such as (i) nucleocytoplasmic shuttling and (ii) stimulation of nuclear RNA export via binding to the cellular mRNA export machinery. Here, we demonstrate that pUL69 can also interact with RNA both in vivo and in vitro via a complex N-terminal RNA-binding domain consisting of three arginine-rich motifs. Interestingly, the RNA-binding domain of pUL69 overlaps with both the NLS and the binding site of the cellular mRNA export factors UAP56 and URH49. While the deletion of the UAP56/URH49-binding site abolished pUL69-mediated RNA export, an RNA-binding deficient pUL69 mutant which still interacts with UAP56/URH49 retained its RNA export activity. This surprising finding suggests that, in contrast to its homologues, RNA-binding is not a prerequisite for pUL69-mediated nuclear RNA export.  相似文献   

19.
Lisbin MJ  Gordon M  Yannoni YM  White K 《Genetics》2000,155(4):1789-1798
Members of the ELAV family of proteins contain three RNA recognition motifs (RRMs), which are highly conserved. ELAV, a Drosophila melanogaster member of this family, provides a vital function and exhibits a predominantly nuclear localization. To investigate if the RNA-binding property of each of the ELAV RRMs is required for ELAV's in vivo function, amino acid residues critical in RNA binding for each RRM were individually mutated. A stringent genetic complementation test revealed that when the mutant protein was the sole source of ELAV, RNA-binding ability of each RRM was essential to ELAV function. To assess the degree to which each domain was specific for ELAV function and which domains perhaps performed a function common to related ELAV proteins, we substituted an ELAV RRM with the corresponding RRM from RBP9, the D. melanogaster protein most homologous to ELAV; HuD, a human ELAV family protein; and SXL, which, although evolutionarily related, is not an ELAV family member. This analysis revealed that RRM3 replacements were fully functional, but RRM1 and RRM2 replacements were largely nonfunctional. Under less stringent conditions RRM1 and RRM2 replacements from SXL and RRM1 replacement from RBP9 were able to provide supplemental function in the presence of a mutant hypomorphic ELAV protein.  相似文献   

20.
The RNA recognition motif (RRM) is one of the most common eukaryotic protein motifs. RRM sequences form a conserved globular structure known as the RNA-binding domain (RBD) or the ribonucleoprotein domain. Many proteins that contain RRM sequences bind RNA in a sequence-specific manner. To investigate the basis for the RNA-binding specificity of RRMs, we subjected 330 aligned RRM sequences to covariance analysis. The analysis revealed a single network of covariant amino acid pairs comprising the buried core of the RBD and a surface patch. Structural studies have implicated a subset of these residues in RNA binding. The covariance linkages identify a larger set of amino acid residues, including some not directly in contact with bound RNA, that may influence RNA-binding specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号