首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Most widespread birds of Neotropical cloud forests exhibit phenotypic variation that is partitioned geographically suggesting allopatric divergence, but little is known about the extent to which such phenotypic differentiation is consistent with genetic variation. We studied geographic patterns of genetic differentiation in the Three-striped Warbler (Basileuterus tristriatus), a polytypic and widespread understory bird of the foothills and mid-elevation zone of the tropical Andes and adjacent mountains of Central and South America. We sequenced mitochondrial DNA for 196 samples covering the entire range of B. tristriatus, as well as 22 samples of its putative closest relatives: the Three-banded (B. trifasciatus) and Santa Marta (B. basilicus) warblers. We found deep genetic structure across the range of B. tristriatus, which consisted of ten major clades including B. trifasciatus, a species that was nested within B. tristriatus. In contrast, B. basilicus was not closely related to B. tristriatus but part of a clade of Myiothlypis warblers. Geographic boundaries among clades were clearly related to lowland gaps separating subspecies groups. The subspecies melanotis of the mountains of Central America was sister to a large clade including B. t. tacarcunae, and the rest of South American clades, including B. trifasciatus. Five clades are found in the northern Andes, where no signs of gene flow were found across barriers such as the Táchira Depression or the Magdalena valley. Our study highlights the importance of valleys in promoting and maintaining divergence in a lower montane forest bird. The substantial genetic and phenotypic differentiation, and the paraphyly uncovered in B. tristriatus, may call for revising its species boundaries.  相似文献   

2.
The capelin (Mallotus villosus) is a widespread marine fish species for which previous work has identified geographically distinct mtDNA clades, the frontiers of which are well within adult and larval dispersal capabilities. Here, we use AFLPs to test for the presence of nuclear gene flow among clades. In addition, we evaluate genetic structuring within one clade, the Northwest Atlantic (NWA). We found that each of the mtDNA clades corresponds with a unique nuclear DNA genetic cluster. Within the NWA clade, we detected individuals with small but significant amounts of genetic ancestry from other clades, likely due to historical introgression. Further support for historical introgression comes from analyses of variance in locus-specific differentiation, which support introgression between some clades and divergence without gene flow between others. Within the NWA, we identified two genetic clusters that correspond to sites in geographically adjacent areas. However, these clusters differ primarily at 'outlier' loci, and a genetic subdivision (K=2) was not supported by genetic clustering programs using neutral loci. Significant neutral F(ST) differentiation was found only between sites that otherwise differed at outlier loci. Thus, these populations may be in the initial stages of 'isolation by adaptation'. These results suggest strong between-clade reproductive isolation despite opportunities for gene flow and support the hypothesis that selection can contribute to divergence in otherwise 'open' systems.  相似文献   

3.
The southeastern United States (U.S.) has experienced dynamic climatic changes over the past several million years that have impacted species distributions. In many cases, contiguous ranges were fragmented and a lack of gene flow between allopatric populations led to genetic divergence and speciation. The Southern Red-backed Salamander, Plethodon serratus, inhabits four widely disjunct regions of the southeastern U.S.: the southern Appalachian Mountains, the Ozark Plateau, the Ouachita Mountains, and the Southern Tertiary Uplands of central Louisiana. We integrated phylogenetic analysis of mitochondrial DNA sequences (1399 base pairs) with ecological niche modeling to test the hypothesis that climate fluctuations during the Pleistocene drove the isolation and divergence of disjunct populations of P. serratus. Appalachian, Ozark, and Louisiana populations each formed well-supported clades in our phylogeny. Ouachita Mountain populations sorted into two geographically distinct clades; one Ouachita clade was sister to the Louisiana clade whereas the other Ouachita clade grouped with the Appalachian and Ozark clades but relationships were unresolved. Plethodon serratus diverged from its sister taxon, P. sherando, ~5.4 million years ago (Ma), and lineage diversification within P. serratus occurred ~1.9–0.6 Ma (Pleistocene). Ecological niche models showed that the four geographic isolates of P. serratus are currently separated by unsuitable habitat, but the species was likely more continuously distributed during the colder climates of the Pleistocene. Our results support the hypothesis that climate-induced environmental changes during the Pleistocene played a dominant role in driving isolation and divergence of disjunct populations of P. serratus.  相似文献   

4.
Thirty-two species were recorded in mixed-species bird flocks led by the Grey-cheeked Fulvetta Alcippe morrisonia in Fushan Experimental Forest, Taiwan. Flocks averaged (± se) 5.8 ± 0.2 species and 51.4 ± 2.7 birds. Most participants were resident species (86.3%), some were elevational migrants (12.6%) and a few were latitudinal migrants (1.1%). Flock size was determined primarily by the abundance of Grey-cheeked Fulvettas, the most abundant species (68.1%). Flocks moved at an average rate of 10.8 ± 0.7 m/min, with larger flocks moving faster than smaller flocks. In moving flocks, canopy species were usually near the front, while understorey species usually followed. Fulvettas gave higher-intensity alarm calls and dived down more frequently in response to avian threats, especially raptors, than to non-avian threats. The overall foraging niche-breadth of the fulvetta was greater than that of any attendant species. Each species in a flock had a unique foraging niche. Most attendant species exhibited low foraging niche-overlap with the Grey-cheeked Fulvetta. Both the predator avoidance and the foraging efficiency hypotheses for mixed-species flocking were supported. The Grey-cheeked Fulvetta plays a critical role in the function of mixed-species flocks. A large flock formed around the Grey-cheeked Fulvetta provides attendant species with numerous opportunities for obtaining food and protection from predators.  相似文献   

5.
We investigated the genetic population structure and species status of a relatively sedentary bird that is a permanent resident of western North American forests, the blue grouse (Dendragapus obscurus). Phylogenetic analysis of complete mitochondrial control region DNA sequences resulted in the identification of three basal clades of haplotypes that were largely congruent with well-known biogeographical regions. These clades corresponded to the parapatric sooty (D. o. fuliginosus) and dusky (D. o. obscurus) subspecies groups of blue grouse plus a previously unrecognized division between northern and southern dusky grouse populations; the latter does not correspond closely to any currently recognized subspecies boundary. Approximately 66% of the total genetic variation was distributed among these three regions. Maximum likelihood estimates of gene flow between the regions were low or asymmetric; gene flow has been insufficient to prevent genetic divergence between dusky and sooty grouse. Estimates of gene flow among populations within sooty grouse were large except across the Columbia River valley. Among populations of dusky grouse, estimates of gene flow were heterogeneous and asymmetrical, reflecting large-scale fragmentation of the distribution due to landscape features and associated vegetation. Genetic, morphological and behavioural evidence suggest that sooty and dusky grouse are species-level taxa; the specific status of a third clade remains ambiguous.  相似文献   

6.
The Persian racerunner Eremias persica Blanford, 1875 is confined to the Iranian plateau, and forms one of the most widespread but rarely studied species of the family Lacertidae. With many local populations inhabiting a variety of habitats, and exhibiting considerable morphological, genetic, and ecological variations, it represents a species complex. We analysed sequences of mitochondrial cytochrome b and 12S ribosomal RNA (rRNA) genes derived from 13 geographically distant populations belonging to the E. persica complex. Using our knowledge of palaeogeographical events, a molecular clock was calibrated to assess the major events in fragmentation, radiation, and intraspecific variation. The sequence data strongly support a basal separation of the highland populations of western Iran from those of the open steppes and deserts, occurring in the east. The subsequent radiation, fragmentation, and evolution of these major assemblages have led to several discernable geographical lineages across the wide area of the Iranian plateau. The results indicate a middle‐Miocene origin for the clade as a whole. The first split, isolating the western and eastern clades, appears to have occurred 11–10 Mya. Further fragmentations and divergence within the major clades began about 8 Mya, with an evolutionary rate of 1.6% sequence divergence per million years among the lineages in the genes studied (combined data set). Molecular and morphological data strongly support a taxonomic revision of this species complex. At least four of the discovered clades should be raised to species, and two to subspecies, rank. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 641–660.  相似文献   

7.
Relatively little is known about the relationship between Bufo gargarizans populations from Zhoushan Archipelago and nearby continental regions on the Pacific coast of eastern China.In this paper,155 new specimens of B.gargarizans from Zhoushan Archipelago and adjacent continents and 71 published specimens of B.gargarizans from mainland China were studied.Phylogeographical and dating analyses of B.gargarizans were performed using mitochondrial DNA sequencing with a length of 1436 bp.A mt DNA tree that indicated seven major clades was obtained.The earliest split in the mt DNA tree corresponding to the divergence of populations from the western highland region occurred approximately 4.0 million years ago(mya).A subsequent clade occurred about 3.4 mya,with cladogenesis continuing toward the end of the Pleistocene.The continental clades were distributed in the western,central and northeastern regions of China.Zhoushan Archipelago clades consisted of two largely geographically overlapping subclades with the mt DNA divergence time of 0.73 mya.These results indicated there was extensive dispersal after vicariance.The B.gargarizans populations on Zhoushan Archipelago most probably originated from populations in nearby eastern continental regions of China.It was concluded that geological uplifting during the Pliocene and several sea-level changes in Pleistocene might have influenced the divergence and population demographical history of this species.  相似文献   

8.
Asian turtles face an extinction crisis, and so it is imperative that systematists accurately determine species diversity in order to guide conservation strategies effectively. We surveyed mitochondrial and nuclear DNA (mtDNA and nuDNA) variation of the heavily exploited Mauremys mutica complex, a clade of Asian turtles that contains the endangered M. mutica from Japan, Taiwan, China and Vietnam, and the critically endangered Mauremys annamensis from central Vietnam. We discovered extensive mtDNA and nuDNA variation among samples that did not correspond to the currently recognized taxonomy. Both nuDNA and mtDNA data suggest that M. mutica is paraphyletic with respect to M. annamensis . Surprisingly, M. annamensis exhibits a previously unknown mtDNA structure in the form of two clades that are paraphyletic to M. mutica . These data reveal that the currently recognized taxonomy of the mutica complex does not reflect the genetic diversity of our samples. Unfortunately, many conservation-oriented captive-breeding efforts for turtles are also based on trade samples such as the ones studied here. These efforts include plans to breed trade-rescued individuals and release their progeny into the wild. Because our genetic survey reveals that the taxonomic identity of these samples does not reflect genetic diversity, we raise serious questions about the efficacy of these programs. In order to address conservation issues and provide more accurate estimates of evolutionary lineages within Mauremys , we recommend continued surveys for wild populations of the mutica complex to provide new genetic material and additional distributional data, attempts to extract DNA from historic museum specimens and a shift in conservation focus to in situ preservation of wild populations and associated habitat.  相似文献   

9.
During the last 40 years, few species of African birds have undergone more taxonomic revision than the olive thrush Turdus olivaceus. This is due to disagreement on how to partition the striking phenotypic variation among allopatric populations. The current consensus is to recognise one species T. olivaceus , split into three assemblages: (1) the olivaceus group restricted to southern Africa, (2) the swynnertoni group of the Zimbabwean and southern Malawi highlands, and (3) the abyssinicus group of the montane highlands of eastern and central Africa. Mitochondrial DNA sequences from 63 individuals were analysed to investigate the phylogenetic relationships among 16 taxa (species and subspecies) in the olivaceus species complex (plus seven outgroup species), with, particular emphasis on the relationships and taxonomic status of the endangered Taita thrush ( helleri ). Phylogenetic hypotheses generated using parsimony, maximum likelihood, and Bayesian inference identified a number of discrete clades corresponding to recognised subspecies. Northern ( abyssinicus clade) and southern populations ( olivaceus + swynnertoni clade) of olive thrush differ by 9–10% in sequence divergence. Furthermore, all analytical methods suggested that helleri (Taita Hills) and roehli (Usambara and Pare Mountains) are reciprocally monophyletic with respect to mtDNA, and 2.5 to 10.5% divergent from all other forms of olive thrush. Both helleri and roehli are surrounded in adjacent highlands by populations of olive thrush that represent a more recent radiation, suggesting that helleri and roehli may be relict taxa which have been able to maintain their genetic integrity. The results of this study support previous arguments for recognizing the arid/woodland T. smithi as a species distinct from other southern African forest populations of T. olivaceus (including the swynnertoni group). Results further suggest that T. abyssinicus , T. helleri , and T. roehli be accorded species rank.  相似文献   

10.
The identification of species via morphological characteristics has traditionally left cryptic species undescribed in taxa under selection for morphological conservation (or a lack of selection for morphological change). Treecreepers (Genus: Certhia) have a conserved morphological appearance, making it difficult to ascertain relationships in the genus based on morphology alone. Recent genetic and song structure studies of Eurasian Treecreepers identified cryptic species within Old World Certhia that were previously undescribed using morphological characteristics. Here, we use mtDNA to investigate cryptic diversity and patterns of diversification in the Brown Creeper (Certhia americana), the single described Certhia species in the Americas. Phylogenetic analyses identified six well-supported geographically-structured clades; the basal divergence separates a northern and a southern lineage in the Brown Creeper, likely cryptic species previously characterized as many subspecies. Sympatry is prevalent between clades in western North America, where possible contact zones warrant further investigation. Allopatry appears to be the primary driver of deep phylogeographic structure within the Brown Creeper; however, within clade diversity is highly correlated with the life history traits of the populations that comprise the geographically structured phylogroups.  相似文献   

11.
The Anaxyrus boreas species group currently comprises four species in western North America including the broadly distributed A. boreas, and three localized species, Anaxyrus nelsoni, Anaxyrusexsul and Anaxyrus canorus. Phylogenetic analyses of the mtDNA 12S rDNA, cytochrome oxidase I, control region, and restriction sites data, identified three major haplotype clades. The Northwest clade (NW) includes both subspecies of A. boreas and divergent minor clades in the middle Rocky Mountains, coastal, and central regions of the west and Pacific Northwest. The Southwest (SW) clade includes A. exsul, A. nelsoni, and minor clades in southern California. Anaxyrus canorus, previously identified as paraphyletic, has populations in both the NW and SW major clades. The Eastern major clade (E) includes three divergent lineages from southern Utah, the southern Rocky Mountains, and north of the Great Basin at the border of Utah and Nevada. These results identify new genetic variation in the eastern portion of the toad's range and are consistent with previous regional studies from the west coast. Low levels of control region sequence divergence between major clades (2.2-4.7% uncorrected pair-wise distances) are consistent with Pleistocene divergence and suggest that the phylogeographic history of the group was heavily influenced by dynamic Pleistocene glacial and climatic changes, and especially pluvial changes, in western North America. Results reported here may impact conservation plans in that the current taxonomy does not reflect the diversity in the group.  相似文献   

12.
We examined intra-specific phylogenetic relationships in leatherside chub, Gila copei. The complete mitochondrial (mt) cytochrome b gene (1140 bp) was sequenced for 30 individuals from 10 populations that span the geographical distribution of this species. Traditional phylogenetic analyses revealed two deeply divergent and evolutionarily distinct mtDNA clades that are geographically separated in northern and southern drainage basins. Interpopulation sequence variation between clades ranged from 7.7 to 8.1%. The northern clade was genetically more similar and phylogenetically more closely related to the selected out-group Lepidomeda m. mollispinus than to the southern clade, suggesting that the taxonomy of this species may require revision. Sequence variation among populations within clades ranged from 0 to 0.3% in the north and from 0 to 0.7% in the south. Statistical parsimony was used to construct phylogenetic networks of haplotypes within clades. Nested clade analysis revealed that geographical fragmentation has played an important role in genetic structuring within northern and southern clades.  相似文献   

13.
Paa bourreti的有效性及其在中国的新纪录   总被引:1,自引:1,他引:0  
用线粒体12S和16S基因序列对双团棘胸蛙Paa yunnanensis的8个种群和越南的Paa bourreti进行分子系统发育分析,结果表明,双团棘胸蛙景东种群与Paa bourreti聚为一支,而其他7个种群聚为一支;以上两支问的遗传分化水平已经达到种级.此外,形态比较结果表明景东地区标本与双团棘胸蛙形态特征不同而与P.bourreti基本一致.因此,支持P.bourreti为有效种,双团棘胸蛙景东种群应为P.bourreti,为中国新纪录;推测其在云南南部其他区域也有分布.根据云南景东的标本,本文对P.bourreti进行了形态补充描述.  相似文献   

14.
Crotalus viridis, the western rattlesnake, ranges throughout western North America and has been divided into at least eight subspecies. However, the validity of and relationships among these subspecies and the monophyly of C. viridis as a whole are questionable. We used mitochondrial DNA sequence data from the D-loop region and ND2 gene to examine the relationships among 26 populations of C. viridis and to test the monophyly of this species. These data were analyzed separately and combined using maximum-likelihood and maximum-parsimony. The C. viridis group was monophyletic in all combined analyses, consisting of two strongly divergent clades. We recommend that these clades be recognized as two distinct evolutionary species: C. viridis and C. oreganus. Crotalus viridis should be restricted to the subspecies viridis and nuntius and the remaining subspecies be assigned to the species C. oreganus. Our data do not allow strong evaluation of the validity of the subspecies. We found that the ND2 gene had greater sequence divergences among closely related individuals than the D-loop region, but this relationship reversed at higher levels of divergence. This pattern is apparently due to: (1) ND2 third positions evolving faster than the D-loop but becoming saturated at higher levels of divergence, and (2) the D-loop evolving faster than ND2 second (and possibly first) positions. Our results suggest that the ND2 gene is preferable for examining intraspecific relationships and the D-loop may better resolve relationships between species of snakes. The latter result is contrary to the common perception of the phylogenetic utility of the D-loop. Another unusual result is that the 145 bp spacer region, adjacent to the 5' end of the light strand of the D-loop, provides greater phylogenetic resolution than the 1030 bp D-loop.  相似文献   

15.
Aim There is increasing evidence that the quality and breadth of ecological niches vary among individuals, populations, evolutionary lineages and therefore also across the range of a species. Sufficient knowledge about niche divergence among clades might thus be crucial for predicting the invasion potential of species. We tested for the first time whether evolutionary lineages of an invasive species vary in their climate niches and invasive potential. Furthermore, we tested whether lineage‐specific models show a better performance than combined models. Location Europe. Methods We used species distribution models (SDMs) based on climatic information at native and invasive ranges to test for intra‐specific niche divergence among mitochondrial DNA (mtDNA) clades of the invasive wall lizard Podarcis muralis. Using DNA barcoding, we assigned 77 invasive populations in Central Europe to eight geographically distinct evolutionary lineages. Niche similarity among lineages was assessed and the predictive power of a combination of clade‐specific SDMs was compared with a combined SDM using the pooled records of all lineages. Results We recorded eight different invasive mtDNA clades in Central Europe. The analysed clades had rather similar realized niches in their native and invasive ranges, whereas inter‐clade niche differentiation was comparatively strong. However, we found only a weak correlation between geographic origin (i.e. mtDNA clade) and invasive occurrences. Clades with narrow realized niches still became successful invaders far outside their native range, most probably due to broader fundamental niches. The combined model using data for all invasive lineages achieved a much better prediction of the invasive potential. Conclusions Our results indicate that the observed niche differentiation among evolutionary lineages is mainly driven by niche realization and not by differences in the fundamental niches. Such cryptic niche conservatism might hamper the success of clade‐specific niche modelling. Cryptic niche conservatism may in general explain the invasion success of species in areas with apparently unsuitable climate.  相似文献   

16.
The Alaskan endemic shrub Dryas octopetala ssp. alaskensis and its circumpolar conspecific ssp. octopetala are adapted to closely adjacent habitats in alpine areas of Alaska. These alpine areas form geographically disjunct "islands" among which there are limited opportunities for gene flow. Allozyme electrophoresis and a common garden experiment were used to examine genetic variation between subspecies and among disjunct populations of each subspecies. Overall, allozyme variation in D. octopetala is low with little differentiation among populations or between subspecies. Morphological differences, however, are greater between subspecies than among populations within subspecies. Divergence for a few morphological and life-history characters has apparently occurred in response to strong selection, but without divergence at allozyme loci. The ancestors of both subspecies of D. octopetala in Alaska were isolated during the Pleistocene in the glacial refugia of Alaska and Yukon, which may explain low overall variation. Dryas. o. alaskensis is thought to be a Pleistocene derivative of ssp. octopetala, which may account for the low allozyme divergence between subspecies. Recent restriction to alpine areas may explain the low differentiation among disjunct populations.  相似文献   

17.
We investigated phylogenetic relationships and the biogeographic history of the Calonectris species complex, using both molecular and biometric data from one population of the Cape Verde shearwater Calonectris edwardsii (Cape Verde Islands), one from the streaked shearwater C. leucomelas (western Pacific Ocean) and 26 from Cory's shearwater populations distributed across the Atlantic (C. d. borealis) and the Mediterranean (C. d. diomedea). The streaked shearwater appeared as the most basal and distant clades, whereas the genetic divergences among the three main clades within the Palearctic were similar. Clock calibrations match the first speciation event within Calonectris to the Panama Isthmus formation, suggesting a vicariant scenario for the divergence of the Pacific and the Palearctic clades. The separation between the Atlantic and Mediterranean clades would have occurred in allopatry by range contraction followed by local adaptation during the major biogeographic events of the Pleistocene. The endemic form from Cape Verde probably evolved as a result of ecological divergence from the Mediterranean subspecies. Finally, one Mediterranean population (Almeria) was unexpectedly grouped into the Atlantic subspecies clade, both by genetic and by morphometric analyses, pointing out the Almeria-Oran oceanographic front (AOOF) as the actual divide between the two Cory's shearwater subspecies. Our results highlight the importance of oceanographic boundaries as potentially effective barriers shaping population and species phylogeographical structure in pelagic seabirds.  相似文献   

18.
Hierarchical genetic structure was examined in the three geographically-defined subspecies of spotted owl (Strix occidentalis) to define relationships among subspecies and quantify variation within and among regional and local populations. Sequences (522 bp) from domains I and II of the mitochondrial control region were analyzed for 213 individuals from 30 local breeding areas. Results confirmed significant differences between northern spotted owls and the other traditional geographically defined subspecies but did not provide support for subspecific level differences between California and Mexican spotted owls. Divergence times among subspecies estimated with a 936 bp portion of the cytochrome b gene dated Northern and California/Mexican spotted owl divergence time to 115,000–125,000 years ago, whereas California/Mexican spotted owl divergence was estimated at 15,000 years ago. Nested clade analyses indicated an association between California spotted owl and Mexican spotted owl haplotypes, implying historical contact between the two groups. Results also identified a number of individuals geographically classified as northern spotted owls (S. o. caurina) that contained haplotypes identified as California spotted owls (S. o. caurina). Among all northern spotted owls sampled (n=131), 12.9% contained California spotted owl haplotypes. In the Klamath region, which is the contact zone between the two subspecies, 20.3% (n=59) of owls were classified as California spotted owls. The Klamath region is a zone of hybridization and speciation for many other taxa as well. Analyses of population structure indicated gene flow among regions within geographically defined subspecies although there was significant differentiation among northern and southern regions of Mexican spotted owls. Among all areas examined, genetic diversity was not significantly reduced except in California spotted owls where the southern region consists of one haplotype. Our results indicate a stable contact zone between northern and California spotted owls, maintaining distinct subspecific haplotypes within their traditional ranges. This supports recovery efforts based on the traditional subspecies designation for the northern spotted owl. Further, although little variation was found between California and Mexican spotted owls, we suggest they should be managed separately because of current isolation between groups.  相似文献   

19.
The paleoendemic opilionid Fumontana deprehendor is restricted to a small area of mid-elevation forested habitats in the southern Blue Ridge province of the Appalachian Mountains. In a recent study we reported on the discovery of 22 new montane populations of this monotypic genus, specimens from which exhibit remarkably little morphological divergence despite their separation by intervening lowlands and large riverine barriers. Here, we further explore spatial and temporal patterns of divergence in this taxon using DNA sequence data from a portion of the mitochondrial cytochrome c oxidase subunit I gene ( approximately 1000 bp) and full-length sequences of both nuclear ribosomal internal transcribed spacer regions, including the intervening 5.8S rRNA region ( approximately 700 bp total). Bayesian phylogenetic analyses of these independent data sets reveal congruent genealogical patterns, with all data partitioning and combination strategies consistently recovering five allopatric, geographically cohesive genetic clades. These clades show an almost complete lack of internal genetic divergence, with most individuals sharing a clade-specific, regionally widespread haplotype. The geographic distribution of these clades corresponds to patterns seen in other upland taxa of the region, possibly indicating coincident vicariance. Because of a lack of quantifiable morphological divergence and relatively modest levels of genetic divergence, we conservatively refer to the geographically cohesive genetic clades as "phylogeographic units", although these may actually represent cryptic species. Conservation implications and the prospect for future comparative arachnid phylogeography in the southern Appalachians are discussed in light of the results presented here.  相似文献   

20.
The phylogeographical structure of the closely related species Rhodnius prolixus and R. robustus is presented based on a 663-base pair (bp) fragment of the mitochondrial cytochrome b gene. Twenty haplotypes were recovered from 84 samples examined, representing 26 populations from seven Latin American countries. The resulting phylogenetic tree is composed of five major reciprocally monophyletic clades, one representing R. prolixus and four representing R. robustus. While R. prolixus is a very homogeneous assemblage, R. robustus has deeper clades and is paraphyletic, with the clade comprising R. robustus from Venezuela (Orinoco region) more closely related to the R. prolixus clade than to the other R. robustus populations from the Amazon region. The R. robustus paraphyly was supported further by the analysis of a nuclear gene (D2 region of the 28S RNA) for a subset of specimens. The data support the view that R. robustus represents a species complex. Levels of sequence divergence between clades within each region are compatible with a Pleistocene origin. Nucleotide diversity (pi) for all R. prolixus populations was extremely low (0.0008), suggesting that this species went through a recent bottleneck, and was subsequently dispersed by man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号