首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The versatile carbonyl reductases from Gluconobacter oxydans in the enantioselective reduction of ketones to the corresponding alcohols were exploited by genome search approach. All purified enzymes showed activities toward the tested ketoesters with different activities. In the reduction of 4-phenyl-2-butanone with in situ NAD(P)H regeneration system, (S)-alcohol was obtained with an e.e. of up to 100% catalyzed by Gox0644. Under the same experimental condition, all enzymes catalyzed ethyl 4-chloroacetoacetate to give chiral products with an excellent e.e. of up to 99%, except Gox0644. Gox2036 had a strict requirement for NADH as the cofactor and showed excellent enantiospecificity in the synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate. For the reduction of ethyl 2-oxo-4-phenylbutyrate, excellent e.e. (>99%) and high conversion (93.1%) were obtained by Gox0525, whereas the other enzymes showed relatively lower e.e. and conversions. Among them, Gox2036 and Gox0525 showed potentials in the synthesis of chiral alcohols as useful biocatalysts.  相似文献   

2.
Phenylacetaldehyde reductase (PAR) produced by styrene-assimilating Corynebacterium strain ST-10 was used to synthesize chiral alcohols. This enzyme with a broad substrate range reduced various prochiral aromatic ketones and beta-ketoesters to yield optically active secondary alcohols with an enantiomeric purity of more than 98% enantiomeric excess (e.e.). The Escherichia coli recombinant cells which expressed the par gene could efficiently produce important pharmaceutical intermediates; (R)-2-chloro-1-(3-chlorophenyl)ethanol (28 mg.mL-1) from m-chlorophenacyl chloride, ethyl (R)-4-chloro-3-hydroxy butanoate) (28 mg.mL-1) from ethyl 4-chloro-3-oxobutanoate and (S)-N-tert-butoxycarbonyl(Boc)-3-pyrrolidinol from N-Boc-3-pyrrolidinone (51 mg.mL-1), with more than 86% yields. The high yields were due to the fact that PAR could concomitantly reproduce NADH in the presence of 3-7% (v/v) 2-propanol in the reaction mixture. This biocatalytic process provided one of the best asymmetric reductions ever reported.  相似文献   

3.
Chiral aromatic alcohols have received much attention due to their widespread use in pharmaceutical industries. In the asymmetric synthesis processes, the excellent performance of alcohol dehydrogenase makes it a good choice for biocatalysts. In this study, a novel and robust medium-chain alcohol dehydrogenase RhADH from Rhodococcus R6 was discovered and used to catalyse the asymmetric reduction of aromatic ketones to chiral aromatic alcohols. The reduction of 2-hydroxyacetophenone (2-HAP) to (R)-(-)-1-phenyl-1,2-ethanediol ((R)-PED) was chosen as a template to evaluate its catalytic activity. A specific activity of 110 U mg−1 and a 99% purity of e.e. was achieved in the presence of NADH. An efficient bienzyme-coupled catalytic system (RhADH and formate dehydrogenase, CpFDH) was established using a two-phase strategy (dibutyl phthalate and buffer), which highly raised the tolerated substrate concentration (60 g l−1). Besides, a broad range of aromatic ketones were enantioselectively reduced to the corresponding chiral alcohols by this enzyme system with highly enantioselectivity. This system is of the potential to be applied at a commercial scale.  相似文献   

4.
(S)-3-Chloro-1-phenylpropanol is an important chiral precursor for numerous antidepressants such as tomoxetine. A high enantiomeric excess (e.e.) of (S)-3-chloro-1-phenylpropanol can be achieved by asymmetric reduction of 3-chloropropiophenone using Saccharomyces cerevisiae CGMCC 2266 cells immobilized in calcium alginate. Thermal pretreatment of the immobilized cells at 50 °C for 30 min resulted in high enantioselectivity (99% e.e.) and good percent conversion (80%). The effects of various conditions on the reduction reaction were investigated. The optimal conditions were found to be as follows: sodium alginate concentration, 2%; bead diameter, 2 mm; temperature, 30 °C; re-culture time, 24 h; and batch addition of the substrate. After reusing these three times, the immobilized cells retained approximately 60% of their original catalytic activity with their enantioselectivity intact.  相似文献   

5.
Direct transesterification of (R,S)-1-chloro-3-(3,4-difluorophenoxy)-2-propanol (rac-CDPP) (a key intermediate in the synthesis of the chiral drug (S)-lubeluzole) with vinyl butyrate by lipases from Pseudomonas aeruginosa (P. aeruginosa) MTCC 5113 was performed in hexane with ionic liquids (ILs) 1-butyl-3-methyl imidazolium hexafluorophosphate [BMIm][PF6] and 1-butyl-3-methyl imidazolium tetrafluoroborate [BMIm][BF4] as co-solvents. The maximum conversion (>49%) and enantiomeric excess (ee > 99.9%) was achieved in 6 h of incubation at 30 °C with [BMIm][PF6] as co-solvent in a two-phase system. The enzyme was able to perform with the same specificity even at 60 °C in the presence of ILs. It was possible to use lipases repeatedly for more than 10 times while still maintaining absolute enantioselectivity and reactivity. Stability studies on lipases from P. aeruginosa in ILs revealed the fact that the enzyme constancy and the reactivity in catalyzing transesterification of rac-CDPP into (S)-1-chloro-3-(3,4-difluorophenoxy)-2-butanoate was of the order of [BMIm][PF6] > [BMIm][BF4] in two-phase system.  相似文献   

6.
The asymmetric bio-reduction of 4-chloro-acetoacetic-acid-ethyl-ester to the pharmaceutical building block (S)-4-chloro-3-hydroxybutanoate-ethyl-ester requires the utilization of an enantioselective robust biocatalyst. Some of the natural Saccharomyces cerevisiae strains, isolated from Mount Carmel National Park in Israel, were characterized as resistant to environmental stress. Nevertheless, these strains showed relatively low enantiomeric-excess (ee), while a laboratory strain, Y103, exhibited a selectivity of 98% ee. The enantioselective lab strain was crossed with the multi-stress resistant environmental isolate (93% ee) followed by backcross with Y103, to subsequently obtain a haploid offspring of backcross-1, exhibiting both high multi-stress resistance and high enantioselectivity (98% ee). Introducing osmotic (1 M NaCl), oxidative (0.6 mM H2O2) and thermal stress (44°C) to growing cultures of the enantioselective parent, resulted in a decrease of 24–32% in specific activity, while the enantioselectivity of the stress-resistant parent decreased by 4–12% ee. Unlike its original parental strains, the new strain maintained constant specific activity and enantioselectivity when introduced to the various stress factors. This work shows that the classic introgression method, can serve as a viable approach for creating a robust enantioselective biocatalyst, designed for industrial production of chiral compounds.  相似文献   

7.
Hydroxyamide‐based ligands have occupied a considerable place in asymmetric synthesis. Here we report the synthesis of seven β‐hydroxyamide‐based ligands from the reaction of 2‐hydroxynicotinic acid with chiral amino alcohols and test their effect on the enantioselective reduction of aromatic prochiral ketones with borane in tetrahydofuran (THF). They produce the corresponding secondary alcohols with up to 76% enantiomeric excess (ee) and good to excellent yields (86‐99%). Chirality 26:21–26, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Ionic liquids have recognized as a solvent for Geotrichum candidum-catalyzed optical resolution and/or deracemization of racemic secondary alcohols, giving optically active alcohols. The immobilized Geotrichum candidum proceeded the enantioselective oxidation of alcohols, producing chiral alcohols in an ionic liquid. Further, deracemization of racemic alcohols was proceeded to give the corresponding chiral alcohols in high yield with excellent stereoselectivity by the Geotrichum candidum–NaBH4 system in the mixture of MES buffer solution and ionic liquid.  相似文献   

9.
A thermophilic coccoid methanogenic bacterium, strain TCI, that grew optimally around 55° C was isolated with 2-propanol as hydrogen donor for methanogenesis from CO2. H2, formate or 2-butanol were used in addition. Each secondary alcohol was oxidized to its ketone. Growth occurred in defined freshwater as well as salt (2% NaCl, w/v) medium. Acetate was required as carbon source, and 4-aminobenzoate and biotin as growth factors. A need for molybdate or alternatively tungstate was shown.Strain TCI was further characterized together with two formerly isolated mesophilic secondary alcohol-utilizing methanogens, the coccoid strain CV and the spirilloid strain SK. The guanine plus cytosine content of the DNA of the three strains was 55,47, and 39 mol%, respectively. Determination of the molecular weights of the methylreductase subunits and sequencing of ribosomal 16S RNA of strains TCI and CV revealed close relationships to the genus Methanogenium. The new isolate TCI is classified as a strain of the existing species, Methanogenium thermophilum (thermophilicum). For strain CV, that uses ethanol or 1-propanol in addition, a classification as new species, Methanogenium organophilum, is proposed. Strain SK is affiliated with the existing species, Methanospirillum hungatei. The ability to use secondary alcohols was also tested with described species of methanogens. Growth with secondary alcohols was observed with Methanogenium marisnigri, Methanospirillum hungatei strain GP1 and Methanobacterium bryantii, but not with Methanospirillum strains JF1 and M1h, Methanosarcina barkeri, Methanococcus species or thermophilic strains or species other than the new isolate TCI.  相似文献   

10.
An NAD+-dependent alcohol dehydrogenase was purified to homogeneity from Nocardia fusca AKU 2123. The enzyme catalyzed (S)-specific oxidation of 3-pentyn-2-ol (PYOH), i.e., part of the stereoinversion reaction for the production of (R)-PYOH, which is a valuable chiral building block for pharmaceuticals, from the racemate. The enzyme used a broad variety of secondary alcohols including alkyl alcohols, alkenyl alcohols, acetylenic alcohols, and aromatic alcohols as substrates. The oxidation was (S)-isomer specific in every case. The K m and V max for (S)-PYOH and (S)-2-hexanol oxidation were 1.6 mM and 53 μmol/min/mg, and 0.33 mM and 130 μmol/min/mg, respectively. The enzyme also catalyzed stereoselective reduction of carbonyl compounds. (S)-2-Hexanol and ethyl (R)-4-chloro-3-hydroxybutanoate in high optical purity were produced from 2-hexanone and ethyl 4-chloro-3-oxobutanoate by the purified enzyme, respectively. The K m and V max for 2-hexanone reduction were 2.5 mM and 260 μmol/min/mg. The enzyme has a relative molecular mass of 150,000 and consists of four identical subunits. The NH2-terminal amino acid sequence of the enzyme shows similarity with those of the carbonyl reductase from Rhodococcus erythropolis and phenylacetaldehyde reductase from Corynebacterium sp.  相似文献   

11.
A bacterium that assimilates 2,3-dichloro-1-propanol was isolated from soil by enrichment culture. The strain was identified as Pseudomonas sp. by the taxonomic studies. The strain converted 2,3-dichloro-1-propanol to 3-chloro-1,2-propanediol, releasing chloride ion. The conversion was stereospecific because the residual 2,3-dichloro-1-propanol and formed 3-chloro-1,2-propanediol gave optical rotation. The resting cells converted various halohydrins to the dehalogenated alcohols, and cell-free extracts had strong epoxyhydrolase activity. These results indicated that the strain assimilated 2,3-dichloro-1-propanol via 3-chloro-1,2-propanediol, glycidol, and glycerol. The possibility to manufacture optically active 2,3-dichloro-1-propanol is discussed.  相似文献   

12.
The degradation of a mixture of 13 chloroaromatics, 2-chloro-, 3-chloro-, 4-chloro- and 3,4-dichloroaniline,2-chloro-, 3-chloro-,4-chloro-, 3,4-dichloro-and 3,5-dichlorobenzoate, and chloro-,1,2-dichloro-, 1,4-dichloro- and 1,2,4-trichlorobenzene in soil slurries by a mixed culture of Pseudomonas acidovorans strain BN 3.1, Pseudomonas ruhlandii strain FRB2, Pseudomonas cepacia strain JH230 and Pseudomonas aeruginosa strain RHO1 was studied. About 70% of the organic bound chlorine was eliminated after 25 days from soil with a carbon content of 8% (soil 1) when 2–3 × 105 cells/g soil of each of the strains were added to the slurries. The effect of the clean-up was demonstrated by a biological test using cress and wheat. Both plants showed good germination and growth on both non-contaminated soils and the contaminated soil 1 after the biotreatment with the strains. No growth was observed when the plants were incubated with the contaminated soil 1 and with the contaminated and biotreated soil 2 (carbon content 2.6%). This indicates that the remaining 30% of organic chlorine in soil 1 after biotreatment does not influence the germination and growth of the two plants tested. *** DIRECT SUPPORT *** AG903062 00010  相似文献   

13.
Phenylacetaldehyde reductase (PAR) (systematic name, 2-phenylethanol: NAD+ oxidoreductase) isolated from styrene-assimilating Corynebacterium strain ST-10 was used to produce chiral alcohols. This enzyme with a broad substrate range reduced various prochiral 2-alkanones and aromatic ketones to yield optically active secondary alcohols with an enantiomeric purity of 87–100% enantiomeric excess (e.e.). The stereochemistry of PAR revealed that the pro-R hydrogen of NADH was transferred to carbonyl moiety of acetophenone derivatives or alkanones through its re face. The combination with a NADH-regenerating system using formate dehydrogenase and formate was able to practically produce optically pure alcohols.  相似文献   

14.
Green chemistry comprises a new approach in the synthesis of biologically active compounds using biocatalysts, thus diminishing the hazards for human health and environmental pollution. Asymmetric bioreduction is one of the most widely employed strategies in chemoenzymatic synthesis to produce enantiomerically pure chiral alcohols. The present study highlights the use biocatalyst Daucus carota for selective bioreduction of quinoxaline ketones 1a‐6a to their corresponding optically pure alcohols 1b‐6b in high yields (up to 84%) and good enantioselectivity (up to 98%). The absolute configuration of the chiral product (R)‐1‐(3‐methyl 7‐nitroquinoxalin‐2‐yl) ethan‐1‐ol 2b was confirmed by X‐ray crystallography studies. The chiral R‐configuration of the products obtained was confirmed by absolute configuration studies and was assigned following anti‐Prelogs rule. Quinoxaline pharmacophores form a part of well‐known potent drug molecules; hence, the chiral products were studied for determination of their molecular properties using SwissADME property analyser. All the chiral products show no Lipinski rule violations and are expected to have good oral bioavailability. As per the molecular properties prediction studies, the compound 6b (R)‐1‐(6,7‐dichloro‐3‐ methylquinoxalin‐2‐yl) ethanol is observed to show the best physicochemical properties to be a good lead molecule. Thus, the sustainable methodology was developed, and it confirms the synthesis of novel quinoxaline chiral alcohols in a simple, inexpensive, and eco‐friendly condition using D carota.  相似文献   

15.
The ability of Desulfovibrio vulgaris strain Marburg (DSM 2119) to oxidize alcohols was surveyed in the presence and absence of hydrogen-scavenging anaerobes, Acetobacterium woodii and Methanospirillum hungatei. In the presence of sulfate, D. vulgaris grew not only on ethanol, 1-propanol, and 1-butanol, but also on isobutanol, 1-pentanol, ethyleneglycol, and 1,3-propanediol. Metabolism of these alcohols was simple oxidation to the corresponding acids, except with the last two substrates: ethyleneglycol was oxidized to glycolate plus acetate, 1,3-propanediol to 3-hydroxypropionate plus acetate. Experimental evidence was obtained, suggesting that 2-methoxyethanol was not utilized by all the cells of strain marburg, but by a spontaneous mutant. 2-Methoxyethanol was oxidized to methoxyacetate by the mutant. Co-culture of strain Marburg plus A. woodii grew on ethanol, 1-propanol, 1-butanol, and 1,3-propanediol in the absence of sulfate. Co-culture of strain Marburg plus M. hungatei grew on ethanol, 1-propanol, and 1-butanol, but not on ethyleneglycol and 1,3-propanediol, Co-culture of the mutant plus A. woodii or M. hungatei did not grow on 2-methoxyethanol.  相似文献   

16.
A number of bacteria and yeast was screened for asymmetric reduction of prochiral chloroacetone into chiral 1-chloro-2-propanol, which is chemically convertible into chiral 1,2-epoxypropane. In this way Rhodotorula glutinis produced optically pure S-1,2-epoxypropane with 98% enantiomeric excess and in a relatively high final concentration. The enzyme that catalysed the asymmetric reduction was an NAD(P)H-dependent alcohol dehydrogenase. Reduction of racemic 3-chloro-2-butanone resulted in mixtures of cis and trans-2,3-epoxybutane, indicating that no enantioselective reduction of this haloketone occurred. Correspondence to: C. A. G. M. Weijers  相似文献   

17.
Global sales of single enantiomeric drug products are growing at an alarming rate every year. A total of 7 bacterial strains were screened for their ability to reduce acetophenones to its corresponding alcohol. Among these strains Lactobacillus paracasei BD87E6 was found to be the most successful biocatalyst to reduce the ketones to the corresponding alcohols. The reaction conditions were systematically optimized for the reducing agent Lactobacillus paracasei BD87E6, which showed high enantioselectivity and conversion for the bioreduction. The preparative scale asymmetric reduction of 3‐methoxyacetophenone ( 1h ) by Lactobacillus paracasei BD87E6 gave (R)‐1‐(3‐methoxyphenyl)ethanol ( 2h ) with 92% yield and 99% enantiomeric excess. Compound 2h could be used for the synthesis of (S)‐rivastigmine which has a great potential for the treatment of Alzheimer's disease. This study demonstrates that Lactobacillus paracasei BD87E6 can be used as a biocatalyst to obtain chiral carbinol with excellent yield and selectivity. The whole cell catalyzed the reductions of ketone substrates on the preparative scale, demonstrating that Lactobacillus paracasei BD87E6 would be a valuable biocatalyst for the preparation of chiral aromatic alcohols of pharmaceutical interest.  相似文献   

18.
Optically active alcohols are important building blocks as versatile chiral synthons for asymmetric syntheses of pharmaceuticals and agrochemicals. The aim of this paper is to efficiently prepare chiral 2‐pentanol by means of microorganisms. The gene of dihydroxyacetone reductase (EC 1.1.1.6) from a methylotrophic yeast, Hansenula ofunaensis, was cloned and chiral 2‐pentanol was produced by the recombinant Escherichia coli harboring the gene. The gene encoding the enzyme was cloned from an H. ofunaensis genomic library. In the deduced amino acid sequence of 364 residues, the NAD(H) binding motif and the cysteine residues that correspond to the cysteine ligands in the zinc atom were conserved, as they are in alcohol dehydrogenases from other origins. Dihydroxyacetone reductase was similar to alcohol dehydrogenases of prokaryotes. For the production of chiral compounds, an E. coli HB101 strain was transformed. The H. ofunaensis gene product, dihydroxyacetone reductase, catalyzed the NAD+‐dependent oxidation of 2‐pentanol to 2‐pentanone as well as the corresponding reverse reactions, showing specificity towards the secondary alcohol in (R)‐configuration. From 100 mM 2‐pentanone, (R)‐2‐pentanol (98 mM, > 99.9 % enantiometric excess, e.e.) was obtained in a 30‐min reaction with resting cells of the E. coli HB101 strain harboring the expression plasmid, pSG‐HOD1, which possesses the genes of both dihydroxyacetone reductase and glucose dehydrogenase as an NADH reproducing system. The stereospecificity changed during the reduction, depending on the pH. E. coli HB101 was also transformed by the expression plasmid, pSE‐HOD4, in which the gene of glucose dehydrogenase was removed from pSG‐HOD1, and designated as E. coli HB101 (pSE‐HOD4). E. coli HB101 (pSE‐HOD4) oxidized only (R)‐2‐pentanol in 100 mM of the racemate (R:S = 52:48), and the reaction medium was enriched with (S)‐2‐pentanol (48 mM, 98 % e.e.) after 30 min of incubation. The reaction was sufficiently promoted without the other additives. E. coli transformants expressing the gene of this enzyme could be particularly advantageous to the production of optically active 2‐pentanol.  相似文献   

19.
Phenylacetaldehyde reductase (PAR) from Rhodococcus sp. ST-10 is useful for chiral alcohol production because of its broad substrate specificity and high stereoselectivity. The conversion of ketones into alcohols by PAR requires the coenzyme NADH. PAR can regenerate NADH by oxidizing additional alcohols, especially 2-propanol. However, substrate conversion by wild-type PAR is suppressed in concentrated 2-propanol. Previously, we developed the Sar268 mutant of PAR, which can convert several substrates in the presence of concentrated 2-propanol. In this paper, further mutational engineering of Sar268 was performed to achieve higher process yield. Each of nine amino acid positions that had been examined for generating Sar268 was subjected to saturation mutagenesis. Two novel substitutions at the 42nd amino acid position increased m-chlorophenacyl chloride (m-CPC) conversion. Moreover, several nucleotide substitutions identified from libraries of random mutations around the start codon also improved the PAR activity. E. coli cells harboring plasmid pHAR1, which has the integrated sequence of the top clones from the above selections, provided greater conversion of m-CPC and ethyl 4-chloro-3-oxobutanoate than the Sar268 mutant, with very high optical purity of products. This mutant is a promising novel biocatalyst for efficient chiral alcohol production.  相似文献   

20.
A novel aldo–keto reductase (LEK) from Lodderomyces elongisporus NRRL YB-4239 (ATCC 11503) was discovered by genome database mining for carbonyl reduction. LEK was overexpressed in Escherichia coli BL21 (DE3), purified to homogeneity and the catalytic properties were studied. Among the substrates, ethyl 4-chloro-3-oxobutanoate was converted to ethyl (R)-4-chloro-3- hydroxybutanoate ((R)-CHBE), an important pharmaceutical intermediate, with an excellent enantiomeric excess (e.e.) (>99 %). The mutants W28A and S209G obtained by site-directed mutation were identified with much higher molar conversion yields and lower Km values. Further, the constructed coenzyme regeneration system with glucose as co-substrate resulted in a yield of 100 %, an enantioselectivity of >99 %, and the calculated production rate of 56.51 mmol/L/H. These results indicated the potential of LEK for the industrial production of (R)-CHBE and other valuable chiral alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号