首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
A 500 bp fragment of Drosophila genomic DNA containing 37 copies of the tetranucleotide GATA was used to probe, by Southern DNA blotting and in situ hybridization, two natural populations of the isopod crustacean Asellus aquaticus collected from the Sarno and Tiber rivers. This species does not have a recognizable sex chromosome pair. In a number of males from the Sarno population chromomycin A3 staining reveals a heteromorphic chromosome pair. The heterochromosome has two blocks of heterochromatin. After digestion of genomic DNA with six restriction endonucleases and hybridization with the GATA probe, the two populations exhibit different fragment length patterns. No sex-linked pattern was observed in either population. In situ hybridization to chromosomes of males and females from the Sarno population does not reveal any sex-specific pattern of labelling and indicates a scattered distribution of GATA sequences on most chromosomes with some areas of preferential concentration. The heterochromatic arcas of the male heterochromosome are not labelled.by E.R. Schmidt  相似文献   

2.
D. D. Shaw 《Chromosoma》1971,34(1):19-39
Three species of the genus Stethophyma have been cytologically examined and all three show variation both for supernumerary heterochromatic segments and for the distribution of standard heterochromatin among the autosomes. The European species, S. grossum, for example, shows considerable interpopulation variation for standard heterochromatin while two of the populations, from Spain and Austria, show supernumerary segment polymorphism. The segments are located interstitially on the S11 chromosome but occupy different positions in the different populations. — In all species, the presence of the extra heterochromatic segments increases the mean chiasma frequency. Moreover, the influence of the segments upon mean chiasma frequency is different in different populations and in different species. In the Spanish population, the increase is both intra- and interchromosomal whereas in Austria the influence of the segment is completely interchromosomal. — In the American species, S. gracile and S. lineatum, where supernumerary heterochromatic segments are carried on both S10 and S11 chromosomes, the effect on chiasma frequency shows a dosage relationship, an increase in the number of segments per individual being correlated with an increase in mean chiasma frequency. It is suggested that the interstitial segments found in all species have originated by direct duplication of chromosome material. By contrast the terminal segments in S. lineatum and S. gracile may be derived by translocation from a B-chromosome since such a chromosome has been found in one individual of the former species. — The variation in segment structure and the distribution of standard heterochromatin, among the European species of S. grossum suggests that these systems have evolved independently in different populations.On educational leave from the Forest Research Laboratory, Fredericton, N. B. Canada.  相似文献   

3.
The field vole (Microtus agrestis) is characterised by extremely large blocks of heterochromatin on both the X and Y chromosome. Some other Microtus also have blocks of heterochromatin on their sex chromosomes but not as extensive and always of independent origin from the heterochromatic expansion found in M. agrestis. Coupled with evidence of geographic variation in large heterochromatic blocks within other species (e.g. in the western hedgehog Erinaceus europaeus), it might be expected that field voles would show substantial variation in size and disposition of the sex chromosome heterochromatin. In fact, only minor variation has been described up to now. Those studies conducted previously were largely on field voles from central and northern Europe. Here, we describe the karyotype of field voles from Portugal, of interest because recent molecular studies have shown field voles from western Iberia to be a separate evolutionary unit that might be considered a cryptic species, distinct from populations further to the east. The two Portuguese field voles (one female, one male) that we examined also had essentially the same karyotype as seen in other field voles, including the giant sex chromosomes, but with small differences in the structure of the Y chromosome from that described previously. The finding that field voles throughout Europe show relatively little variation in their giant sex chromosomes is consistent with molecular data which suggest a recent origin for this complex of species/near-species.  相似文献   

4.
Astyanax scabripinnis has been considered a species complex because it presents high karyotypic and morphological variability among its populations. In this work, individuals of two A. scabripinnis populations from different streams in the same hydrographic basin were analyzed through C‐banding and AgNOR. Although they present distinct diploid numbers, they show meta and submetacentric chromosome groups highly conserved (numerically and morphologically). Other chromosomal characteristics are also shared by both populations, as the pattern of constitutive heterochromatin distribution (large blocks in the telomeric regions of subtelocentric and acrocentric chromosomes) and some nucleolar chromosomes. Inter‐individual variations both in the number and size of heterochromatic blocks, and in the number and localization of NORs were verified in the studied populations, characterizing them as polymorphics for these regions. The mechanisms involved in the dispersion of heterochromatin and NORs through the karyotypes, as well as the possible events related to the generation of polymorphism of those regions are discussed. Furthermore, relationships between these populations and within the context of the scabripinnis complex are also approached. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
A diploid cell line from a male embryo of Microtus agrestis has been established. The culture techniques and pertinent morphological and molecular characteristics of the cell line are described. The cells have been in culture for 130 passages and maintain a normal diploid karyotype as judged by the standard and G banding chromosome techniques. The two giant sex chromosomes are visualized in interphase as two long heterochromatic fibers and the study of the repetitive DNA content of total chromatin, constitutive heterochromatin and euchromatin yielded similar results to those previously found in this laboratory for liver and brain of the same species. The use of this cell line as a model for the understanding of mammalian heterochromatin and for the localization of the site of integration of oncogenic viruses in a specific chromatin fraction is discussed.  相似文献   

6.
7.
Polymorphism involving heterochromatic segments in Metrioptera brachyptera   总被引:1,自引:1,他引:0  
A complex pattern of polymorphism involving terminal heterochromatic segments on L3 and L4 chromosomes has been uncovered in eight populations of Metrioptera brachyptera. There are individuals in every population which carry reduced segments on one or both L4's. In six populations, enlarged heterochromatic segments have been encountered on the L3 chromosomes in some individuals. The L4 system is almost certainly stable although the frequency of L4 karyotypes does not conform to a Hardy-Weinberg distribution in all populations. Stability of the L3 polymorphism could not be ascertained. A reduction of L4 heterochromatin leads to a significant rise both in mean cell chiasma frequency and between cell variance. The effect on chiasma frequency is transchromosomal. The normal pattern of strict chiasma localisation tends to be disrupted in germ lines which include modified L4 chromosomes. There is a reduction in the number of proximal and distal chiasmata and an increase in the frequency of interstitial ones. It is proposed that the standard L4 heterochromatin may function in conserving heterozygosity and promoting uniformity between parent and offspring. Partial removal may lead to an effective increase in recombination and produce a greater diversity of genotypes for selection to act upon.  相似文献   

8.
Single populations of Stethophyma gracile and S. lineatum from Eastern Canada show substantial differences in the relative amount of heterochromatic and euchromatic material in the extensively heterochromatic (megameric) M9 autosome. No differences in chromosome phenotype between these two species have been previously reported. A new polymorphism with respect to an interstitial, supernumerary H-block was also found in the S. lineatum population, and it appears to have some interchromosomal influence upon chiasma condition. These findings suggest that the North American Stethophyma forms may parallel the extensive and deme-specific heterochromatin variation found in the European populations of the Palaearctic S. grossum. Special attention was focused upon the structural organization of the proximal and distal H-segments on the M9 during the early prophase of the first meiotic division in the male sex. These conspicuous, hetregions, prior to diplotene, are clearly interrupted and contain short, euchromatic sequences. This condition can readily account for the absence of chiasma localization and the distribution of chiasmata along the H-blocks at diplotene-diakinesis in the megameric element. This is the only member of the complement showing no evidence of pronounced proximal or proximal/distal chiasma localization at diplotene. Possible explanations for this interesting phenomenon are suggested.  相似文献   

9.
J. Żuk 《Chromosoma》1969,27(3):338-353
The Y chromosome heterochromatin in Rumex thyrsiflorus has been analyzed. In natural populations the Y chromosome shows a higher morphological variability than the X chromosome. The total duration of replication of Y chromosomes is about 2 hrs longer than that of euchromatin. Autoradiography with tritiated thymidine showed that chromocentres formed by Y chromosomes in interphase nuclei retain their heterochromatic form during DNA replication. — Y chromosome heterochromatin in interphase nuclei is stained pink, while the rest of the nucleus stains green after fast green-eosin staining for histones. — During the premeiotic stage of PMC development Y chromosomes are no longer visible as compact bodies and become more fuzzy in appearance. A diffuse state of Y coincides with intense RNA synthesis. Therefore genetic activity of Y chromosomes or their parts during premeiotic stage of microsporogenesis is postulated.  相似文献   

10.
Hoechst 33258 banding of Drosophila nasutoides metaphase chromosomes   总被引:1,自引:1,他引:0  
Hoechst 33258 banding of D. nasutoides metaphase chromosomes is described and compared with Q and C bands. The C band positive regions of the euchromatic autosomes, the X and the Y fluoresce brightly, as is typical of Drosophila and other species. The fluorescence pattern of the large heterochromatic chromosome is atypical, however. Contrary to the observations on other species, the C negative bands of the large heterochromatic chromosome are brightly fluorescent with both Hoechst 33258 and quinacrine. Based on differences in the various banding patterns, four classes of heterochromatin are described in the large heterochromatic chromosome and it is suggested that each class may correspond to an AT-rich DNA satellite.  相似文献   

11.
Distribution of constitutive heterochromatin in mammalian chromosomes   总被引:9,自引:2,他引:7  
Using a special staining technique, a survey of the chromosomes of many mammalian species showed that constitutive heterochromatin is present in all cases and that the heterochromatin pattern appears to be specific and consistent or each chromosome and each taxon. Usually heavy heterochromatin is found in the centromeric areas, but terminal heterochromatin is not uncommon. Occasionally interstitial heterochromatin bands occur. In some species, such as the Syrian hamster and Peromyscus, many chromosome arms are completely heterochromatic.Supported in part by Research Grant GB-13661 from the National Science Foundation.  相似文献   

12.
Karyotypic and cytogenetic characteristics of Vimba vimba and V. elongata were investigated using differential staining techniques (sequential C-banding, Ag- and CMA3-staining) and fluorescent in situ hybridization (FISH) with 28S rDNA probe. The diploid chromosome number in both species was 2n = 50 with 8 pairs of metacentrics, 14 pairs of submetacentrics to subtelocentrics and 3 pairs of subtelo- to acrocentrics. The largest chromosome pair of the complements was characteristically subtelo- to acrocentric. The nucleolar organizer regions (NORs) in both species were detected in the telomeres of a single, middle-sized subtelocentric chromosome pair, a pattern common in a number of other Leuciscinae. FISH with rDNA probe produced consistently positive hybridization signals detected in the same regions indicated by Ag-staining and CMA3-fluorescence. The distribution of C-positive heterochromatin was identical in both species, including a conspicuous size polymorphism of heterochromatic blocks in the largest metacentric and subtelo- to acrocentric chromosomal pairs. No heteromorphic sex chromosomes were detected. A single analyzed individual of V. melanops possessed the same karyotype and NOR phenotype as V. vimba and V. elongata. The apparent karyotype homogeneity and chromosomal characteristics of ribosomal DNA in all three species of the genus Vimba is consistent to that found in most other representatives of the European leuciscine cyprinid fishes.  相似文献   

13.
The chromosome complement of a local population of Astyanax scabripinnis in Brazil was investigated with emphasis on the study of the heterochromatin attached to the A-chromosomes and present in the macro B-chromosome. Analysis after C-banding, silver and CMA3 staining, incorporation of 5-bromo-2′-deoxyuridine and chromosome digestion with nine restriction endonucleases revealed that the heterochromatin in the B-chromosomes was different from that found in the A-chromosomes. A polymorphism due to the presence of a supernumerary heterochromatic chromosome segment was observed in the population investigated. Some aspects related to the origin of the heterochromatin polymorphism in Astyanax scabripinnis are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Chromosome studies in six wild-caught specimens of Cebus apella xanthosternos showed a distinctive chromosome pair number 11 that made it possible to distinguish this subspecies from other Cebus apella. The characteristic chromosome pair had intercalar heterochromatin unlike the “standard” chromosome type of Cebus apella and other species of the same genus, in which this chromosome pair shows a large, terminal, heterochromatic block. A comparison at the chromosomal level between different Cebus apella populations suggests that chromosome 11 in Cebus apella xanthosternos is a derived chromosome that has probably become fixed in this subspecies, either by selection or by drift in a small isolated population.  相似文献   

15.
Visut Baimai 《Genetics》1977,85(1):85-93
A simple technique for preparing mitotic metaphases from a larval ganglion of Drosophila is described. Parallel examination of polytene and metaphase chromosome groups shows that inversion polymorphism in chromosome 3 of D. recticilia from East Maui (Hawaii) manifests a one-to-one correlation with a metaphase karyotype polymorphism due to the presence of an extra heterochromatic portion. These observations are consistent with the previous findings on other species of Hawaiian Drosophila. They strongly support the hypothesis that when one breakpoint of a long inverted segment of a chromosome element occurs in the vicinity of the constitutive heterochromatin, it may exert an effect in eliciting the production of heterochromatic material in the same chromosome.  相似文献   

16.
Chromosomes of Triportheus nematurus, a fish species from family Characidae, were analyzed in order to establish the conventional karyotype, location of C-band positive heterochromatin, Ag-NORs, GC- and AT-rich sites, and mapping of 18S and 5S rDNA with fluorescence in situ hybridization (FISH). The diploid number found was 2n = 52 chromosomes in both males and females. However, the females presented a pair of differentiated heteromorphic chromosomes, characterizing a ZZ/ZW sex chromosome system. The Z chromosome was metacentric and the largest one in the karyotype, bearing C-positive heterochromatin at pericentromeric and telomeric regions. The W chromosome was middle-sized submetacentric, appearing mostly heterochromatic after C-banding and presenting heterogeneous heterochromatin composed of GC- and AT-rich regions revealed by fluorochrome staining. Ag-NORs were also GC-rich and surrounded by heterochromatic regions, being located at the secondary constriction on the short arms of the second chromosome pair, in agreement with 18S rDNA sites detected with FISH. The 18S and 5S rDNA were aligned in tandem, representing an uncommon situation in fishes. The results obtained reinforce the basal condition of the ZZ/ZW sex system in the genus Triportheus, probably arisen prior to speciation in the group.  相似文献   

17.
Novello A  Villar S 《Genetica》2006,127(1-3):303-309
A chromosome 1 (Cr1) pericentric inversion is described in six of seven species in the genus Ctenomys (tuco-tucos) from Uruguay. The inversion was inferred from G-band analyses of subtelocentric Cr1 hypothesised to be derived from the ancestral metacentric condition. Cr1 varies across species in heterochromatin amount and localisation including a metacentric chromosome without positive C-bands in C. torquatus, a subtelocentric chromosome with heterochromatic short arms in C. rionegrensis, and a subtelocentric chromosome negative after C-banding in five of the species analysed here. Pachytene chromosomes from C. rionegrensis, a species with the highest heterochromatin content, and C. torquatus, one of the species with the lowest heterochromatin content, were analysed in order to assess possible mechanisms of heterochromatin evolution. This analysis revealed the presence of three heterochromatic chromocenters in C. rionegrensis where bivalents converge, while in C. torquatus only one chromocenter was observed. In both species, highly repetitive DNA was observed, localised in chromocenters after “in situ” hybridisation. Heterochromatin associated protein M31 was localised in chromocenters of both species after immuno-detection. The spread of heterochromatin in Ctenomys chromosomes could be produced by chromatin exchanges at the chromocenter level. We propose the exchange of this DNA associated proteins between non-homologous chromosomes in pachytene to be the responsible for the spread of heterochromatin through the karyotypes of species like C. rionegrensis  相似文献   

18.
We molecularly cloned new families of site-specific repetitive DNA sequences from BglII- and EcoRI-digested genomic DNA of the Syrian hamster (Mesocricetus auratus, Cricetrinae, Rodentia) and characterized them by chromosome in situ hybridization and filter hybridization. They were classified into six different types of repetitive DNA sequence families according to chromosomal distribution and genome organization. The hybridization patterns of the sequences were consistent with the distribution of C-positive bands and/or Hoechst-stained heterochromatin. The centromeric major satellite DNA and sex chromosome-specific and telomeric region-specific repetitive sequences were conserved in the same genus (Mesocricetus) but divergent in different genera. The chromosome-2-specific sequence was conserved in two genera, Mesocricetus and Cricetulus, and a low copy number of repetitive sequences on the heterochromatic chromosome arms were conserved in the subfamily Cricetinae but not in the subfamily Calomyscinae. By contrast, the other type of repetitive sequences on the heterochromatic chromosome arms, which had sequence similarities to a LINE sequence of rodents, was conserved through the three subfamilies, Cricetinae, Calomyscinae and Murinae. The nucleotide divergence of the repetitive sequences of heterochromatin was well correlated with the phylogenetic relationships of the Cricetinae species, and each sequence has been independently amplified and diverged in the same genome.  相似文献   

19.
A study was conducted on the most recently described marmoset species, Callithrix mauesi, and the results obtained were compared to those previously reported for the karyotypes of C. jacchus and C. emiliae. No mechanism of chromosome rearrangement differentiates the karyotypes of C. mauesi (2n = 44) and C. emiliae (2n = 44), which diverge from C. jacchus (2n = 46) by a Robertsonian translocation and a paracentric inversion. C. mauesi, like C. emiliae, presents telomeric constitutive heterochromatin in various chromosomes, forming large heterochromatic blocks in some. This does not occur in C. jacchus, which basically presents centromeric constitutive heterochromatin. The karyotype of C. mauesi differs from that of C. emiliae only by the amount and distribution of this telomeric constitutive heterochromatin. One of the chromosomes presenting a heterochromatic block in C. mauesi is chromosome X, a fact not previously reported in the Order Primates. The present chromosome data show that C. mauesi is closer to C. emiliae than to C. jacchus, in agreement with its inclusion in the C. argentata group. In the present paper, we describe for the first time, at the chromosome level, chimerism between fraternal twins of the same sex (XY/XY), with the heterochromatic block of pair 2 being the marker. © 1994 Wiley-Liss, Inc.  相似文献   

20.
The endemic Australian grasshopper Heteropternis obscurella shows considerable variation in respect of both chromosome structure and chromosome behaviour. The structural differences depend upon different patterns of heterochromatin distribution as revealed by C-banding. These involve differences between populations in respect of polytypic variation in the size of paracentromeric C-bands and differences within populations in respect of polymorphisms both for terminal blocks of heterochromatin in autosomes 3 to 8 and a large proximal block of heterochromatin in autosome 7. The behavioural differences stem in part from genotypically determined variation in the chiasma distribution pattern which is markedly localised in a majority of populations but more randomly distributed in populations from the south of Western Australia. Behavioural differences also arise as secondary consequences of the presence of those heterochromatic blocks which occur as polymorphisms. The distal blocks on autosomes 5, 6, 7 and 8 lead to a redistribution of chiasmata to more proximal sites while the proximal block on 7 leads to the virtual abolition of chiasma formation in that bivalent and its replacement by a non-chiasmate mechanism of segregation. This depends upon a persistent proximal heterochromatic association between the pairing partners. The presence of distal C-blocks on bivalents 3 to 8 gives rise to persistent pseudomultiples, formed as a result of heterochromatic associations between these blocks. Such pseudomultiples involve any two or three of these six bivalents, provided they carry distal blocks, and their frequency rises dramatically in the presence of the proximal heterochromatic block on chromosome 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号