首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
2.
3.
4.
The human immunodeficiency virus type 1 structural polyprotein Pr55Gag is necessary and sufficient for the assembly of virus-like particles on cellular membranes. Previous studies demonstrated the importance of the capsid C-terminal domain (CA-CTD), nucleocapsid (NC), and membrane association in Gag-Gag interactions, but the relationships between these factors remain unclear. In this study, we systematically altered the CA-CTD, NC, and the ability to bind membrane to determine the relative contributions of, and interplay between, these factors. To directly measure Gag-Gag interactions, we utilized chimeric Gag-fluorescent protein fusion constructs and a fluorescence resonance energy transfer (FRET) stoichiometry method. We found that the CA-CTD is essential for Gag-Gag interactions at the plasma membrane, as the disruption of the CA-CTD has severe impacts on FRET. Data from experiments in which wild-type (WT) and CA-CTD mutant Gag molecules are coexpressed support the idea that the CA-CTD dimerization interface consists of two reciprocal interactions. Mutations in NC have less-severe impacts on FRET between normally myristoylated Gag proteins than do CA-CTD mutations. Notably, when nonmyristoylated Gag interacts with WT Gag, NC is essential for FRET despite the presence of the CA-CTD. In contrast, constitutively enhanced membrane binding eliminates the need for NC to produce a WT level of FRET. These results from cell-based experiments suggest a model in which both membrane binding and NC-RNA interactions serve similar scaffolding functions so that one can functionally compensate for a defect in the other.The human immunodeficiency virus type 1 (HIV-1) structural precursor polyprotein Pr55Gag is necessary and sufficient for the assembly of virus-like particles (VLPs). Gag is composed of four major structural domains, matrix (MA), capsid (CA), nucleocapsid (NC), and p6, as well as two spacer peptides, SP1 and SP2 (3, 30, 94). Following particle assembly and release, cleavage by HIV-1 protease separates these domains. However, these domains must work together in the context of the full-length Gag polyprotein to drive particle assembly.Previous studies have mapped two major functional domains involved in the early steps of assembly: first, Gag associates with cellular membranes via basic residues and N-terminal myristoylation of the MA domain (10, 17, 20, 35, 39, 87, 91, 106); second, the Gag-Gag interaction domains that span the CA C-terminal domain (CA-CTD) and NC domain promote Gag multimerization (3, 11, 14, 16, 18, 23, 27, 29, 30, 33, 36, 46, 64, 88, 94, 102, 103). Structural and genetic studies have identified two residues (W184 and M185) within a dimerization interface in the CA-CTD that are critical to CA-CA interactions (33, 51, 74, 96). Analytical ultracentrifugation of heterodimers formed between wild-type (WT) Gag and Gag mutants with changes at these residues suggests that the dimerization interface consists of two reciprocal interactions, one of which can be disrupted to form a “half-interface” (22).In addition to the CA-CTD, NC contributes to assembly via 15 basic residues (8, 9, 11, 14, 18, 23, 25, 28, 34, 40, 43, 54, 57, 58, 74, 79, 88, 97, 104, 105), although some researchers have suggested that NC instead contributes to the stability of mature virions after assembly (75, 98, 99). It is thought that the contribution of NC to assembly is due to its ability to bind RNA, since the addition of RNA promotes the formation of particles in vitro (14-16, 37, 46), and RNase treatment disrupts Gag-Gag interactions (11) and immature viral cores (67). However, RNA is not necessary per se, since dimerization motifs can substitute for NC (1, 4, 19, 49, 105). This suggests a model in which RNA serves a structural role, such as a scaffold, to promote Gag-Gag interactions through NC. Based on in vitro studies, it has been suggested that this RNA scaffolding interaction facilitates the low-order Gag multimerization mediated by CA-CTD dimerization (4, 37, 49, 62, 63, 85). Despite a wealth of biochemical data, the relative contributions of the CA-CTD and NC to Gag multimerization leading to assembly are yet to be determined in cells.Mutations in Gag interaction domains alter membrane binding in addition to affecting Gag multimerization. In particular, mutations or truncations of CA reduce membrane binding (21, 74, 82), and others previously reported that mutations or truncations of NC affect membrane binding (13, 78, 89, 107). These findings are consistent with a myristoyl switch model of membrane binding in which Gag can switch between high- and low-membrane-affinity states (38, 71, 76, 83, 86, 87, 92, 95, 107). Many have proposed, and some have provided direct evidence (95), that Gag multimerization mediated by CA or NC interactions promotes the exposure of the myristoyl moiety to facilitate membrane associations.Gag membrane binding and multimerization appear to be interrelated steps of virus assembly, since membrane binding also facilitates Gag multimerization. Unlike betaretroviruses that fully assemble prior to membrane targeting and envelopment (type B/D), lentiviruses, such as HIV, assemble only on cellular membranes at normal Gag expression levels (type C), although non-membrane-bound Gag complexes exist (45, 58, 60, 61, 65). Consistent with this finding, mutations that reduce Gag membrane associations cause a defect in Gag multimerization (59, 74). Therefore, in addition to their primary effects on Gag-Gag interactions, mutations in Gag interaction domains cause a defect in membrane binding, which, in turn, causes a secondary multimerization defect. To determine the relative contributions of the CA-CTD and the NC domain to Gag-Gag interactions at the plasma membrane, it is essential to eliminate secondary effects due to a modulation of membrane binding.Except for studies using a His-tag-mediated membrane binding system (5, 46), biochemical studies of C-type Gag multimerization typically lack membranes. Therefore, these studies do not fully represent particle assembly, which occurs on biological membranes in cells. Furthermore, many biochemical and structural approaches are limited to isolated domains or truncated Gag constructs. Thus, some of these studies are perhaps more relevant to the behavior of protease-cleaved Gag in mature virions. With few exceptions (47, 74), cell-based studies of Gag multimerization have typically been limited to measuring how well mutant Gag is incorporated into VLPs when coexpressed or not with WT Gag. Since VLP production is a complex multistep process, effects of mutations on other steps in the process can confound this indirect measure. For example, NC contributes to VLP production by both promoting multimerization and interacting with the host factor ALIX to promote VLP release (26, 80). To directly assay Gag multimerization in cells, several groups (24, 45, 52, 56) developed microscopy assays based on fluorescence resonance energy transfer (FRET). These assays measure the transfer of energy between donor and acceptor fluorescent molecules that are brought within ∼5 nm by the association of the proteins to which they are attached (41, 48, 90). However, these microscopy-based Gag FRET assays have not been used to fully elucidate several fundamental aspects of HIV-1 Gag multimerization at the plasma membrane of cells, such as the relative contributions of the CA-CTD and NC and the effect of membrane binding on Gag-Gag interactions. In this study, we used a FRET stoichiometry method based on calibrated spectral analysis of fluorescence microscopy images (41). This algorithm determines the fractions of both donor and acceptor fluorescent protein-tagged Gag molecules participating in FRET. For cells expressing Gag molecules tagged with donor (cyan fluorescent protein [CFP]) and acceptor (yellow fluorescent protein [YFP]) molecules, this method measures the apparent FRET efficiency, which is proportional to the mole fraction of Gag constructs in complex. By measuring apparent FRET efficiencies, quantitative estimates of the mole fractions of interacting proteins can be obtained.Using this FRET-based assay, we aim to answer two questions: (i) what are the relative contributions of CA-CTD and NC domains to Gag multimerization when secondary effects via membrane binding are held constant, and (ii) what is the effect of modulating membrane binding on the ability of Gag mutants to interact with WT Gag?Our data demonstrate that the CA-CTD dimerization interface is essential for Gag multimerization at the plasma membrane, as fully disrupting the CA-CTD interaction abolishes FRET, whereas a modest level of FRET is still detected in the absence of NC. We also present evidence that the CA-CTD dimerization interface consists of two reciprocal interactions, allowing the formation of a half-interface that can still contribute to Gag multimerization. Notably, when Gag derivatives with an intact CA-CTD were coexpressed with WT Gag, either membrane binding ability or NC was required for the Gag mutants to interact with WT Gag, suggesting functional compensation between these factors.  相似文献   

5.
6.
Clathrin is involved in the endocytosis and exocytosis of cellular proteins and the process of virus infection. We have previously demonstrated that large hepatitis delta antigen (HDAg-L) functions as a clathrin adaptor, but the detailed mechanisms of clathrin involvement in the morphogenesis of hepatitis delta virus (HDV) are not clear. In this study, we found that clathrin heavy chain (CHC) is a key determinant in the morphogenesis of HDV. HDAg-L with a single amino acid substitution at the clathrin box retained nuclear export activity but failed to interact with CHC and to assemble into virus-like particles. Downregulation of CHC function by a dominant-negative mutant or by short hairpin RNA reduced the efficiency of HDV assembly, but not the secretion of hepatitis B virus subviral particles. In addition, the coexistence of a cell-permeable peptide derived from the C terminus of HDAg-L significantly interfered with the intracellular transport of HDAg-L. HDAg-L, small HBsAg, and CHC were found to colocalize with the trans-Golgi network and were highly enriched on clathrin-coated vesicles. Furthermore, genotype II HDV, which assembles less efficiently than genotype I HDV does, has a putative clathrin box in its HDAg-L but interacted only weakly with CHC. The assembly efficiency of the various HDV genotypes correlates well with the CHC-binding activity of their HDAg-Ls and coincides with the severity of disease outcome. Thus, the clathrin box and the nuclear export signal at the C terminus of HDAg-L are potential new molecular targets for HDV therapy.Pathogens often take advantage of intracellular pathways involved in the trafficking of cellular macromolecules in order to carry out their life cycle, which consists of virus entry, translation, genome replication, assembly, and release. The clathrin-mediated endocytic route is a pathway commonly used for virus entry (29). Following clathrin-mediated endocytosis, incoming viruses are transported together with their receptors from the plasma membrane into early and late endosomes. Several links between clathrin adaptor complexes and viral biogenesis, including those of influenza virus (37), reovirus (13), and vesicular stomatitis virus (33), have been demonstrated.Clathrin and its adaptor proteins (APs), which constitute the major components of clathrin-coated vesicles (CCVs), are often the carriers of proteins and lipids that are transported from the trans-Golgi network (TGN) to the endosome (20, 35). Clathrin-mediated exocytosis has been found to participate in viral multiplication. The envelope protein of vesicular stomatitis virus, glycoprotein 1, recruits clathrin adaptor complex adaptor protein 1 (AP1) onto Golgi membranes and possibly leaves the TGN in CCVs for subsequent transport to endosomes (1). It is also known that interaction of AP1 with the matrix domain of human immunodeficiency virus type 1 Gag protein promotes viral release (5). In addition, Vpu inhibits the endosomal accumulation of the human immunodeficiency virus type 1 structural proteins Env and Gag, which is known to enhance viral assembly and release at the plasma membrane (39). Furthermore, large hepatitis delta antigen (HDAg-L) encoded by the hepatitis delta virus (HDV) has recently been identified as a novel clathrin adaptor-like protein (18). HDAg-L specifically interacts with clathrin heavy chain (CHC) at the TGN and inhibits clathrin-mediated protein transport. However, the role of CHC in the life cycle of HDV remains unclear.HDV is a highly pathogenic virus. The virion is coated with the envelope proteins of hepatitis B virus (HBV), the hepatitis B virus surface antigens (HBsAgs) (24). Superinfection or coinfection with HBV may result in fulminant hepatitis and progressive chronic liver cirrhosis (3, 36). The small HDAg (HDAg-S) lacks the unique C-terminal 19-amino-acid sequence of HDAg-L (6, 41, 43) and functions as a transactivator of HDV genome replication in the nucleus (23, 24). Both HDAg-S and HDAg-L possess nuclear localization signals (NLSs) spanning amino acid residues 35 to 88 and are mainly localized in the nuclei of transfected cells in the absence of HBsAg (7, 8). However, HDAg-L has been demonstrated to be a nucleocytoplasmic shuttling protein with a nuclear export signal (NES) at its unique C terminus, and this is important for HDV assembly (27). In the presence of HBsAg, HDAg-L relocalizes to the cytoplasm (29). In addition, a NES-interacting protein of HDAg-L, NESI, has been identified to be essential for the HDAg-L-mediated nuclear export of HDV RNA (42). Furthermore, the proline-rich motif within the unique 19-amino-acid extension together with isoprenylation of the CXXX motif (15) are essential for HDAg-L to form delta virus-like particles (VLPs) with HBsAg (19, 22). Taken together, these results imply that an intracellular association between HDAg-L and HBsAg in the cytoplasm is the driving force of HDV assembly. The interaction of HDAg-L with HBsAg facilitates the assembly and secretion of HDV particles. Nevertheless, the cellular proteins and pathways involved in the transport, packaging, and secretion of HDV are poorly understood.In this study, the involvement of clathrin-mediated trafficking in the propagation of HDV is biochemically characterized. Downregulation of functional CHC significantly reduced the efficiency of the CCV-mediated HDV assembly. However, CHC is not essential for the assembly of HBV subviral particles (SVPs). These results indicate that, although HBV and HDV share common surface antigens, different mechanisms are involved in their viral assembly and release. In addition, the assembly efficiency of the various HDV genotypes correlates well with the ability of HDAg-L to interact with CHC. This may reflect the fact that there is lower pathogenicity among patients infected with HDV genotype II than among those infected with genotype I.  相似文献   

7.
8.
Hepatitis C virus (HCV) RNA genome replicates within the ribonucleoprotein (RNP) complex in the modified membranous structures extended from endoplasmic reticulum. A proteomic analysis of HCV RNP complexes revealed the association of oxysterol binding protein (OSBP) as one of the components of these complexes. OSBP interacted with the N-terminal domain I of the HCV NS5A protein and colocalized to the Golgi compartment with NS5A. An OSBP-specific short hairpin RNA that partially downregulated OSBP expression resulted in a decrease of the HCV particle release in culture supernatant with little effect on viral RNA replication. The pleckstrin homology (PH) domain located in the N-terminal region of OSBP targeted this protein to the Golgi apparatus. OSBP deletion mutation in the PH (ΔPH) domain failed to localize to the Golgi apparatus and inhibited the HCV particle release. These studies suggest a possible functional role of OSBP in the HCV maturation process.Hepatitis C virus (HCV) infection is one of the leading causes of chronic hepatitis. HCV infection is associated with cirrhosis, steatosis, and hepatocellular carcinoma (33). The HCV RNA genome of ∼9.6 kb is translated via an internal ribosome entry site element on the rough endoplasmic reticulum (ER) as a polyprotein precursor of about 3,010 amino acids that is co- and posttranslationally processed by cellular and viral proteases into mature structural and nonstructural (NS) proteins (33). HCV replicates within ribonucleoprotein (RNP) complexes associated with modified ER membranous structures (15). Recent work implicated lipid droplets that emanate from the ER as sites of RNA replication (28, 44). Almost all of the HCV NS proteins along with a variety of cellular factors are associated with the RNP complexes engaged in viral RNA replication (37). It is likely that these NS proteins not only participate in replication process but also are involved in the various steps of virion morphogenesis and assembly. Membrane-associated RNP complexes are generally composed of viral proteins, replicating RNA, host proteins, and altered cellular membranes (1). In this respect, a growing body of evidence implicates the functional role of NS5A in early steps of virion assembly and morphogenesis (3, 27, 45). NS5A is a phosphoprotein that migrates in sodium dodecyl sulfate gels as 56-kDa (basally phosphorylated) and 58-kDa (hyperphosphorylated) forms of proteins. The C-terminal domain III region of NS5A and the phosphorylated residue (Ser457) are important for virion maturation (3, 27, 45). NS5A domain III contains the binding site for viral core protein, indicating the possible involvement of NS5A protein in virus assembly (27). NS5A anchors to the ER membrane by an N-terminal hydrophobic α-helix, and this attachment is needed for its key role(s) in viral replication (10). Studies suggest that phosphorylation of NS5A plays a functional role in viral replication (12). The hyperphosphorylated NS5A reduces its interaction with the human vesicle-associated membrane protein-associated protein A (VAP-A) (12). VAP-A binds both NS5A and NS5B (13, 17). These associations are important for RNA replication (13, 17).HCV alters lipid homeostasis to benefit its infectious processes. Host lipids and their synthesis affect viral infectious process (21, 40, 51, 57). HCV RNA replication can be induced by saturated and monounsaturated fatty acids and inhibited by polyunsaturated fatty acids (18, 21). HCV gene expression induces lipogenesis by stimulating the activation of the sterol regulatory element binding proteins, the master regulators of lipid/fatty acid biosynthetic pathways (51). Reagents that interfere with host lipid biosynthetic pathways abrogate viral replication (21, 57). It has been suggested that HCV utilizes the very-low-density lipoprotein (VLDL) secretion pathway for its viral particle release (14, 19). These studies collectively suggest that host lipid metabolism plays a key role in the viral life cycle including replication, virion assembly, and secretion (56).In the present study, we focus on the functional role of oxysterol binding protein (OSBP) that was identified by proteomic analysis as one of the host factors associated with the HCV RNP complexes. OSBP belongs to a family of the OSBP-related proteins. Originally discovered as a major cytosolic receptor for oxidized cholesterols, it undergoes translocation from the cytosolic/vesicular compartment to the Golgi apparatus upon ligand (hydroxycholesterol) binding (38). OSBP also binds to VAP-A via its FFAT motif (53). Golgi apparatus translocation of OSBP is regulated by the pleckstrin homology (PH) domain. This domain also harbors binding sites for phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-biphosphate (PI4,5P2) (25). OSBP and OSBP-related proteins are implicated in cholesterol homeostasis, phospholipid metabolism, vesicular transport, and cell signaling (55). OSBP functions as sterol sensor that regulates the transport of ceramide from the ER to the Golgi apparatus for de novo synthesis of sphingomyelin by coordinated action with ceramide transport protein (CERT) (36). OSBP also functions as a scaffolding protein for two phosphatases (phosphatase 2A/HePTP) (49). This complex regulates the activity of extracellular signal-regulate kinase. This cytosolic 440-kDa complex disassembles by the addition of 25-hydroxycholesterol (25-HC) or depletion of cholesterol, both of which cause OSBP translocation to the Golgi compartment (49). Thus, in addition to its role in intracellular trafficking, OSBP appears to regulate cell signaling. We investigated the functional significance of OSBP association with HCV RNP complexes. RNA interference studies support a functional role of OSBP in virion morphogenesis and release process. The OSBP PH domain deletion mutant (ΔPH) failed to localize to the Golgi apparatus and caused an inhibition of the HCV particle release. Our work described herein also demonstrates that the association of OSBP with NS5A may also contribute to the overall HCV maturation process.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

16.
In their vertebrate hosts, arboviruses such as Semliki Forest virus (SFV) (Togaviridae) generally counteract innate defenses and trigger cell death. In contrast, in mosquito cells, following an early phase of efficient virus production, a persistent infection with low levels of virus production is established. Whether arboviruses counteract RNA interference (RNAi), which provides an important antiviral defense system in mosquitoes, is an important question. Here we show that in Aedes albopictus-derived mosquito cells, SFV cannot prevent the establishment of an antiviral RNAi response or prevent the spread of protective antiviral double-stranded RNA/small interfering RNA (siRNA) from cell to cell, which can inhibit the replication of incoming virus. The expression of tombusvirus siRNA-binding protein p19 by SFV strongly enhanced virus spread between cultured cells rather than virus replication in initially infected cells. Our results indicate that the spread of the RNAi signal contributes to limiting virus dissemination.In animals, RNA interference (RNAi) was first described for Caenorhabditis elegans (27). The production or introduction of double-stranded RNA (dsRNA) in cells leads to the degradation of mRNAs containing homologous sequences by sequence-specific cleavage of mRNAs. Central to RNAi is the production of 21- to 26-nucleotide small interfering RNAs (siRNAs) from dsRNA and the assembly of an RNA-induced silencing complex (RISC), followed by the degradation of the target mRNA (23, 84). RNAi is a known antiviral strategy of plants (3, 53) and insects (21, 39, 51). Study of Drosophila melanogaster in particular has given important insights into RNAi responses against pathogenic viruses and viral RNAi inhibitors (31, 54, 83, 86, 91). RNAi is well characterized for Drosophila, and orthologs of antiviral RNAi genes have been found in Aedes and Culex spp. (13, 63).Arboviruses, or arthropod-borne viruses, are RNA viruses mainly of the families Bunyaviridae, Flaviviridae, and Togaviridae. The genus Alphavirus within the family Togaviridae contains several mosquito-borne pathogens: arboviruses such as Chikungunya virus (16) and equine encephalitis viruses (88). Replication of the prototype Sindbis virus and Semliki Forest virus (SFV) is well understood (44, 71, 74, 79). Their genome consists of a positive-stranded RNA with a 5′ cap and a 3′ poly(A) tail. The 5′ two-thirds encodes the nonstructural polyprotein P1234, which is cleaved into four replicase proteins, nsP1 to nsP4 (47, 58, 60). The structural polyprotein is encoded in the 3′ one-third of the genome and cleaved into capsid and glycoproteins after translation from a subgenomic mRNA (79). Cytoplasmic replication complexes are associated with cellular membranes (71). Viruses mature by budding at the plasma membrane (35).In nature, arboviruses are spread by arthropod vectors (predominantly mosquitoes, ticks, flies, and midges) to vertebrate hosts (87). Little is known about how arthropod cells react to arbovirus infection. In mosquito cell cultures, an acute phase with efficient virus production is generally followed by the establishment of a persistent infection with low levels of virus production (9). This is fundamentally different from the cytolytic events following arbovirus interactions with mammalian cells and pathogenic insect viruses with insect cells. Alphaviruses encode host response antagonists for mammalian cells (2, 7, 34, 38).RNAi has been described for mosquitoes (56) and, when induced before infection, antagonizes arboviruses and their replicons (1, 4, 14, 15, 29, 30, 32, 42, 64, 65). RNAi is also functional in various mosquito cell lines (1, 8, 43, 49, 52). In the absence of RNAi, alphavirus and flavivirus replication and/or dissemination is enhanced in both mosquitoes and Drosophila (14, 17, 31, 45, 72). RNAi inhibitors weakly enhance SFV replicon replication in tick and mosquito cells (5, 33), posing the questions of how, when, and where RNAi interferes with alphavirus infection in mosquito cells.Here we use an A. albopictus-derived mosquito cell line to study RNAi responses to SFV. Using reporter-based assays, we demonstrate that SFV cannot avoid or efficiently inhibit the establishment of an RNAi response. We also demonstrate that the RNAi signal can spread between mosquito cells. SFV cannot inhibit cell-to-cell spread of the RNAi signal, and spread of the virus-induced RNAi signal (dsRNA/siRNA) can inhibit the replication of incoming SFV in neighboring cells. Furthermore, we show that SFV expression of a siRNA-binding protein increases levels of virus replication mainly by enhancing virus spread between cells rather than replication in initially infected cells. Taken together, these findings suggest a novel mechanism, cell-to-cell spread of antiviral dsRNA/siRNA, by which RNAi limits SFV dissemination in mosquito cells.  相似文献   

17.
18.
We analyzed the biochemical and ultrastructural properties of hepatitis C virus (HCV) particles produced in cell culture. Negative-stain electron microscopy revealed that the particles were spherical (∼40- to 75-nm diameter) and pleomorphic and that some of them contain HCV E2 protein and apolipoprotein E on their surfaces. Electron cryomicroscopy revealed two major particle populations of ∼60 and ∼45 nm in diameter. The ∼60-nm particles were characterized by a membrane bilayer (presumably an envelope) that is spatially separated from an internal structure (presumably a capsid), and they were enriched in fractions that displayed a high infectivity-to-HCV RNA ratio. The ∼45-nm particles lacked a membrane bilayer and displayed a higher buoyant density and a lower infectivity-to-HCV RNA ratio. We also observed a minor population of very-low-density, >100-nm-diameter vesicular particles that resemble exosomes. This study provides low-resolution ultrastructural information of particle populations displaying differential biophysical properties and specific infectivity. Correlative analysis of the abundance of the different particle populations with infectivity, HCV RNA, and viral antigens suggests that infectious particles are likely to be present in the large ∼60-nm HCV particle populations displaying a visible bilayer. Our study constitutes an initial approach toward understanding the structural characteristics of infectious HCV particles.Hepatitis C virus (HCV) is a major cause of chronic hepatitis worldwide, with approximately 170 million humans chronically infected. Persistent HCV infection often leads to fibrosis, cirrhosis, and hepatocellular carcinoma (27). There is no vaccine against HCV, and the most widely used therapy involves the administration of type I interferon (IFN-α2Α) combined with ribavirin. However, this treatment is often associated with severe adverse effects and is often ineffective (53).HCV is a member of the Flaviviridae family and is the sole member of the genus Hepacivirus (43). HCV is an enveloped virus with a single-strand positive RNA genome that encodes a unique polyprotein of ∼3,000 amino acids (14, 15). A single open reading frame is flanked by untranslated regions (UTRs), the 5′ UTR and 3′ UTR, that contain RNA sequences essential for RNA translation and replication, respectively (17, 18, 26). Translation of the single open reading frame is driven by an internal ribosomal entry site (IRES) sequence residing within the 5′ UTR (26). The resulting polyprotein is processed by cellular and viral proteases into its individual components (reviewed in reference 55). The E1, E2, and core structural proteins are required for particle formation (5, 6) but not for viral RNA replication or translation (7, 40). These processes are mediated by the nonstructural (NS) proteins NS3, NS4A, NS4B, NS5A, and NS5B, which constitute the minimal viral components necessary for efficient viral RNA replication (7, 40).Expression of the viral polyprotein leads to the formation of virus-like particles (VLPs) in HeLa (48) and Huh-7 cells (23). Furthermore, overexpression of core, E1, and E2 is sufficient for the formation of VLPs in insect cells (3, 4). In the context of a viral infection, the viral structural proteins (65), p7 (31, 49, 61), and all of the nonstructural proteins (2, 29, 32, 41, 44, 63, 67) are required for the production of infectious particles, independent of their role in HCV RNA replication. It is not known whether the nonstructural proteins are incorporated into infectious virions.The current model for HCV morphogenesis proposes that the core protein encapsidates the viral genome in areas where endoplasmic reticulum (ER) cisternae are in contact with lipid droplets (47), forming HCV RNA-containing particles that acquire the viral envelope by budding through the ER membrane (59). We along with others showed recently that infectious particle assembly requires microsomal transfer protein (MTP) activity and apolipoprotein B (apoB) (19, 28, 50), suggesting that these two components of the very-low-density lipoprotein (VLDL) biosynthetic machinery are essential for the formation of infectious HCV particles. This idea is supported by the reduced production of infectious HCV particles in cells that express short hairpin RNAs (shRNAs) targeting apolipoprotein E (apoE) (12, 30).HCV RNA displays various density profiles, depending on the stage of the infection at which the sample is obtained (11, 58). The differences in densities and infectivities have been attributed to the presence of host lipoproteins and antibodies bound to the circulating viral particles (24, 58). In patients, HCV immune complexes that have been purified by protein A affinity chromatography contain HCV RNA, core protein, triglycerides, apoB (1), and apoE (51), suggesting that these host factors are components of circulating HCV particles in vivo.Recent studies using infectious molecular clones showed that both host and viral factors can influence the density profile of infectious HCV particles. For example, the mean particle density is reduced by passage of cell culture-grown virus through chimpanzees and chimeric mice whose livers contain human hepatocytes (39). It has also been shown that a point mutation in the viral envelope protein E2 (G451R) increases the mean density and specific infectivity of JFH-1 mutants (70).HCV particles exist as a mixture of infectious and noninfectious particles in ratios ranging from 1:100 to 1:1,000, both in vivo (10) and in cell culture (38, 69). Extracellular infectious HCV particles have a lower average density than their noninfectious counterparts (20, 24, 38). Equilibrium sedimentation analysis indicates that particles with a buoyant density of ∼1.10 to 1.14 g/ml display the highest ratio of infectivity per genome equivalent (GE) both in cell culture (20, 21, 38) and in vivo (8). These results indicate that these samples contain relatively more infectious particles than any other particle population. Interestingly, mutant viruses bearing the G451R E2 mutation display an increased infectivity-HCV RNA ratio only in fractions with a density of ∼1.1 g/ml (21), reinforcing the notion that this population is selectively enriched in infectious particles.The size of infectious HCV particles has been estimated in vivo by filtration (50 to 80 nm) (9, 22) and by rate-zonal centrifugation (54 nm) (51) and in cell culture by calculation of the Stokes radius inferred from the sedimentation velocity of infectious JFH-1 particles (65 to 70 nm) (20). Previous ultrastructural studies using patient-derived material report particles with heterogeneous diameters ranging from 35 to 100 nm (33, 37, 42, 57, 64). Cell culture-derived particles appear to display a diameter within that range (∼55 nm) (65, 68).In this study we exploited the increased growth capacity of a cell culture-adapted virus bearing the G451R mutation in E2 (70) and the enhanced particle production of the hyperpermissive Huh-7 cell subclone Huh-7.5.1 clone 2 (Huh-7.5.1c2) (54) to produce quantities of infectious HCV particles that were sufficient for electron cryomicroscopy (cryoEM) analyses. These studies revealed two major particle populations with diameters of ∼60 and ∼45 nm. The larger-diameter particles were distinguished by the presence of a membrane bilayer, characterized by electron density attributed to the lipid headgroups in its leaflets. Isopycnic ultracentrifugation showed that the ∼60-nm particles are enriched in fractions with a density of ∼1.1 g/ml, where optimal infectivity-HCV RNA ratios are observed. These results indicate that the predominant morphology of the infectious HCV particle is spherical and pleomorphic and surrounded by a membrane envelope.  相似文献   

19.
20.
ICP27 is a multifunctional protein that is required for herpes simplex virus 1 mRNA export. ICP27 interacts with the mRNA export receptor TAP/NXF1 and binds RNA through an RGG box motif. Unlike other RGG box proteins, ICP27 does not bind G-quartet structures but instead binds GC-rich sequences that are flexible in structure. To determine the contribution of arginines within the RGG box, we performed in vitro binding assays with N-terminal proteins encoding amino acids 1 to 160 of wild-type ICP27 or arginine-to-lysine substitution mutants. The R138,148,150K triple mutant bound weakly to sequences that were bound by the wild-type protein and single and double mutants. Furthermore, during infection with the R138,148,150K mutant, poly(A)+ RNA and newly transcribed RNA accumulated in the nucleus, indicating that viral RNA export was impaired. To determine if structural changes had occurred, nuclear magnetic resonance (NMR) analysis was performed on N-terminal proteins consisting of amino acids 1 to 160 from wild-type ICP27 and the R138,148,150K mutant. This region of ICP27 was found to be highly flexible, and there were no apparent differences in the spectra seen with wild-type ICP27 and the R138,148,150K mutant. Furthermore, NMR analysis with the wild-type protein bound to GC-rich sequences did not show any discernible folding. We conclude that arginines at positions 138, 148, and 150 within the RGG box of ICP27 are required for binding to GC-rich sequences and that the N-terminal portion of ICP27 is highly flexible in structure, which may account for its preference for binding flexible sequences.The herpes simplex virus 1 (HSV-1) protein ICP27 is a multifunctional regulatory protein that is required for productive viral infection. ICP27 interacts with a number of cellular proteins, and it binds RNA (35). One of the functions that ICP27 performs is to escort viral mRNAs from the nucleus to the cytoplasm for translation (2, 3, 5, 10, 13, 21, 34). ICP27 binds viral RNAs (5, 34) and interacts directly with the cellular mRNA export receptor TAP/NXF1 (2, 21), which is required for the export of HSV-1 mRNAs (20, 21). ICP27 also interacts with the export adaptor proteins Aly/REF (2, 3, 23) and UAP56 (L. A. Johnson, H. Swesey, and R. M. Sandri-Goldin, unpublished results), which form part of the TREX complex that binds to the 5′ end of mRNA through an interaction with CBP80 (26, 32, 41). Aly/REF does not appear to bind viral RNA directly (3), and it is not essential for HSV-1 RNA export based upon small interfering RNA (siRNA) knockdown studies (20), but it contributes to the efficiency of viral RNA export (3, 23). ICP27 also interacts with the SR splicing proteins SRp20 and 9G8 (11, 36), which have been shown to shuttle between the nucleus and the cytoplasm (1). SRp20 and 9G8 have also been shown to facilitate the export of some cellular RNAs (16, 17, 27) by binding RNA and interacting with TAP/NXF1 (14, 16, 18). The knockdown of SRp20 or 9G8 adversely affects HSV-1 replication and specifically results in a nuclear accumulation of newly transcribed RNA during infection (11). Thus, these SR proteins also contribute to the efficiency of viral RNA export. However, the overexpression of SRp20 was unable to rescue the defect in RNA export during infection with an ICP27 mutant that cannot bind RNA (11), suggesting that ICP27 is the major HSV-1 RNA export protein that links viral RNA to TAP/NXF1.ICP27 was shown previously to bind RNA through an RGG box motif located at amino acids 138 to 152 within the 512-amino-acid protein (28, 34). Using electrophoretic mobility shift assays (EMSAs), we showed that the N-terminal portion of ICP27 from amino acids 1 to 160 bound specifically to viral oligonucleotides that are GC rich and that are flexible and relatively unstructured (5). Here we report the importance of three arginine residues within the RGG box for ICP27 binding to GC-rich sequences in vitro and for viral RNA export during infection. We also performed nuclear magnetic resonance (NMR) structural analysis of the N-terminal portion of ICP27 for both the wild-type protein and an ICP27 mutant in which three arginines were replaced with lysines. The NMR data showed that the N-terminal portion of ICP27 is relatively unstructured but compact, and NMR analysis in the presence of oligonucleotide substrates to which the N-terminal portion of ICP27 binds did not show any discernible alterations in this highly flexible structure, nor did the arginine-to-lysine substitutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号