首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
SNARE complexes form between the synaptic vesicle protein synaptobrevin and the plasma membrane proteins syntaxin and SNAP25 to drive membrane fusion. A cytosolic protein, complexin (Cpx), binds to the SNARE bundle, and its accessory helix (AH) functions to clamp synaptic vesicle fusion. We performed molecular-dynamics simulations of the SNARE/Cpx complex and discovered that at equilibrium the Cpx AH forms tight links with both synaptobrevin and SNAP25. To simulate the effect of electrostatic repulsion between vesicle and membrane on the SNARE complex, we calculated the electrostatic force and performed simulations with an external force applied to synaptobrevin. We found that the partially unzipped state of the SNARE bundle can be stabilized by interactions with the Cpx AH, suggesting a simple mechanistic explanation for the role of Cpx in fusion clamping. To test this model, we performed experimental and computational characterizations of the syx3-69Drosophila mutant, which has a point mutation in syntaxin that causes increased spontaneous fusion. We found that this mutation disrupts the interaction of the Cpx AH with synaptobrevin, partially imitating the cpx null phenotype. Our results support a model in which the Cpx AH clamps fusion by binding to the synaptobrevin C-terminus, thus preventing full SNARE zippering.  相似文献   

2.
SNARE complexes form between the synaptic vesicle protein synaptobrevin and the plasma membrane proteins syntaxin and SNAP25 to drive membrane fusion. A cytosolic protein, complexin (Cpx), binds to the SNARE bundle, and its accessory helix (AH) functions to clamp synaptic vesicle fusion. We performed molecular-dynamics simulations of the SNARE/Cpx complex and discovered that at equilibrium the Cpx AH forms tight links with both synaptobrevin and SNAP25. To simulate the effect of electrostatic repulsion between vesicle and membrane on the SNARE complex, we calculated the electrostatic force and performed simulations with an external force applied to synaptobrevin. We found that the partially unzipped state of the SNARE bundle can be stabilized by interactions with the Cpx AH, suggesting a simple mechanistic explanation for the role of Cpx in fusion clamping. To test this model, we performed experimental and computational characterizations of the syx3-69Drosophila mutant, which has a point mutation in syntaxin that causes increased spontaneous fusion. We found that this mutation disrupts the interaction of the Cpx AH with synaptobrevin, partially imitating the cpx null phenotype. Our results support a model in which the Cpx AH clamps fusion by binding to the synaptobrevin C-terminus, thus preventing full SNARE zippering.  相似文献   

3.
Tag team action at the synapse   总被引:1,自引:0,他引:1  
Carr CM  Munson M 《EMBO reports》2007,8(9):834-838
Communication between neurons relies on chemical synapses and the release of neurotransmitters into the synaptic cleft. Neurotransmitter release is an exquisitely regulated membrane fusion event that requires the linking of an electrical nerve stimulus to Ca(2+) influx, which leads to the fusion of neurotransmitter-filled vesicles with the cell membrane. The timing of neurotransmitter release is controlled through the regulation of the soluble N-ethylmaleimide sensitive factor attachment receptor (SNARE) proteins-the core of the membrane fusion machinery. Assembly of the fusion-competent SNARE complex is regulated by several neuronal proteins, including complexin and the Ca(2+)-sensor synaptotagmin. Both complexin and synaptotagmin bind directly to SNAREs, but their mechanism of action has so far remained unclear. Recent studies revealed that synaptotagmin-Ca(2+) and complexin collaborate to regulate membrane fusion. These compelling new results provide a molecular mechanistic insight into the functions of both proteins: complexin 'clamps' the SNARE complex in a pre-fusion intermediate, which is then released by the action of Ca(2+)-bound synaptotagmin to trigger rapid fusion.  相似文献   

4.
Montal M 《FEBS letters》1999,447(2-3):129-130
SNARE proteins appear to be involved in homotypic and heterotypic membrane fusion events [Sollner et al. (1993) Nature 362, 318-324]. The crystal structure of the synaptic SNARE complex exhibits a parallel four-helical bundle fold with two helices contributed by SNAP-25, a target SNARE (t-SNARE), and the other two by a different t-SNARE, syntaxin, and a donor vesicle SNARE (v-SNARE), synaptobrevin. The carboxy-terminal boundary of the complex, predicted to occur at the closest proximity between the apposed membranes, displays a high density of positively charged residues. This feature combined with the enrichment of negatively charged phospholipids in the cytosolic exposed leaflet of the membrane bilayer suggest that electrostatic attraction between oppositely charged interfaces may be sufficient to induce dynamic and discrete micellar discontinuities of the apposed membranes with the transient breakdown at the junction and subsequent reformation. Thus, the positively charged end of the SNARE complex in concert with Ca2+ may be sufficient to generate a transient 'fusion pore'.  相似文献   

5.
At low surface concentrations that permit formation of impermeable membranes, neuronal soluble N-ethyl maleimide sensitive factor attachment protein receptor (SNARE) proteins form a stable, parallel, trans complex when vesicles are brought into contact by a low concentration of poly(ethylene glycol) (PEG). Surprisingly, formation of a stable SNARE complex does not trigger fusion under these conditions. However, neuronal SNAREs do promote fusion at low protein/lipid ratios when triggered by higher concentrations of PEG. Promotion of PEG-triggered fusion required phosphatidylserine and depended only on the surface concentration of SNAREs and not on the formation of a trans SNARE complex. These results were obtained at protein surface concentrations reported for synaptobrevin in synaptic vesicles and with an optimally fusogenic lipid composition. At a much higher protein/lipid ratio, vesicles joined by SNARE complex slowly mixed lipids at 37 degrees C in the absence of PEG, in agreement with earlier reports. However, vesicles containing syntaxin at a high protein/lipid ratio (>or=1:250) lost membrane integrity. We conclude that the neuronal SNARE complex promotes fusion by joining membranes and that the individual proteins syntaxin and synaptobrevin disrupt membranes so as to favor formation of a stalk complex and to promote conversion of the stalk to a fusion pore. These effects are similar to the effects of viral fusion peptides and transmembrane domains, but they are not sufficient by themselves to produce fusion in our in vitro system at surface concentrations documented to occur in synaptic vesicles. Thus, it is likely that proteins or factors other than the SNARE complex must trigger fusion in vivo.  相似文献   

6.
This review focuses on the so-called SNARE (soluble N-ethyl maleimide sensitive factor attachment protein receptor) proteins that are involved in exocytosis at the pre-synpatic plasma membrane. SNAREs play a role in docking and fusion of synaptic vesicles to the active zone, as well as in the Ca2+-triggering step itself, most likely in combination with the Ca2+ sensor synaptotagmin. Different SNARE domains are involved in different processes, such as regulation, docking, and fusion. SNAREs exhibit multiple configurational, conformational, and oliogomeric states. These different states allow SNAREs to interact with their matching SNARE partners, auxiliary proteins, or with other SNARE domains, often in a mutually exclusive fashion. SNARE core domains undergo progressive disorder to order transitions upon interactions with other proteins, culminating with the fully folded post-fusion (cis) SNARE complex. Physiological concentrations of neuronal SNAREs can juxtapose membranes, and promote fusion in vitro under certain conditions. However, significantly more work will be required to reconstitute an in vitro system that faithfully mimics the Ca2+-triggered fusion of a synaptic vesicle at the active zone.  相似文献   

7.
近年来,对突触小泡释放神经递质分子机制的研究迅速发展,发现了大量位于神经末梢的蛋白质.它们之间的相互作用与突触小泡释放神经递质相关,特别是位于突触小泡膜上的突触小泡蛋白/突触小泡相关膜蛋白(synaptobrevin/VAMP),位于突触前膜上的syntaxin和突触小体相关蛋白(synaptosome-associated protein of 25 ku),三者聚合形成的可溶性NSF附着蛋白受体(SNARE)核心复合体在突触小泡的胞裂外排、释放递质过程中有重要作用.而一些已知及未知的与SNARE蛋白有相互作用的蛋白质,可通过调节SNARE核心复合体的形成与解离来影响突触小泡的胞裂外排,从而可以调节突触信号传递的效率及强度,在突触可塑性的形成中起重要作用.  相似文献   

8.
Vesicular trafficking and exocytosis are directed by the complementary interaction of membrane proteins that together form the SNARE complex. This complex is composed of proteins in the vesicle membrane (v-SNAREs) that intertwine with proteins of the target membrane (t-SNAREs). Here we show that modified synaptic vesicles (mSV), containing v-SNAREs, spontaneously fuse to planar membranes containing the t-SNARE, syntaxin 1A. Fusion was Ca(2+)-independent and did not occur with vesicles lacking v-SNAREs. Therefore, syntaxin alone forms a functional fusion complex with v-SNAREs. Our functional fusion assay uses synaptic vesicles that are modified, so each fusion event results in an observable transient current. The mSV do not fuse with protein-free membranes. Additionally, artificial vesicles lacking v-SNAREs do not fuse with membranes containing syntaxin. This technique can be adapted to measure fusion in other SNARE systems and should enable the identification of proteins critical to vesicle-membrane fusion. This will further our understanding of exocytosis and may improve targeting and delivery of therapeutic agents packaged in vesicles.  相似文献   

9.
Assembly of soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) proteins between two opposing membranes is thought to be the key event that initiates membrane fusion. Many new SNARE proteins have recently been localized to distinct intracellular compartments, supporting the view that sets of specific SNAREs are specialized for distinct trafficking steps. We have now investigated whether other SNAREs can form complexes with components of the synaptic SNARE complex including synaptobrevin/VAMP 2, SNAP-25, and syntaxin 1. When the Q-SNAREs syntaxin 2, 3, and 4, and the R-SNARE endobrevin/VAMP 8 were used in various combinations, heat-resistant complexes were formed. Limited proteolysis revealed that these complexes contained a protease-resistant core similar to that of the synaptic complex. All complexes were disassembled by the ATPase N-ethylmaleimide-sensitive fusion protein and its cofactor alpha-SNAP. Circular dichroism spectroscopy showed that major conformational changes occur during assembly, which are associated with induction of structure from unstructured monomers. Furthermore, no preference for synaptobrevin was observed during the assembly of the synaptic complex when endobrevin/VAMP 8 was present in equal concentrations. We conclude that cognate and non-cognate SNARE complexes are very similar with respect to biophysical properties, assembly, and disassembly, suggesting that specificity of membrane fusion in intracellular membrane traffic is not due to intrinsic specificity of SNARE pairing.  相似文献   

10.
The SNARE proteins are essential components of the intracellular fusion machinery. It is thought that they form a tight four-helix complex between membranes, in effect initiating fusion. Most SNAREs contain a single coiled-coil region, referred to as the SNARE motif, directly adjacent to a single transmembrane domain. The neuronal SNARE SNAP-25 defines a subfamily of SNARE proteins with two SNARE helices connected by a longer linker, comprising also the proteins SNAP-23 and SNAP-29. We now report the initial characterization of a novel vertebrate homologue termed SNAP-47. Northern blot and immunoblot analysis revealed ubiquitous tissue distribution, with particularly high levels in nervous tissue. In neurons, SNAP-47 shows a widespread distribution on intracellular membranes and is also enriched in synaptic vesicle fractions. In vitro, SNAP-47 substituted for SNAP-25 in SNARE complex formation with the neuronal SNAREs syntaxin 1a and synaptobrevin 2, and it also substituted for SNAP-25 in proteoliposome fusion. However, neither complex assembly nor fusion was as efficient as with SNAP-25.  相似文献   

11.
Action of complexin on SNARE complex   总被引:6,自引:0,他引:6  
Calcium-dependent synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: synaptobrevin/vesicle-associated membrane protein in the vesicular membrane and syntaxin and SNAP-25 in the presynaptic membrane. The SNAREs form a thermodynamically stable complex that is believed to drive fusion of vesicular and presynaptic membranes. Complexin, also known as synaphin, is a neuronal cytosolic protein that acts as a positive regulator of synaptic vesicle exocytosis. Complexin binds selectively to the neuronal SNARE complex, but how this promotes exocytosis remains unknown. Here we used purified full-length and truncated SNARE proteins and a gel shift assay to show that the action of complexin on SNARE complex depends strictly on the transmembrane regions of syntaxin and synaptobrevin. By means of a preparative immunoaffinity procedure to achieve total extraction of SNARE complex from brain, we demonstrated that complexin is the only neuronal protein that tightly associates with it. Our data indicated that, in the presence of complexin, the neuronal SNARE proteins assemble directly into a complex in which the transmembrane regions interact. We propose that complexin facilitates neuronal exocytosis by promoting interaction between the complementary syntaxin and synaptobrevin transmembrane regions that reside in opposing membranes prior to fusion.  相似文献   

12.
13.
Three-dimensional structure of the complexin/SNARE complex   总被引:12,自引:0,他引:12  
During neurotransmitter release, the neuronal SNARE proteins synaptobrevin/VAMP, syntaxin, and SNAP-25 form a four-helix bundle, the SNARE complex, that pulls the synaptic vesicle and plasma membranes together possibly causing membrane fusion. Complexin binds tightly to the SNARE complex and is essential for efficient Ca(2+)-evoked neurotransmitter release. A combined X-ray and TROSY-based NMR study now reveals the atomic structure of the complexin/SNARE complex. Complexin binds in an antiparallel alpha-helical conformation to the groove between the synaptobrevin and syntaxin helices. This interaction stabilizes the interface between these two helices, which bears the repulsive forces between the apposed membranes. These results suggest that complexin stabilizes the fully assembled SNARE complex as a key step that enables the exquisitely high speed of Ca(2+)-evoked neurotransmitter release.  相似文献   

14.
Neuronal exocytosis is driven by the formation of SNARE complexes between synaptobrevin 2 on synaptic vesicles and SNAP-25/syntaxin 1 on the plasma membrane. It has remained controversial, however, whether SNAREs are constitutively active or whether they are down-regulated until fusion is triggered. We now show that synaptobrevin in proteoliposomes as well as in purified synaptic vesicles is constitutively active. Potential regulators such as calmodulin or synaptophysin do not affect SNARE activity. Substitution or deletion of residues in the linker connecting the SNARE motif and transmembrane region did not alter the kinetics of SNARE complex assembly or of SNARE-mediated fusion of liposomes. Remarkably, deletion of C-terminal residues of the SNARE motif strongly reduced fusion activity, although the overall stability of the complexes was not affected. We conclude that although complete zippering of the SNARE complex is essential for membrane fusion, the structure of the adjacent linker domain is less critical, suggesting that complete SNARE complex assembly not only connects membranes but also drives fusion.  相似文献   

15.
The fusion of synaptic vesicles with the pre-synaptic plasma membrane mediates the secretion of neurotransmitters at nerve terminals. This pathway is regulated by an array of protein–protein interactions. Of central importance are the soluble NSF ( N -ethylmaleimide-sensitive factor) attachment protein receptor (SNARE) proteins syntaxin 1 and SNAP25, which are associated with the pre-synaptic plasma membrane and vesicle-associated membrane protein (VAMP2), a synaptic vesicle SNARE. Syntaxin 1, SNAP25 and VAMP2 interact to form a tight complex bridging the vesicle and plasma membranes, which has been suggested to represent the minimal membrane fusion machinery. Synaptic vesicle fusion is stimulated by a rise in intraterminal Ca2+ levels, and a major Ca2+ sensor for vesicle fusion is synaptotagmin I. Synaptotagmin is likely to couple Ca2+ entry to vesicle fusion via Ca2+-dependent and independent interactions with membrane phospholipids and the SNARE proteins. Intriguingly, syntaxin 1, SNAP25, VAMP2 and synaptotagmin I have all been reported to be modified by palmitoylation in neurons. In this review, we discuss the mechanisms and dynamics of palmitoylation of these proteins and speculate on how palmitoylation might contribute to the regulation of synaptic vesicle fusion.  相似文献   

16.
Intracellular membrane fusion is conserved from yeast to man as well as among different intracellular trafficking pathways. This process can be generally divided into several well-defined biochemical reactions. First, an early recognition (or tethering) takes place between donor and acceptor membranes, mediated by ypt/rab GTPases and complexes of tethering factors. Subsequently, a closer association between the two membranes is achieved by a docking process, which involves tight association between membrane proteins termed SNAREs. The formation of such a trans-SNARE complex leads to the final membrane fusion, resulting in an accumulation of cis-SNARE complexes on the acceptor membrane. Thus, multiple rounds of transport and delivery of the donor SNARE back to its original membrane require dissociation of the SNARE complexes. SNARE dissociation, termed priming, is mediated by the AAA ATPase, N-ethylmaleimide-sensitive factor (NSF) and its partner, soluble NSF attachment protein (SNAP), in a reaction that requires ATP hydrolysis. In the present review we focus on LMA1 and GATE-16, two low-molecular-weight proteins, which assist in priming SNARE molecules in the vacuole in yeast and the Golgi complex in mammals, respectively. LMA1 and GATE-16 are suggested to keep the dissociated cis-SNAREs apart from each other, allowing multiple fusion processes to take place. GATE-16 belongs to a novel family of ubiquitin-like proteins conserved from yeast to man. We discuss here the involvement of this family in multiple intracellular trafficking pathways.  相似文献   

17.
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are a large family of proteins that are present on all organelles involved in intracellular vesicle trafficking and secretion. The interaction of complementary SNAREs found on opposing membranes presents an attractive lock-and-key mechanism, which may underlie the specificity of vesicle trafficking. Moreover, formation of the tight complex between a vesicle membrane SNARE and corresponding target membrane SNAREs could drive membrane fusion. In synapses, this tight complex, also referred to as the synaptic core complex, is essential for neurotransmitter release. However, recent observations in knockout mice lacking major synaptic SNAREs challenge the prevailing notion on the executive role of these proteins in fusion and open up several questions about their exact role(s) in neurotransmitter release. Persistence of a form of regulated neurotransmitter release in these mutant mice also raises the possibility that other cognate or non-cognate SNAREs may partially compensate for the loss of a particular SNARE. Future analysis of SNARE function in central synapses will also have implications for the role of these molecules in other vesicle trafficking events such as endocytosis and vesicle replenishment. Such analysis can provide a molecular basis for synaptic processes including certain forms of short-term synaptic plasticity.  相似文献   

18.
The vesicular protein synaptobrevin contributes to two mutually exclusive complexes in mature synapses. Synaptobrevin tightly interacts with the plasma membrane proteins syntaxin and SNAP 25 forming the SNARE complex as a prerequisite for exocytotic membrane fusion. Alternatively, synaptobrevin binds to the vesicular protein synaptophysin. It is unclear whether SNARE complex formation is diminished or facilitated when synaptobrevin is bound to synaptophysin. Here we show that the synaptophysin-synaptobrevin complex is increased in adult rat brain after repeated synaptic hyperactivity in the kindling model of epilepsy. Two days after the last kindling-induced stage V seizure the relative amount of synaptophysin-synaptobrevin complex obtained by co-immunoprecipitation from cortical and hippocampal membranes was increased twofold compared to controls. By contrast the relative amounts of various synaptic proteins as well as that of the SNARE complex did not change in membrane preparations from kindled rats compared to controls. The increased amount of synaptophysin-synaptobrevin complex in kindled rats supports the idea that this complex represents a reserve pool for synaptobrevin enabling synaptic vesicles to adjust to an increased demand for synaptic efficiency. We conclude that the synaptophysin-synaptobrevin interaction is involved in activity-dependent plastic changes in adult rat brain.  相似文献   

19.
Fusion of lipid membranes to form a single bilayer is an essential process for life and provides important biological functions including neurotransmitter release. Membrane fusion proteins facilitate approximation of interacting membranes to overcome the energy barrier. In case of synaptic transmission, proteins involved are known as soluble N‐ethylmaleimide‐sensitive‐factor attachment receptor (SNARE) proteins. The SNAREs from synaptic vesicles interact with the SNAREs from the target membrane to form a coiled‐coil bundle of four helices, thus pulling the membranes tightly together and initiating fusion. However, it remains unclear how these proteins function at molecular level. Natural systems are often too complex to obtain unambiguous results. Simple model systems mimicking natural proteins in synthetic lipid bilayers are powerful tools for obtaining insights into this essential biological process. An important advantage of such systems is their well‐defined composition, which can be systematically varied in order to fully understand events at molecular level. In this review, selected model systems are presented based upon specific interactions between recognition units embedded in separate lipid bilayers mimicking native SNARE protein‐mediated membrane fusion. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
In the neuron, soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins assemble into an alpha-helical coiled coil that bridges the synaptic vesicle to the plasma membrane and drives membrane fusion, a required process for neurotransmitter release at the nerve terminal. How does coiled coil formation drive membrane fusion? To investigate the structural and energetic coupling between the coiled coil and membrane, the recombinant SNARE complex in the phospholipid bilayer was studied using fluorescence quenching and site-directed spin labeling EPR. Fluorescence analysis revealed that two native Trp residues at the membrane-proximal region of the coiled coil are inserted into the membrane, tightly coupling the coiled coil to the membrane. The EPR results indicate that the coiled coil penetrates into the membrane with an oblique angle, providing a favorable geometry for the basic residues to interact with negatively charged lipids. The result supports the proposition that core complex formation directly leads to the apposition of two membranes, which could facilitate lipid mixing. Trp residues and basic residues are abundant at the membrane-proximal region of transmembrane SNARE proteins, suggesting the generality of the proposed mechanism for the SNARE complex-membrane coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号