首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Biotransformations of steroid compounds: androstenedione, testosterone, progesterone, pregnenolone and DHEA using Chaetomium sp. 1 KCH 6651 strain as a biocatalyst were investigated. The microorganism proved capable of selective hydroxylation of the steroid substrates. Androstenedione was converted to 14α-hydroxyandrost-4-en-3,17-dione (in over 75% yield) and 6β-hydroxyandrost-4-en-3,17-dione (in low yield), while testosterone underwent regioselective hydroxylation at 6β position. Progesterone was transformed to a single product—6β,14α-dihydroxypregnan-4-en-3,20-dione in high yield, whereas biotransformation of DHEA resulted in the formation of 7α-hydroxy derivative, which was subsequently converted to 7α-hydroxyandrost-4-en-3,17-dione.  相似文献   

2.
The potential for biotransformation of the substrate 17β-hydroxyandrost-4-en-3-one (testosterone) by six filamentous fungi, namely, Rhizopus oryzae ATCC 11145, Mucor plumbeus ATCC 4740, Cunninghamella echinulata var. elegans ATCC 8688a, Aspergillus niger ATCC 9142, Phanerochaete chrysosporium ATCC 24725 and Whetzelinia sclerotiorum ATCC 18687, was investigated. In this study both free cells and macerated mycelia immobilised in calcium alginate were utilised and the results (products, % yields, % transformation) were compared. In general the encapsulated cells of the microorganisms effectively generated products similar to those found using free cells. However, with immobilised macerated mycelia, isolation of the transformation products was expedited by the simple work up procedure, and their purification was facilitated by the absence of fungal secondary metabolites. Twenty seven analogues of testosterone were generated, wherein the androstane skeleton was functionalised at C-1β, -2β, -6β, -7α, -11α, -14, -15α, -15β and -16β by the moulds. Redox chemistry was also observed. Seven of the analogues, 6β,11α,17β-trihydroxyandrost-4-en-3-one, 6β,14α,17β-trihydroxyandrost-4-en-3-one, 2,6β-dihydroxyandrosta-1,4-diene-3,17-dione, 2β,16β-dihydroxyandrost-4-ene-3,17-dione, 2β,6β-dihydroxyandrost-4-ene-3,17-dione, 2β,15β,17β-trihydroxyandrost-4-en-3-one and 2β,3α,17β-trihydroxyandrost-4-ene, were novel compounds. Five others, namely, 7α,17β-dihydroxyandrost-4-en-3-one, 6β,14α-dihydroxyandrost-4-ene-3,17-dione, 15α,17β-dihydroxyandrost-4-en-3-one, 16β,17α-dihydroxyandrost-4-en-3-one and 2β,16β,17β-trihydroxyandrost-4-en-3-one, were fully characterised for the first time.  相似文献   

3.
The following steroids and steroidal alkaloids have been incubated with the blight fungus Phytophthora infestans: androst-4-ene-3,17-dione, cholesterol, cholesteryl acetate, cholesteryl myristate, cholesteryl palmitate,cholesteryl stearate, dehydroisoandrosterone, 6α-hydroxy-androst-4-ene-3,17-dione, 6β-hydroxyandrost-4-ene-3,17-dione, 11α-hydroxyprogesterone, pregnenolone, progesterone, sitosterol, sitosteryl acetate, solanidine, solanine, stigmasterol, stigmasteryl acetate and testosterone. No hydroxylation was observed, but the fungus is able to oxidize alcohol functions at C-3β, C-6α, C-11β and C-17β to carbonyl. In addition, hydrolysis of acetate to hydroxyl at C-3β, and of solanine to solanidine, was observed. The relationship between metabolism and the nature of substitution at C-17β is discussed.  相似文献   

4.
In this paper we focus on the course of 7-hydroxylation of DHEA, androstenediol, epiandrosterone, and 5α-androstan-3,17-dione by Absidia coerulea AM93. Apart from that, we present a tentative analysis of the hydroxylation of steroids in A. coerulea AM93. DHEA and androstenediol were transformed to the mixture of allyl 7-hydroxy derivatives, while EpiA and 5α-androstan-3,17-dione were converted mainly to 7α- and 7β-alcohols accompanied by 9α- and 11α-hydroxy derivatives. On the basis of (i) time course analysis of hydroxylation of the abovementioned substrates, (ii) biotransformation with resting cells at different pH, (iii) enzyme inhibition analysis together with (iv) geometrical relationship between the C–H bond of the substrate undergoing hydroxylation and the cofactor-bound activated oxygen atom, it is postulated that the same enzyme can catalyze the oxidation of C7-Hα as well as C7-Hβ bonds in 5-ene and 5α-dihydro C19-steroids. Correlations observed between the structure of the substrate and the regioselectivity of hydroxylation suggest that 7β-hydroxylation may occur in the normal binding enzyme-substrate complex, while 7α-hydroxylation—in the reverse inverted binding complex.  相似文献   

5.
Biotransformation of steroids with 4-ene-3-one functionality such as progesterone (I), testosterone (II), 17α-methyltestosterone (III), 4-androstene-3,17-dione (IV) and 19-nortestosterone (V) were studied by using a fungal system belonging to the genera of Mucor (M881). The fungal system efficiently and quantitatively converted these steroids in regio- and stereo-selective manner into corresponding 6β,11α-dihydroxy compounds. Time course experiments suggested that the transformation was initiated by hydroxylation at 6β- or 11α-(10β-hydroxy in case of V) to form monohydroxy derivatives which upon prolonged incubation were converted into corresponding 6β,11α-dihydroxy derivatives. The fermentation studies carried out using 5 L table-top fermentor with substrates (I and II) clearly indicates that 6β,11α-dihydroxy derivatives of steroids with 4-ene-3-one functionality can be produced in large scale by using M881.  相似文献   

6.
Nine hydroxy-derived androstadiene compounds were isolated from the fermentation broth of Neurospora crassa when incubated in the presence of androst-1,4-dien-3,17-dione (ADD; I) for 7 days. Hydroxylations at 6β, 7β, 11α, 14α- positions and 17-carbonyl reduction of the substrate were the characteristics observed in this biotransformation. Their structures were determined by spectroscopic methods as 17β-hydroxyandrost-1,4-dien-3-one (II), 14α-hydroxyandrost-1,4-dien-3,17-dione (III), 6β-hydroxyandrost-1,4-dien-3,17-dione (IV), 11α-hydroxyandrost-1,4-dien-3,17-dione (V), 6β,17β-dihydroxyandrost-1,4-dien-3-one (VI), 7β-hydroxyandrost-1,4-dien-3,17-dione (VII), 14α,17β-dihydroxyandrost-1,4-dien-3-one (VIII), 6β,14α-dihydroxyandrost-1,4-dien-3,17-dione (IX), and 11α,17β-dihydroxyandrost-1,4-dien-3-one (X). A new steroid substance, 6β,14α-dihydroxyandrost-1,4-dien-3,17-dione (IX), was also characterized during this study. The best fermentation condition was found to be 7-day incubation at 25°C and pH values of 5.0–6.0 in the presence of 0.05 g 100 mL?1 of the substrate. At a concentration above 0.075 g 100 mL?1, the biotransformation was completely inhibited.  相似文献   

7.
Regio- and stereospecificity of microbial hydroxylation was studied at the transformation of 3-keto-4-ene steroids of androstane and pregnane series by the filamentous fungus of Curvularia lunata VKM F-644. The products of the transformations were isolated by column chromatography and identified using HPLC, massspectrometry (MS) and proton nuclear magnetic resonance (1H NMR) analyses. Androst-4-ene-3,17-dione (AD) and its 1(2)-dehydro- and 9α-hydroxylated (9-OH-AD) derivatives were hydroxylated by the fungus mainly in position 14α, while 6α-, 6β- and 7α-hydroxylated products were revealed in minor amounts. At the transformation of C21-steroids (cortexolone and its acetylated derivatives) the presence of 17-acetyl group was shown to facilitate further selectivity of 11β-hydroxylation. Original procedures for protoplasts obtaining, mutagenesis and mutant strain selection have been developed. A stable mutant (M4) of C. lunata with high 11β-hydroxylase activity towards 21-acetate and 17α,21-diacetate of cortexolone was obtained. Yield of 11β-hydroxylated products reached about 90% at the transformation of 17α, 21-diacetate of cortexolone (1 g/l) using mutant strain M4.  相似文献   

8.
Specific antiserum has been developed for use in measuring 11β-hydroxyandrost-4-ene-3, 17-dione by radioimmunoassay (RIA). Rabbit antiserum was generated by employing the conjugate prepared by coupling 6β,11β-dihydroxyandrost-4-ene-3,17-dione 6-hemisuccinate with bovine serum albumin. The antiserum bound 68% of 50 picograms of 11β-hydroxyandrost-4-ene-3,17-dione-[1,2,6,7-3H] during characterization at a dilution of 1:12,500. Among the numerous steroids tested for cross-reactivity, 5α-androstane-3,17-dione, androst-4-ene-3,17-dione, and 11β-hydroxy-5α-androstane-3, 17-dione showed 2%, 5%, and 30% cross-reactivity respectively. The Rivanol-treated antiserum was coupled to Enzacryl AA, in order to study the feasibility of a solid-phase RIA, and this complex showed 50% binding with the labeled antigen at a dilution of 1:3000. The complex retained high specificity and should prove useful in a simple solid-phase RIA.  相似文献   

9.
An attempt was made to clarify how Pellicularia filamentosa f. sp. microsclerotia IFO 6298 capable of hydroxylating C21-steroids at the C-19 position converts C19-steroids, especially monohydroxyderivatives of androst-4-ene-3, 17-dione. Such substrates as 11β-hydroxyandrost-4-ene-3,17-dione (I), androst-4-ene-3, 11, 17-trione (II), androsta-1,4-diene-3, 17-dione (III), 11β-hydroxyandrosta-1,4-diene-3,17-dione (IV), 14α-hydroxyandrost-4-ene-3, 17-dione (V), 15α-hydroxyandrost-4-ene-3, 17-dione (VI) and 9α-hydroxyandrost-4-ene-3, 17-dione (VII) were converted by the organism. All the main and several minor products were then isolated and identified. As a result it is concluded that this organism converts I and II into 14α-hydroxyandrost-4-ene-3,11,17-trione, III and IV into 14α-hydroxyandrosta-1,4-diene-3,1l,17-trione, V into 11α 14α dihydroxyandrost-4-ene-3, 17-dione (main) and 11β, 14α-dihydroxyandrost-4-ene-3, 17-dione (minor, a tentative structure), VI into 11β, 15α-dihydroxyandrost-4-ene-3,17-dione (main) and 15α-hydroxyandrost-4-ene-3,11,17-trione (minor, a tentative structure) and VII into 9α, 14α-dihydroxyandrost-4-ene-3, 17-dione (main) and 6β, 9α-dihydroxyandrost-4-ene-3,17-dione (minor).

In addition, the structural requirement of substrate for the 19-hydroxylation catalyzed by the organism and the influence of a hydroxyl group on steroid nucleus upon the 11β- and 14α-hydroxylations and the 11β-OH-dehydrogenation was discussed.  相似文献   

10.
The purpose of these studies was to determine whether oestrogen production is a quantitatively important pathway in the hepatic microsomal metabolism of androst-4-ene-3,17-dione. The effects of the enzyme inducing agents phenobarbitone and β-naphthoflavone on microsomal cytochrome P-450-mediated androst-4-ene-3,17-dione hydroxylation and aromatization was investigated in the rat in vitro. In microsomal fractions from untreated rats the ratio of hydroxylated products to aromatized (oestrogenic) metabolites was 33:1. Phenobarbitone pretreatment of rats increased total hydroxylation by about 20% but did not change the ratio of hydroxylated to aromatized products (27:1). In contrast, β-naphthoflavone induction decreased total hydroxylation to about 35% of control but did not affect total aromatization. Thus the ratio of hydroxylation to aromatization was significantly lower than in control microsomes (17:1).The principal aromatized products were oestriol and 2-hydroxyoestradiol-17β, with oestradiol-17β and its 4-hydroxy metabolite as minor products; no oestrone was observed. In further studies of the microsomal metabolism of oestrone, the major product was oestradiol-17β whereas hydroxylated metabolites were only minor products. Oestradiol-17β, in contrast, was hydroxylated to a considerable extent. These findings suggest that oestrone is a better substrate for the microsomal 17β-oxidoreductase than it is for cytochrome P-450. It therefore appears likely that any oestrone formed from the aromatization of androst-4-ene-3,17-dione would be readily converted to oestradiol-17β which, in turn, is subject to cytochrome P-450-mediated hydroxylation. Although the liver is a site of C19-steroid aromatization, it appears unlikely that this organ could contribute significantly to serum oestrogen levels since microsomal hydroxylases are readily able to convert aromatized products to biologically inactive metabolites.  相似文献   

11.
The biotransformation of dehydroepiandrosterone (1) with Macrophomina phaseolina was investigated. A total of eight metabolites were obtained which were characterized as androstane-3,17-dione (2), androst-4-ene-3,17-dione (3), androst-4-ene-17β-ol-3-one (4), androst-4,6-diene-17β-ol-3-one (5), androst-5-ene-3β,17β-diol (6), androst-4-ene-3β-ol-6,17-dione (7), androst-4-ene-3β,7β,17β-triol (8), and androst-5-ene-3β,7α,17β-triol (9). All the transformed products were screened for enzyme inhibition, among which four were found to inhibit the β-glucuronidase enzyme, while none inhibited the α-chymotrypsin enzyme.  相似文献   

12.
Biphasic processes are used in whole-cell biotransformation to overcome the low water solubility of substrates and products as well as their inhibitory effects on the biocatalyst. Commercially available [NTf2]- and [PF6]-based ionic liquids (ILs) were used in a biphasic system for the 15α-hydroxylation of 13-ethyl-gon-4-en-3,17-dione by Penicillium raistrickii. With the substrate at 5 g l?1 and a volume ratio of IL to buffer, buffer pH and cell density at, 1:9, 6.5, 16.8 gDW l?1, respectively, the 15α-hydroxylation of 13-ethyl-gon-4-en-3,17-dione was achieved with a yield of 70 % after 72 h using [BMIm][NTf2] in a 50 ml biphasic system. This is compared to a 30 % yield in a monophasic aqueous system. This suggests the potential industrial application of ILs-based biphasic systems for steroid biotransformation.  相似文献   

13.
In this study, 6-methylenandrosta-4-ene-3,17-dione and Hydroxypropyl-β-cyclodextrin (HP-β-CD) were used to form a complex, which could be then biotransformed by Arthrobacter simplex ATCC6946 to obtain the antitumor drug exemestane. The complex was analyzed by UV, DSC and TG techniques, while the products were analyzed by HPLC, NMR and MS. These results confirmed that the β-cyclodextrin not only improved the water-solubility of 6-methylenandrosta-4-ene-3,17-dione, but also greatly enhanced the biocompatibility during the biotransformation process. This result may be applied to other precursors which have poor aqueous solubility in the biotransformation processes.  相似文献   

14.
The biotransformation of dehydroepiandrosterone (1) with Macrophomina phaseolina was investigated. A total of eight metabolites were obtained which were characterized as androstane-3,17-dione (2), androst-4-ene-3,17-dione (3), androst-4-ene-17β-ol-3-one (4), androst-4,6-diene-17β-ol-3-one (5), androst-5-ene-3β,17β-diol (6), androst-4-ene-3β-ol-6,17-dione (7), androst-4-ene-3β,7β,17β?triol (8), and androst-5-ene-3β,7α,17β-triol (9). All the transformed products were screened for enzyme inhibition, among which four were found to inhibit the β-glucuronidase enzyme, while none inhibited the α-chymotrypsin enzyme.  相似文献   

15.
We found that Acremonium strictum NN106 converted 4-androstene-3, 17-dione (androstenedione) to 12 compounds. Among them, five products were isolated and found to be hydroxylated at the 11α-, 14α-, 7α, 11α-, 6β, 11α- or 6β, 14α-positions of androstenedione. 6β, 11α-Dihydroxy and 6β, 14α-dihydroxy derivatives of androstenedione have been obtained for the first time. From the time course profile of this transformation, sequential hydroxylation at the 6β-position followed by 11α- or 14α-monohydroxylation was observed. The oxidative product of the 6β, 14α-dihydroxy derivative was found to be the most potent inhibitor of human placentral aromatase.  相似文献   

16.
A unicellular cyanobacterium,Chroococcus dispersus (Keissl.) Lemmermann, was isolated from paddy-field and tested in biotransformation experiments of hydrocortisone (compound 1). This strain has not been previously examined for steroid substance modification. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25 °C for seven days incubation. The metabolites were chromatographically purified and characterised using spectroscopic methods. The fermentation yielded 11β,17α,20β,21-tetrahydroxypregn-4-en-3-one (compound 2), 11β,17β-dihydroxyandrost-4-en-3,17-dione (compound 3), and 11β-hydroxyandrost-4-en-3,17-dione (compound 4). Bioreaction characteristics observed were 20-ketone reduction for accumulation of compound 2 and side chain degradation of the substrate to give compounds 3 and 4. Time course study showed the accumulation of the product 2 from the second day of the fermentation and product 3 as well as product 4 from the third day. All the metabolites reached their maximum concentration in seven days. Aeration and continuous light or light duration (16/8 hours light/dark) have no effect on the transformation yield. Optimum concentration of the substrate, which gave maximum bioconversion efficiency, was 0.5 mg ml?1 in the transformation experiment. Growth was not influenced by the addition of steroid substrate. Biotransformation was completely inhibited when steroid concentration was above 2.0 mg ml?1.  相似文献   

17.
Microbial transformation of dehydroepiandrosterone (DHEA, 1) using Penicillium griseopurpureum Smith and Penicillium glabrum (Wehmer) Westling has been investigated. Neither fungi had been examined previously for steroid biotransformation. One novel metabolic product of DHEA (1) transformed with P. griseopurpureum Smith, 15α-hydroxy-17a-oxa-d-homo-androst-4-ene-3,17-dione (5), was reported for the first time. The steroid products were assigned by interpretation of their spectral data such as 1H NMR, 13C NMR, IR, and HR-MS spectroscopy. P. griseopurpureum Smith was proven to be remarkably efficient in oxidation of the DHEA (1) into androst-4-en-3,17-dione (2). The strain was also observed to yield different monooxygenases to introduce hydroxyl groups at C-7α, -14α, and -15α positions of steroids. Preference for Baeyer–Villiger oxidation to lactonize D ring and oxidation of the 3β-alcohol to the 3-ketone were observed in both incubations. The strain of P. glabrum (Wehmer) Westling catalyzed the steroid 1 to generate both testololactone 3, and d-lactone product with 3β-hydroxy-5-en moiety 8. In addition, the strain promoted hydrogenation of the C-5 and C-6 positions, leading to the formation of 3β-hydroxy-17a-oxa-d-homo-5α-androstan-3,17-dione (9).The biotransformation pathways of DHEA (1) with P. glabrum (Wehmer) Westling and P. griseopurpureum Smith have been investigated, respectively. Possible metabolic pathways of DHEA (1) were proposed.  相似文献   

18.
Mycobacterium flavum was used to effect the transformation of 16β-methyl-16,17-oxido-7β,11α-dihydroxypregn-4-ene-3,20-dione (I) and the final products were isolated and identified as 16β-methyl-16,17-oxido-7β,11α-dihydroxypregna-1,4-diene-3,20-dione (II) and 16β-methyl-16,17-oxido-11α-hydroxypregna-1,4,6-triene-3,20-dione (IV), and the intermediate product as 16β-methyl-16,17-oxido-11α-hydroxypregna-4,6-diene-3,20-dione (III).  相似文献   

19.
Xiong Z  Wei Q  Chen H  Chen S  Xu W  Qiu G  Liang S  Hu X 《Steroids》2006,71(11-12):979-983
The microbial transformation of androst-4-ene-3,17-dione (I) by the fungus Beauveria bassiana CCTCC AF206001 has been investigated using pH 6.0 and 7.0 media. Two hydroxylated metabolites were obtained with the pH 6.0 medium. The major product was 11alpha-hydroxyandrost-4-ene-3,17-dione (II) whereas the minor product was 6beta,11alpha-dihydroxyandrost-4-ene-3,17-dione (III). On the other hand, four hydroxylated and/or reduced metabolites were obtained with the pH 7.0 medium. The major product was 11alpha,17beta-dihydroxyandrost-ene-3-one (V) and the minor products were 17beta-hydroxyandrost-ene-3-one (IV), 6beta,11alpha,17beta-trihydroxyandrost-ene-3-one (VI) and 3alpha,11alpha,17beta-trihydroxy-5alpha-androstane (VII). The products were purified by chromatographic methods, and were identified on the basis of spectroscopic methods. This fungus strain is clearly an efficient biocatalyst for 11alpha-hydroxylation and reduction of the 17-carbonyl group.  相似文献   

20.
The 15α-hydroxylation of 13-ethyl-gon-4-ene-3,17-dione (GD) with different subcellular fractions of Penicillium raistrickii i 477 was investigated. Cytochrome P-450 was shown to be involved in this reaction. The steroid transformation was inhibited by carbon monoxide, metyrapone, p-CMB, iodoacetamide, N-methylmaleimide and several metal ions. The 15α-hydroxylase was observed to be dependent on nicotinamide-adenine dinucleotide phosphate (NADPH) replaceable by NaIO4, and the activity was enhanced by a NADPH-regenerating system, indicating the involvement of the NADPH-cytochrome c (P-450) reductase. This was further confirmed by the inhibition of the hydroxylase activity in the presence of cytochrome c. No effect was observed in the presence of azide and antimycin A. Solubilized microsomes gave an absorption maximum at 453 nm in carbon monoxide difference spectrum, and showed a Type-I GD-binding spectrum typically for cytochrome P-450 interaction with substrate. First results about the inducibility of the enzymes involved in the 15α-hydroxylation of GD are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号