首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim A New Caledonian insect group was studied in a world‐wide phylogenetic context to test: (1) whether local or regional island clades are older than 37 Ma, the postulated re‐emergence time of New Caledonia; (2) whether these clades show evidence for local radiations or multiple colonizations; and (3) whether there is evidence for relict taxa with long branches in phylogenetic trees that relate New Caledonian species to geographically distant taxa. Location New Caledonia, south‐west Pacific. Methods We sampled 43 cricket species representing all tribes of the subfamily Eneopterinae and 15 of the 17 described genera, focusing on taxa distributed in the South Pacific and around New Caledonia. One nuclear and three mitochondrial genes were analysed using Bayesian and parsimony methods. Phylogenetic divergence times were estimated using a relaxed clock method and several calibration criteria. Results The analyses indicate that, under the most conservative dating scenario, New Caledonian eneopterines are 5–16 million years old. The largest group in the Pacific region dates to 18–29 Ma. New Caledonia has been colonized in two phases: the first around 10.6 Ma, with the subsequent diversification of the endemic genus Agnotecous, and the second with more recent events around 1–4 Ma. The distribution of the sister group of Agnotecous and the lack of phylogenetic long branches in the genus refute an assumption of major extinction events in this clade and the hypothesis of local relicts. Main conclusions Our phylogenetic studies invalidate a simple scenario of local persistence of this group in New Caledonia since 80 Ma, either by survival on the New Caledonian island since its rift from Australia, or, if one accepts the submergence of New Caledonia, by local island‐hopping among other subaerial islands, now drowned, in the region during periods of New Caledonian submergence.  相似文献   

2.
New Caledonia is a global biodiversity hotspot. Hypotheses for its biotic richness suggest either that the island is a ‘museum’ for an old Gondwana biota or alternatively it has developed following relatively recent long distance dispersal and in situ radiation. The conifer genus Araucaria (Araucariaceae) comprises 19 species globally with 13 endemic to this island. With a typically Gondwanan distribution, Araucaria is particularly well suited to testing alternative biogeographic hypotheses concerning the origins of New Caledonian biota. We derived phylogenetic estimates using 11 plastid and rDNA ITS2 sequence data for a complete sampling of Araucaria (including multiple accessions of each of the 13 New Caledonian Araucaria species). In addition, we developed a dataset comprising 4 plastid regions for a wider taxon sample to facilitate fossil based molecular dating. Following statistical analyses to identify a credible and internally consistent set of fossil constraints, divergence times estimated using a Bayesian relaxed clock approach were contrasted with geological scenarios to explore the biogeographic history of Araucaria. The phylogenetic data resolve relationships within Araucariaceae and among the main lineages in Araucaria, but provide limited resolution within the monophyletic New Caledonian species group. Divergence time estimates suggest a Late Cretaceous-Cenozoic radiation of extant Araucaria and a Neogene radiation of the New Caledonian lineage. A molecular timescale for the evolution of Araucariaceae supports a relatively recent radiation, and suggests that earlier (pre-Cenozoic) fossil types assigned to Araucaria may have affinities elsewhere in Araucariaceae. While additional data will be required to adequately resolve relationships among the New Caledonian species, their recent origin is consistent with overwater dispersal following Eocene emersion of New Caledonia but is too old to support a single dispersal from Australia to Norfolk Island for the radiation of the Pacific Araucaria sect. Eutacta clade.  相似文献   

3.
Islands are bounded areas where high endemism is explained either by allopatric speciation through the fragmentation of the limited amount of space available, or by sympatric speciation and accumulation of daughter species. Most empirical evidence point out the dominant action of allopatric speciation. We evaluate this general view by looking at a case study where sympatric speciation is suspected. We analyse the mode, tempo and geography of speciation in Agnotecous, a cricket genus endemic to New Caledonia showing a generalized pattern of sympatry between species making sympatric speciation plausible. We obtained five mitochondrial and five nuclear markers (6.8 kb) from 37 taxa corresponding to 17 of the 21 known extant species of Agnotecous, and including several localities per species, and we conducted phylogenetic and dating analyses. Our results suggest that the diversification of Agnotecous occurred mostly through allopatric speciation in the last 10 Myr. Highly microendemic species are the most recent ones (<2 Myr) and current sympatry is due to secondary range expansion after allopatric speciation. Species distribution should then be viewed as a highly dynamic process and extreme microendemism only as a temporary situation. We discuss these results considering the influence of climatic changes combined with intricate soil diversity and mountain topography. A complex interplay between these factors could have permitted repeated speciation events and range expansion.  相似文献   

4.
The ‘tree lobsters’ are an enigmatic group of robust, ground-dwelling stick insects (order Phasmatodea) from the subfamily Eurycanthinae, distributed in New Guinea, New Caledonia and associated islands. Its most famous member is the Lord Howe Island stick insect Dryococelus australis (Montrouzier), which was believed to have become extinct but was rediscovered in 2001 and is considered to be one of the rarest insects in the world. To resolve the evolutionary position of Dryococelus, we constructed a phylogeny from approximately 2.4 kb of mitochondrial and nuclear sequence data from representatives of all major phasmatodean lineages. Our data placed Dryococelus and the New Caledonian tree lobsters outside the New Guinean Eurycanthinae as members of an unrelated Australasian stick insect clade, the Lanceocercata. These results suggest a convergent origin of the ‘tree lobster’ body form. Our reanalysis of tree lobster characters provides additional support for our hypothesis of convergent evolution. We conclude that the phenotypic traits leading to the traditional classification are convergent adaptations to ground-living behaviour. Our molecular dating analyses indicate an ancient divergence (more than 22 Myr ago) between Dryococelus and its Australian relatives. Hence, Dryococelus represents a long-standing separate evolutionary lineage within the stick insects and must be regarded as a key taxon to protect with respect to phasmatodean diversity.  相似文献   

5.
A new species in the previously monotypic, endemic New Caledonian genus Gastrolepis (Stemonuraceae) is described. Gastrolepis alticola differs from G. austrocaledonica by its shorter and thicker petioles, strongly coriaceous leaves with revolute margins, shorter inflorescences, and pubescent corollas. The new species is further distinguished by its ecology, occurring only in high‐altitude maquis on two massifs in southern New Caledonia, Mt. Kouakoué and the Montagne des Sources. Gastrolepis alticola is assigned a preliminary conservation status of ‘Endangered’ using the World Conservation Union (IUCN) Red List criteria. Comparison of the IUCN threat status for the 19 species endemic to this distinctive, restricted vegetation type reveals a striking lack of consistency and underscores the need for a reassessment of the entire New Caledonian flora. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 157 , 775–783.  相似文献   

6.
Abstract. The size structure of the endemic New Caledonian conifer Agathis ovata is reported for sample stands in forest and maquis from three areas on ultramafic substrates in the south of the main island (Grand Terre). In closed forest Agathis ovata is typically represented by a low density of emergent adult trees with only limited evidence of seedling recruitment. In maquis, Agathis ovata is represented by individuals of all sizes, with seedlings and saplings abundant in most sample stands. Preliminary evidence from tree-ring studies indicates that rings may be annual. Estimated diameter growth rate is about 2 mm y?1 for trees ≥ 10 cm d.b.h., and ring counts suggest tree ages of up to 400 years in maquis and 500 years in forest. Agathis ovata, and three other members of the Araucariaceae found in New Caledonia (Araucaria laubenfelsii, A. montana and A. rulei), are the only tree species which regularly occur scattered in maquis in this way, creating an unusual structural assemblage. No angiosperm tree species show this behaviour. The circumstances under which the Agathis ovata– maquis stands arise and are maintained are the subject of further investigation. Preliminary evidence for tree ages indicates that these stands predate European arrival in New Caledonia and so are not the result of recent increases in the frequency and intensity of human disturbances. The presence of fire scars on many individuals, and location of most stands on slopes and spurs with outcropping laterite (cuirasse), suggests that this assemblage may owe its existence to the interplay of fire regime, topography and rockiness, and a resistance to fire in Agathis ovata which increases with plant size and age.  相似文献   

7.
Abstract Despite its small size, New Caledonia has a flora which includes 43 endemic species of conifer. This study examines the stand structure of the New Caledonian conifer, Araucaria laubenfelsii Corbasson, a species which occurs on ukramafic soils as an emergent tree in rainforest and in an unusual structural association with maquis vegetation. Fire and cyclone blow-down are the primary disturbances in the maquis, but fire is infrequent in the rainforests which is evident from the low proportion of fire scarred trees. Preliminary results show abundant seedlings and saplings of A. laubenfelsii both in maquis and forest. Size class distributions of individuals suggest that the species is continuously regenerating in the maquis and immature forests. Variability in the stand structure in maquis communities reflects the probable patchy nature of disturbance from small-scale fires and blow-down from tropical cyclones. In mature forests, Nothofagus codonandra (Baillon) Steenis is the dominant canopy species and ‘other tree species’ are continuously regenerating, while the size class distributions and basal area of A. laubenfelsii suggest that there is, at present, limited regeneration of this species. Tree ring counts indicate that individuals in forest areas grow at a slower rate than those in maquis, but attain greater age, probably as a result of greater protection from fire.  相似文献   

8.
New Caledonia is well known for its rich and unique flora. Many studies have focused on the biogeographical origins of New Caledonian plants but rates of diversification on the island have scarcely been investigated. Here, dated phylogenetic trees from selected published studies were used to evaluate the time and tempo of diversification in New Caledonia. The 12 plant lineages investigated all appear to have colonized the island < 37 Mya, when New Caledonia re‐emerged after a period of inundation, and the timing of these arrivals is spread across the second half of the Cenozoic. Diversification rates are not particularly high and are negatively correlated with lineage age. The palms have the fastest diversification rates and also the most recent arrival times. The lineage ages of rainforest plants suggest that this ecosystem has been present for at least 6.9 Myr. The New Caledonian flora is apparently a relatively old community that may have reached a dynamic equilibrium. Colonization by new immigrants has been possible until relatively recently and diversity‐dependent processes may still be affecting the diversification rates of the earlier colonizers. Further studies on the diversification of large plant clades with exhaustive sampling should help to clarify this. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 288–298.  相似文献   

9.
10.
Abstract. The endemic New Caledonian conifer Agathis ovata occurs as an emergent tree in fire‐prone shrublands (maquis), and fire‐sensitive rainforest. Growth, survivorship and recruitment over 5 yr were compared for populations from forest and maquis on ultramafic substrates in New Caledonia to investigate whether demographic behaviour varied in response to the strongly contrasting forest and shrubland environments. Growth of seedlings and of small (30–100 cm height) and large (100 cm height; 5 cm DBH) saplings was slow, but varied significantly among stages, site types and years. The greatest difference in growth rates was among stages, seedlings growing 0.34 cm.yr?1, small saplings 1.06 cm.yr?1 and large saplings 2.13 cm.yr?1. Tree DBH increased by only 0.05 cm.yr?1 and, based on these rates, individuals with DBH of 30 cm are estimated to be more than 700 yr old. Few trees (3.5%) produced cones in any year and seedling recruitment was low, but some recruitment was recorded each year in both maquis and forest. Rates of recruitment per parent were highest in forest (1.28.yr?1, cf 0.78.yr?1), but the higher density of trees in maquis meant that overall recruitment was greater there (92 ha?1.yr?1, cf 56 ha?1.yr?1). Seedling mortality ranged from 0.9 to 2.9% among years with no significant difference between maquis and forest. No sapling mortality was recorded, but annual tree mortality ranged from 0 to 1.4%. Evidence from a recently burned site indicated that while trees may survive fire, seedlings and saplings do not. Post‐fire seedling recruitment per ha from surviving trees was four times lower than in unburned sites, but growth rates were four times higher. Similar demographic attributes, including high survivorship, low growth rate and low rates of recruitment over a long reproductive life, characterize Agathis ovata populations in both maquis and rainforest in New Caledonia and are indicative of a broad tolerance of light environments that is unusual among tree species. These demographic attributes help to explain the long‐term persistence of the species in these strongly contrasting habitats.  相似文献   

11.
In order to improve knowledge about the role of arbuscular mycorrhizal fungi (AMF) in the tolerance to heavy metals in ultramafic soils, the present study investigated the influence of two Glomus etunicatum isolates from New Caledonian ultramafic maquis (shrubland), on nickel tolerance of a model plant species Sorghum vulgare, and of two ultramafic endemic plant species, Alphitonia neocaledonica and Cloezia artensis. In a first step, plants were grown in a greenhouse, on sand with defined concentrations of Ni, to appreciate the effects of the two isolates on the alleviation of Ni toxicity in controlled conditions. In a second step, the influence of the AMF on A. neocaledonica and C. artensis plants grown in a New Caledonian ultramafic soil rich in extractable nickel was investigated. Ni reduced mycorrhizal colonization and sporulation of the fungal isolates, but the symbionts increased plant growth and adaptation of endemic plant species to ultramafic conditions. One of the two G. etunicatum isolates showed a stronger positive effect on plant biomass and phosphorus uptake, and a greater reduction in toxicity symptoms and Ni concentration in roots and shoots. The symbionts seemed to act as a barrier to the absorption of Ni by the plant and reduced root-to-shoot Ni translocation. Results indicate the potential of selected native AMF isolates from ultramafic areas for ecological restoration of such degraded ecosystems.  相似文献   

12.
Aim To investigate areas of endemism in New Caledonia and their relationship with tectonic history. Location New Caledonia, south‐west Pacific. Methods Panbiogeographical analysis. Results Biogeographical patterns within New Caledonia are described and illustrated with reference to eight terranes and ten centres of endemism. The basement terranes make up a centre of endemism for taxa including Amborella, the basal angiosperm. Three of the terranes that accreted to the basement in the Eocene (high‐pressure metamorphic terrane, ultramafic nappe and Loyalty Ridge) have their own endemics. Main conclusions New Caledonia is not simply a fragment of Gondwana but, like New Zealand and New Guinea, is a complex mosaic of allochthonous terranes. The four New Caledonian basement terranes were all formed from island arc‐derived and arc‐associated material (including ophiolites) which accumulated in the pre‐Pacific Ocean, not in Gondwana. They amalgamated and were accreted to Gondwana (eastern Australia) in the Late Jurassic/Early Cretaceous, but in the Late Cretaceous they separated from Australia with the opening of the Tasman Sea and break‐up of Gondwana. An Eocene collision of the basement terranes with an island arc to the north‐east – possibly the Loyalty Ridge – is of special biogeographical interest in connection with New Caledonia–central Pacific affinities. The Loyalty–Three Kings Ridge has had a separate history from that of the Norfolk Ridge/New Caledonia, although both now run in parallel between Vanuatu and New Zealand. The South Loyalty Basin opened between Grande Terre and the Loyalty Ridge in the Cretaceous and attained a width of 750 km. However, it was almost completely destroyed by subduction in the Eocene which brought the Loyalty Ridge and Grande Terre together again, after 30 Myr of separation. The tectonic history is reflected in the strong biogeographical differences between Grande Terre and the Loyalty Islands. Many Loyalty Islands taxa are widespread in the Pacific but do not occur on Grande Terre, and many Grande Terre/Australian groups are not on the Loyalty Islands. The Loyalty Islands are young (2 Myr old) but they are merely the currently emergent parts of the Loyalty Ridge whose ancestor arcs have a history of volcanism dating back to the Cretaceous. Old taxa endemic to the young Loyalty Ridge islands persist over geological time as a dynamic metapopulation surviving in situ on the individually ephemeral islands and atolls found around subduction zones. The current Loyalty Islands, like the Grande Terre terranes, have inherited their biota from previous islands. On Grande Terre, the ultramafic terrane was emplaced on Grande Terre in the Eocene (about the same time as the collision with the island arc). The very diverse endemic flora on the ultramafics may have been inherited by the obducting nappe from prior base‐rich habitat in the region, including the mafic Poya terrane and the limestones typical of arc and intraplate volcanic islands.  相似文献   

13.
Many scientists argue that our planet is undergoing a mass extinction event that is largely due to human influences. In this context, rediscoveries of species presumed to be extinct are encouraging and of great potential interest. During a 2003 expedition to New Caledonia, Bocourt’s terrific skink, Phoboscincus bocourti, was unexpectedly rediscovered on a small islet by one of us. This skink species had been described from a single specimen collected around 1872 in New Caledonia. Since that time, however, no data on the species’ biology, trophic interactions, or role in the ecosystem have been collected, making it difficult to follow the established conservation plan. In this study, we used a multidisciplinary approach involving natural history, anatomy, morphology, genetics, and stable isotopes to elucidate the ecology of Bocourt’s terrific skink. Over the course of three different expeditions to the islet (total of 55 days across 2005 and 2012), we captured 4 individuals and observed another 4 individuals. The species’ dentition and trophic ecology suggest that it is a top predator in its ecosystem and a major consumer of small terrestrial reptiles. Its high degree of genetic relatedness to another New Caledonian skink, which has a broad distribution, suggests that P. bocourti underwent genetic isolation at a geographical remote location, where dispersal or colonization was highly improbable. Moreover, the lack of genetic variation among the four individuals we captured may imply that a unique lineage, characterized by few inter-island exchanges, exists on the islet. Bocourt’s terrific skink may be the largest terrestrial squamate predator alive in New Caledonia today. As a result, it is likely vulnerable to habitat modifications and especially the invasive rodents found on this islet. Further information is necessary to assess the conservation plans and practices in place as no concrete changes have been made since the species’ rediscovery almost 10 years ago.  相似文献   

14.
Abstract. Within a framework for historical analysis of Eneopterinae biogeography the New Caledonian endemic cricket genus Agnotecous Saussure, 1878 is revised: the eight already known species are diagnosed and six new species described, A. azurensis Desutter‐Grandcolas sp.n. , A. chopardi Desutter‐Grandcolas sp.n. , A. clarus Desutter‐Grandcolas sp.n. , A. doensis Desutter‐Grandcolas sp.n. , A. meridionalis Desutter‐Grandcolas sp.n. and A. occidentalis Desutter‐Grandcolas sp.n. Four species groups are characterized by male genitalic structures. Identification keys are provided for both males and females. A cladistic analysis was performed using fifty‐eight morphological characters. The two resultant topologies, which differ only in topology of three apical species, support the monophyly of Agnotecous and that of the four species groups. Preliminary hypotheses of Eneopterinae historical biogeography are derived from phylogenetic and distributional data.  相似文献   

15.
Ants are among the most ubiquitous and harmful invaders worldwide, but there are few regional studies of their relationships with habitat and native ant communities. New Caledonia has a unique and diverse ant fauna that is threatened by exotic ants, but broad-scale patterns of exotic and native ant community composition in relation to habitat remain poorly documented. We conducted a systematic baiting survey of 56 sites representing the main New Caledonian habitat types: rainforest on ultramafic soils (15 sites), rainforest on volcano-sedimentary soils (13), maquis shrubland (15), Melaleuca-dominated savannas (11) and Acacia spirorbis thickets (2). We collected a total of 49 species, 13 of which were exotic. Only five sites were free of exotic species, and these were all rainforest. The five most abundant exotic species differed in their habitat association, with Pheidole megacephala associated with rainforests, Brachymyrmex cf. obscurior with savanna, and Wasmannia auropunctata and Nylanderia vaga present in most habitats. Anoplolepis gracilipes occurred primarily in maquis-shrubland, which contrasts with its rainforest affinity elsewhere. Multivariate analysis of overall ant species composition showed strong differentiation of sites according to the distribution of exotic species, and these patterns were maintained at the genus and functional group levels. Native ant composition differed at invaded versus uninvaded rainforest sites, in the absence of differences in habitat variables. Generalised Myrmicinae and Forest Opportunists were particularly affected by invasion. There was a strong negative relationship between the abundance of W. auropunctata and native ant abundance and richness. This emphasizes that, in addition to dominating many ant communities numerically, some exotic species, and in particular W. auropunctata, have a marked impact on native ant communities.  相似文献   

16.
New Caledonia is well known as a hot spot of biodiversity whose origin as a land mass can be traced back to the Gondwanan supercontinent. The local flora and fauna, in addition to being remarkably rich and endemic, comprise many supposedly relictual groups. Does the New Caledonian biota date back to Gondwanan times, building up its richness and endemism over 100 Myr or does it result from recent diversifications after Tertiary geological catastrophic events? Here we use a molecular phylogenetic approach to answer this question with the study of the Neocaledonian cockroach genus Angustonicus belonging to the subfamily Tryonicinae from Australia and New Caledonia. Both geological and molecular dating show that the diversification of this group is less than two million years old, whatever the date of its origin itself. This dating is not consistent with hypotheses of Gondwanan richness and endemism in New Caledonian biota. In other terms, local richness and endemism at the specific level are not necessarily related to an old Gondwanan origin of the Neocaledonian groups. © The Willi Hennig Society 2005.  相似文献   

17.
Aim To test whether environmental diversification played a role in the diversification of the New Caledonian Hydropsychinae caddisflies. Location New Caledonia, south‐west Pacific. Methods The phylogeny of the New Caledonian Hydropsychinae caddisflies was hypothesized using parsimony and Bayesian methods on molecular characters. The Bayesian analysis was the basis for a comparative analysis of the correlation between phylogeny and three environmental factors: geological substrate (ultrabasic, non‐ultrabasic), elevation and precipitation. Phylogenetic divergence times were estimated using a relaxed clock method, and environmental factors were mapped onto a lineage‐through‐time plot to investigate the timing of environmental diversification in relation to species radiation. The correlation between rainfall and elevation was tested using independent contrasts, and the gamma statistic was calculated to infer the diversification pattern of the group. Results The diversification of extant Orthopsyche–Caledopsyche species began in the Middle–Late Oligocene, when much of the island of New Caledonia was covered by ultrabasic substrate and mountain forming was prevalent. Most lineages originated in the Middle–Late Miocene, a period associated with long‐term climate oscillation. Optimization of environmental factors on the phylogeny demonstrated that the New Caledonian Hydropsychinae group adapted to ultrabasic substrate early in its evolutionary history. The clade living mostly on ultrabasic substrate was far more species‐rich than the clade living mostly on non‐ultrabasic substrate. Elevation and rainfall were significantly correlated with each other. The lineage‐through‐time plot revealed that the main environmental diversification preceded species diversification. A constant speciation through time was rejected, and the negative gamma indicates that most of the diversification occurred early in the history of the clade. According to the inferred phylogeny, the genus Orthopsyche McFarlane is a synonym under Caledopsyche Kimmins, and Abacaria caledona Oláh & Barnard should also be included in Caledopsyche. Main conclusions The age of the radiation does not support a vicariance origin of New Caledonian Hydropsychinae caddisflies. Environmental diversification pre‐dates lineage diversification, and thus environmental heterogeneity potentially played a role in the diversification of the group, by providing a variety of fragmented habitats to disperse into, promoting speciation. The negative gamma indicates that the speciation rate slowed as niches started to fill.  相似文献   

18.
The biota of New Caledonia is one of the most unusual in the world. It displays high diversity and endemism, many peculiar absences, and far‐flung biogeographic affinities. For example, New Caledonia is the only place on Earth with both main clades of flowering plants – the endemic Amborella and ‘all the rest’, and it also has the highest concentration of diversity in conifers. The discovery of Amborella's phylogenetic position led to a surge of interest in New Caledonian biogeography, and new studies are appearing at a rapid rate. This paper reviews work on the topic (mainly molecular studies) published since 2013. One current debate is focused on whether any biota survived the marine transgressions of the Paleocene and Eocene. Total submersion would imply that the entire fauna was derived by long‐distance dispersal from continental areas since the Eocene, but only if no other islands (now submerged) were emergent. A review of the literature suggests there is little actual evidence in geology for complete submersion. An alternative explanation for New Caledonia's diversity is that the archipelago acted as a refugium, and that the biota avoided the extinctions that occurred in Australia. However, this is contradicted by the many groups that are anomalously absent or depauperate in New Caledonia, although represented there by a sister group. The anomalous absences, together with the unusual levels of endemism, can both be explained by vicariance at breaks in and around New Caledonia. New Caledonia has always been situated at or near a plate boundary, and its complex geological history includes the addition of new terranes (by accretion), orogeny, and rifting. New Caledonia comprises ‘basement’ terranes that were part of Gondwana, as well as island arc and forearc terranes that accreted to the basement after it separated from Gondwana. The regional tectonic history helps explain the regional biogeography, as well as distribution patterns within New Caledonia. These include endemics on the basement terranes (for example, the basal angiosperm, Amborella), disjunctions at the West Caledonian fault zone, and great biotic differences between Grande Terre and the Loyalty Islands.  相似文献   

19.
Plants from the Cyperaceae family (sedges), usually considered as non-mycorrhizal, constitute almost exclusively the herbaceous stratum of the ultramafic maquis in New Caledonia. These plants are pioneers and are important for the ecological restoration of mined areas. Costularia comosa, one of the most common sedges in this environment, was grown under field conditions on ultramafic soil, fertilized or not with phosphate and/or nitrogen. Results showed that the addition of phosphate to the soil induced a clear increase in mycorrhizal colonization of C. comosa and an increase in arbuscule abundance, reflecting the establishment of a functional mycorrhizal symbiosis. Significant positive correlations were found among mycorrhizal parameters and plant or soil phosphorus concentrations. Nitrogen fertilization did not affect mycorrhizal colonization of C. comosa. The improvement in mycorrhizal colonization by phosphate fertilization did not influence significantly nickel concentrations in the roots and shoots of plants. This study demonstrated that phosphate fertilization of ultramafic soil improved mycorrhizal colonization of C. comosa, with formation of a functional symbiosis under field conditions.  相似文献   

20.
The toxic and nutrient poor ultrabasic rock substrate covering one-third of New Caledonia greatly influenced on the biogeography and diversity of plants in the island. Studies on the effect of ultrabasic substrate on fauna are almost entirely absent. In this paper we examine whether the diversification of Trichoptera of the New Caledonian endemic genus Xanthochorema Kimmins, 1953 was related to the presence of ultrabasic substrate. The analysis is based on data from a phylogeny derived from DNA sequences of mitochondrial COX1, COX2 and 16S, and nuclear EF1a genes. The study of the relationships between ancestral species and substrate was carried out using dispersal-vicariance analysis and tracing the history of substrate association with ultrabasic and non-ultrabasic distributions representing the terminals in the fully resolved phylogenetic tree. Our results show that (1) the ancestor of all Xanthochorema species was present on ultrabasic substrate, (2) early speciation events were restricted to ultrabasic substrate, (3) younger ancestral species dispersed into non-ultrabasic substrates, and (4) late speciation events were restricted to non-ultrabasic substrate. These results correspond to the hypothesis that New Caledonia once was more extensively covered by ultrabasic rocks than at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号