首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Lipoprotein fractions in Rana esculenta were separated using the same salt intervals currently applied for human lipoproteins. Very low density lipoproteins (VLDL), low density lipoproteins (LDL) and high density lipoproteins (HDL) were analyzed with reference to the electrophoretic pattern. The lipoprotein electrophoretic pattern in males and females throughout the reproductive cycle showed minor differences. In general, each fraction was characterized by a specific apolipoprotein content. VLDL and LDL fractions were dominated by a high molecular weight (MW) band, most likely the counterpart of human Apolipoprotein B (apo B). The apo B in R. esculenta cross reacted, although weakly, with antibodies raised against chicken apo B. The HDL fraction showed a band with an apparent MW of 29 kDa. The electrophoretic mobility of the protein moiety of HDL was similar to human apolipoprotein A-I (apo A-I). However, HDL apolipoprotein of R. esculenta did not cross react with antibodies against chicken apo A-I under either denaturing or native conditions. The HDL apolipoprotein of R. esculenta was purified by DEAE-Sephacel chromatography followed by HPLC. Its amino acid composition showed a moderate correlation with trout, salmon, chicken and human apo A-I.  相似文献   

2.
Summary Confluent monolayers of normal human hepatocytes obtained by collagenase perfusion of liver pragments were incubated in a serum-free medium. Intracellular apolipoproteins apo AI, apo C, apo B, and apo E were detected between Day 1 and Day 6 of the culture by immunoenzymatic staining using polyclonal antibodies directed against these apoproteins and monoclonal antibodies directed against both forms of apo B (B100 and B48). Translation of mRNA isolated from these hepatocytes in an acellular system revealed that apo AI and apo E were synthesized as the precusor forms of mature plasma apo AI and apo E. Three lipoprotein fractions corresponding to the density of very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL) were isolated from the medium at Day 5 of culture and examined by electron microscopy after negative staining. VLDL and LDL particles are similar in size and shape to plasma lipoproteins; spherical HDL are larger than normal plasma particles isolated at the same density. Their protein represented 44, 19.5, and 36.5% respectively, of the total lipoprotein protein. The secretion rate of VLDL protein corresponded to that measured in primary cultures of rat hepatocytes. After incorporation of [3H]glycerol, more than 92% of the [3H]triglyceride secreted into the medium was recovered in the VLDL fraction. These results demonstrate that primary cultures of normal human hepatocytes are able to synthesize and secrete lipoproteins and thus could be a useful model to study lipoprotein metabolism in human liver.  相似文献   

3.
The nature of the interaction of high density lipoproteins (HDL), formed during lipolysis of human very low density lipoprotein (VLDL) by perfused rat heart, with subfractions of human plasma HDL was investigated. Perfusate HDL, containing apoliproproteins (apo) E, C-II, and C-III but no apo A-I or A-II, was incubated with a subfraction of HDL (HDL-A) containing apo A-I and A-II, but devoid of apo C-II, C-III, and E. The products of the incubation were resolved by heparin-Sepharose or hydroxylapatite chromatography under conditions which allowed the resolution of the initial HDL-A and perfusate HDL. The fractions were analyzed for apolipoprotein content and lipid composition and assessed for particle size by electron microscopy. Following the incubation, the apo-E-containing lipoproteins were distinct from perfusate HDL since they contained apo A-I as a major component and apo C-II and C-III in reduced proportions. However, the HDL-A fraction contained apo C-II and C-III as major constituents. Associated with these changes in apolipoprotein composition, the apo-E-rich lipoproteins acquired cholesteryl ester from the HDL-A fraction and lost phospholipid to the HDL-A fraction. The HDL-A fraction maintained a low unesterified cholesterol/phospholipid molar ratio (0.23), while the apo-E-containing lipoproteins possessed a high ratio (0.75) characteristic of the perfusate HDL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Lipoprotein lipase (LPL)-mediated hydrolysis of triglycerides (TG) contained in chylomicrons requires the presence of a cofactor, apolipoprotein (apo) C-II. The physiological mechanism by which chylomicrons gain apoC-II necessary for LPL activation in whole plasma is not known. Using a gum arabic stabilized TG emulsion, activation of LPL by lipoprotein apoC-II was studied. Hydrolysis of TG by LPL was greater in the presence of serum than with addition of either high density lipoproteins (HDL) or very low density lipoproteins (VLDL). LPL activation by either VLDL or HDL increased with addition of the lipoprotein-free fraction of plasma. A similar increase in LPL activity by addition of the lipoprotein-free fraction together with HDL or VLDL was observed when another TG emulsion (Intralipid) or TG-rich lipoproteins from an apoC-II deficient subject were used as a substrate. Human apoA-IV, apoA-I, apoE, and cholesteryl ester transfer protein were assessed for their ability to increase LPL activity in the presence of VLDL. At and below physiological concentrations, only apoA-IV increased LPL activity. One hundred percent of LPL activity measured in the presence of serum was achieved using VLDL plus apoA-IV. In the absence of an apoC-II source, apoA-IV had no effect on LPL activity. Removal of greater than 80% of the apoA-IV from the nonlipoprotein-containing fraction of plasma by incubation with Intralipid markedly reduced its ability to activate LPL in the presence of VLDL or HDL. Gel filtration chromatography demonstrated that incubation of the nonlipoprotein-containing fraction of plasma with HDL and the TG emulsion caused increased transfer of apoC-II to the emulsion and association of apoA-IV with HDL. Our studies demonstrate that apoA-IV increases LPL activation in the presence of lipoproteins. We hypothesize that apoA-IV is required for efficient release of apoC-II from either HDL or VLDL, which then allows for LPL-mediated hydrolysis of TG in nascent chylomicrons.  相似文献   

5.
Transfer of apolipoprotein (apo) molecules between lipoprotein particles is an important factor in modulating the metabolism of the particles. Although the phenomenon is well established, the kinetics and molecular mechanism of passive apo exchange/transfer have not been defined in detail. In this study, the kinetic parameters governing the movement of radiolabeled apoC molecules from human very low density lipoprotein (VLDL) to high density lipoprotein (HDL3) particles were measured using a manganese phosphate precipitation assay to rapidly separate the two types of lipoprotein particles. In the case of VLDL labeled with human [14C]apoCIII1, a large fraction of the apoCIII1 transfers to HDL3 within 1 minute of mixing the two lipoproteins at either 4 degrees or 37 degrees C. As the diameter of the VLDL donor particles is decreased from 42-59 to 23-25 nm, the size of this rapidly transferring apoCIII1 pool increases from about 50% to 85%. There is also a pool of apoCIII1 existing on the donor VLDL particles that transfers more slowly. This slow transfer follows a monoexponential rate equation; for 35-40 nm donor VLDL particles the pool size is approximately 20% and the t1/2 is approximately 3 h. The flux of apoCIII molecules between VLDL and HDL3 is bidirectional and all of the apoCIII seems to be available for exchange so that equilibrium is attained. It is likely that the two kinetic pools of apoCIII are related to conformational variations of individual apo molecules on the surface of VLDL particles. The rate of slow transfer of apoCIII1 from donor VLDL (35-40 nm) to acceptor HDL3 is unaffected by an increase in the acceptor to donor ratio, indicating that the transfer is not dependent on collisions between donor and acceptor particles. Consistent with this, apoCIII1 molecules can transfer from donor VLDL to acceptor HDL3 particles across a 50 kDa molecular mass cutoff semipermeable membrane separating the lipoprotein particles. These results indicate that apoC molecules transfer between VLDL and HDL3 particles by an aqueous diffusion mechanism.  相似文献   

6.
The fate of apo C in rat plasma very low density lipoprotein (VLDL) during lipolysis was studied using VLDL labeled specifically with 125I-labeled apo C and purified bovine milk lipoprotein lipase. Incubations were carried out in vitro and included serum-containing systems and albumin containing systems. Free fatty acids generation proceeded with time of incubation in the two systems. It, however, was enhanced 1.5--2 fold by the presence of serum. 125I-labeled apo C equilibrated between very low and high density lipoprotein (HDL) in both systems even when enzyme was not present in the incubation medium, or when the incubation was carried out at 0 degrees C. Upon initiation of lipolysis, more 125I-labeled apo C was transferred to HDL and the transfer was proportional to the magnitude of free fatty acids release. 125I-labeled apo C was also progressively removed from VLDL in the albumin-containing system, although no known lipoprotein acceptor to apo C was present in the medium. The 125I-labeled apo C was recovered predominantly with the medium fraction of d greater than 1.21 g/ml (60--70%), and to a lesser degree with that of d= 1.019--1.21 g/ml. However, the relationship between lipolysis (measured as free fatty acids release) and removal of 125I-labeled apo C from VLDL were indistinguinshable in the albumin containing system and the serum containing system. On the basis of these observations, it is postulated that the removal of apo C during lipolysis of VLDL reflects the nature of the partially degraded VLDL particles, and is independent of the presence of a lipoprotein acceptor to apo C.  相似文献   

7.
Six mouse monoclonal antibodies against rabbit apolipoprotein E (apo E) have been developed. Of these monoclonal antibodies, clone 5 revealed a high affinity for purified apo E, very low density lipoprotein (VLDL) and beta-VLDL. This monoclonal antibody was used to prepare an immunoaffinity column. Coupled to Sepharose 4B, this antibody allowed complete removal of lipoproteins containing apo E from plasma of New Zealand white (NZW) rabbits; 62, 46, 14, and 3% of VLDL-, IDL-, LDL-, and HDL-protein, respectively, were bound to the anti-apo E affinity column. The bound VLDL was significantly rich in free cholesterol (FC) and cholesteryl esters (CE) relative to the unbound VLDL, whereas bound IDL, LDL and HDL were significantly rich in FC only. All of the bound fractions were characterized by significantly increased ratios of FC/phospholipids (PL). These results indicate that the two lipoprotein populations with and without apo E have different lipid compositions. The relatively high content of cholesterol in lipoproteins containing apo E suggests a contribution of apo E to plasma cholesterol transport.  相似文献   

8.
The effects of dexamethasone (a synthetic glucocorticoid) and insulin on the secretion of very-low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) were investigated. Rat hepatocytes in monolayer culture were preincubated for 15 h in the presence or absence of combinations of 100 nM-dexamethasone and 2 nM-, 10 nM- or 50 nM-insulin. Dexamethasone increased [3H]oleate incorporation into secreted triacylglycerol by 2.7-fold and the mass of triacylglycerol secreted by 1.5-fold. Insulin alone decreased these parameters and antagonized the effect of dexamethasone. Dexamethasone increased the secretion of [3H]leucine in apolipoprotein (apo) E, and in the large (BH) and small (BI) forms of apo B in VLDL by about 7.1-, 3.6- and 4.0-fold respectively. Insulin alone decreased the secretion of these 3H-labelled apolipoproteins in VLDL. However, 2 nM-insulin with dexamethasone increased the secretion of 3H-labelled apo BH and apo BL by a further 0.8- and 3.2-fold respectively; 50 nM-insulin decreased the secretions of apo E, apo BH and apo BL in VLDL. Similar effects for dexamethasone or insulin alone were also obtained for the masses of apo E and apo BL + H secreted in VLDL. Albumin secretion was not significantly altered by either dexamethasone or insulin alone, but in combination they stimulated by 2.1-2.6-fold. Insulin or dexamethasone alone had little effect on the secretion of apolipoproteins in the HDL fraction. However, dexamethasone plus 2 nM-insulin increased the incorporation of [3H]leucine into apo AI, apo AH plus apo C, apo AIV and apo E of HDL by about 1.8-, 1.6-, 1.7- and 2.0-fold respectively. The apo E in the bottom fraction represented about 69% of the total 3H-labelled apo E secreted. The responses in the total secretion of apo E from the hepatocytes resembled those seen in HDL. The interactions of insulin and dexamethasone are discussed in relation to the general regulation of lipoprotein metabolism, the development of hyperlipidaemias and the predisposition to premature atherosclerosis.  相似文献   

9.
  • 1.1. Equine plasma contains lipoproteins corresponding to very low density (VLDL), low density (LDL) and high density lipoproteins (HDL).
  • 2.2. HDL accounts for approximately 60% of plasma lipoprotein mass and consists of a single population of particles.
  • 3.3. LDL is heterogeneous comprising three discrete subfractions.
  • 4.4. Two proteins are found in the region of apolipoprotein (apo) B-100 in VLDL and LDL and a third similar to apo B-48 is in VLDL.
  • 5.5. Lecithin:cholesterol acyl transferase is active in plasma and hepatic lipase and lipoprotein lipase are evident in post-heparin plasma.
  • 6.6. There is no significant cholesteryl ester transfer protein activity.
  相似文献   

10.
Previous analysis of amniotic fluid (AF) noted only the presence of high density lipoprotein (HDL). In this study AF lipoprotein profile was examined using gel filtration column chromatography and Ouchterlony gel diffusion. Unlike previous studies which showed only the presence of HDL, we found significant amounts of low density lipoprotein (LDL) and very low density lipoprotein (VLDL). AF-LDL and AF-VLDL were identified by reactions with anti-h-apolipoprotein AI and AII antiserum and anti-h-apolipoprotein B-antiserum, respectively. Furthermore, bulk of the cholesterol mass was carried in VLDL (53.6 +/- 7.7%) and LDL (32.5 +/- 4.3%) with minor amounts (13.9 +/- 1.3%) in HDL fraction. It is concluded that human AF contains all three lipoproteins with most of the cholesterol being carried in very low density lipoprotein fraction.  相似文献   

11.
1. Sephadex fraction V, obtained from human serum high density lipoprotein apoprotein (HDL apoprotein) of normal subjects and of patients with abetalipoproteinemia, was resolved by DEAE-cellulose ion exchange column chromatography into several fractions which were defined in terms of amino acid composition, NH2- and COOH-terminsls, sialic acid content, immunologic and electrophoretic properties, and in vitro activation of purified lipoprotein lipase from rat adipose tissue. 2. Fraction V of HDL apoprotein of both normal and abetalipoproteinemic subjects was found to contain polypeptides corresponding to apolipoproteins C-I, C-II, C-III-1, and C-III-2, which had been described previously in very low-density lipoproteins (VLDL). The content of apo C-III-1 in abetalipoproteinemia-HDL was very low, whereas the percentage, by weight, of apo C-I was about twice as high as that in the normal subjects studied. Furthermore, both normal and abetalipoproteinemia-HDL apoprotein contained a previously unreported peptide which had a molecular weight of about 7 000 and electrophoretic, chemical, and immunological properties distinct from those of the known C apolipoproteins. Of all of the peptides comprising fraction V, only apo C-II activated a purified preparation of rat adipose tissue lipoprotein lipase. This was the case for both normal and abetalipoproteinemic subjects.  相似文献   

12.
A study was performed to clarify the role of serum lipoproteins, especially high density lipoprotein (HDL) and triglyceride-rich lipoproteins in endotoxemic or endotoxin-poisoned animals. The level of HDL-cholesterol decreased markedly in mouse serum 18-24 hr postintoxication, while the amount of low density lipoprotein (LDL)-cholesterol in the sera of poisoned mice was about 175% of that of the controls. Serum lecithin-cholesterol acyltransferase activity in the poisoned mice decreased slightly for 3-6 hr after endotoxin injection, but became markedly increased at 18-24 hr as compared with that in the controls. The amount of serum very low density lipoprotein (VLDL) showed a marked increase in the poisoned mice 8-24 hr postintoxication. The HDL fraction in the electrophoretic patterns of serum was reduced according to the dose of endotoxin 18 hr postintoxication. The HDL fraction in mice injected with lead acetate plus endotoxin was markedly lower than that in the poisoned mice. When streptozotocin-diabetic mice were injected with endotoxin, the HDL fraction was higher than that in the endotoxin-poisoned mice. In endotoxin-poisoned mice a correlation was observed between the lipid peroxide and LDL levels in the serum. In disk electrophoretic patterns, the HDL fraction in mice given vitamin E-supplemented diet showed a higher level than that in mice given a normal diet. Lipoprotein lipase (LPL) activity in poisoned mice significantly decreased to 59% of the control value 18 hr postintoxication, but hepatic triglyceride lipase activity was only slightly increased in endotoxin-poisoned mice. In analysis of HDL apoprotein peptide in serum lipoprotein, the apo C-II peptide level was clearly lower in mouse serum 18 hr postintoxication than that in the controls. These results suggest that the decrease in LPL activity in endotoxin-poisoned mice may be closely related to a decrease in the apo C-II peptide level, and also that it plays an important part in HDL and triglyceride-rich lipoprotein metabolism in the poisoned mice.  相似文献   

13.
Eggs of the tick Amblyomma hebraeum Koch (Acari: Ixodidae) inhibited the growth of Escherichia coli and Serratia marcescens (Gram-negative bacteria) in solid culture, but not the growth of Staphylococcus epidermidis, and only marginally the growth of Bacillus subtilis (Gram-positive bacteria). When egg wax was extracted with chloroform/methanol (2:1), the extract contained antibacterial activity, but the denuded eggs did not. When assayed against bacteria in liquid culture, the aqueous phase inhibited the growth of S. epidermidis. However, the activity against E. coli was lost during extraction. The antimicrobial component of the aqueous phase was heat stable (100°C for 10 min), resistant to proteinase K (15 min at 55°C) and to pronase (30 min at 37°C). The antibacterial activity in the aqueous phase increased the permeability of the cell membrane of susceptible bacterial cells within 30 min. However, lysis of the cells was detected by optical density measurements (OD600 nm) only after 1.5 h. The most evident cytological changes observed by transmission electron microscopy were a thickening of the cell wall and the appearance of numerous electron lucent areas within the cytoplasm of treated bacteria. Gené’s organ, the egg-waxing organ in ticks, grew enormously during the first 16 days post-engorgement, and gained antimicrobial activity by day 10 (when oviposition began). This suggests that Gené’s organ is the major source of the antibacterial substance in the egg wax. The vitellogenic hormone in A. hebraeum, 20-hydroxyecdysone, when injected into recently engorged females, did not stimulate growth of Gené’s organ or precocious secretion of antimicrobial activity.  相似文献   

14.
Baboons from some families have a higher concentration of plasma high density lipoproteins (HDL) on a chow diet and accumulate large HDL (HDL1) when challenged with a high cholesterol and high saturated fat (HCHF) diet. HDL1 from high HDL1 animals contained more (1.5-fold) cholesteryl ester than HDL (HDL2 + HDL3) from high or low HDL1 animals. HDL from high HDL1 baboons had lower triglyceride content than that from low HDL1 baboons. HDL3 or HDL labeled with [3H]cholesteryl linoleate was incubated with entire lipoprotein fraction (d less than 1.21 g/ml) or very low density lipoprotein + low density lipoprotein (VLDL + LDL) (d less than 1.045 g/ml) and with lipoprotein-deficient serum (LPDS), and the radioactive cholesteryl ester and mass floating at d 1.045 g/ml (VLDL + LDL) after the incubation was measured. The transfer of cholesteryl esters from either HDL or HDL3, prepared from plasma of high HDL1 animals fed chow or the HCHF diet, was slower than the transfer from either HDL or HDL3 of low HDL1 animals, regardless of the source of transfer activity or the ratio of LDL:HDL-protein used in the assay. Addition of HDL from high HDL1 baboons into an assay mixture of plasma components from low HDL1 baboons decreased the transfer of cholesteryl ester radioactivity and mass from HDL to VLDL and LDL. In addition to HDL, a fraction of intermediate density lipoprotein (IDL) and denser HDL were also effective in inhibiting the transfer. These observations suggest that accumulation of HDL1 in high HDL1 baboons fed an HCHF diet is associated with a slower transfer of cholesteryl esters from HDL to LDL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
1. The serum lipoprotein pattern of water buffalo was studied by means of electrophoresis and the lipoproteins were isolated by ultracentrifugation on the basis of their hydrated density. 2. High density lipoproteins (HDL) showed a higher level of cholesterol than did the other lipoproteins. Moreover, the level of phospholipids was higher in HDL than in very low density lipoproteins (VLDL). 3. The buffalo B100 apoprotein was similar to that of man and rat. Three apoproteins similar to human apo E, apo AI and AII were found in buffalo HDL, buffalo VLDL contained essentially apo B protein.  相似文献   

16.
The regulation of lipoprotein assembly and secretion at a molecular level is incompletely understood. To begin to identify the determinants of apoprotein synthesis and distribution among lipoprotein classes, we have examined the effects of chylomicron remnants which deliver triglyceride and cholesterol, and beta very low density lipoprotein (beta VLDL), which deliver primarily cholesterol, on apolipoprotein synthesis and secretion by the human hepatoma Hep G2. Hep G2 cells were incubated with remnants or beta VLDL for 24 h, the medium was changed and the cells then incubated with [35S]methionine. The secreted lipoproteins were separated by gradient ultracentrifugation and the radiolabeled apoproteins were isolated by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and counted. Remnants caused a 14-fold, and beta VLDL a 7-fold, increase in VLDL apoprotein (apo) secretion; the apoB/apoE ratio in this class was unchanged. Preincubation with either of the lipoproteins also stimulated low density lipoprotein apoB secretion. Preincubation with beta VLDL, but not with remnants, significantly increased apoE and apoA-I secreted in high density lipoprotein (HDL). In addition, the apoE/apoA-I ratio precipitated from the HDL of beta VLDL-treated cells by anti-apoE was 2.2-fold higher than that precipitated by anti-apoA-I. There was no difference in the ratios precipitated from control HDL. This was due to the secretion of a lipoprotein, subsequently isolated by immunoaffinity chromatography, that contained predominantly apoE. When Hep G2 cells were preincubated with oleic acid alone, total apoprotein secretion was not altered. However, cholesterol-rich liposomes stimulated secretion of newly synthesized apoE, but not apoB, while apoA-I secretion was variably affected. Cholesterol-poor liposomes had no effect. Thus, lipid supply is a determinant of apoprotein synthesis and secretion, and cholesterol may be of particular importance in initiating apoprotein synthesis.  相似文献   

17.
18.
A new two-step gradient technique has been used in the separation of the different classes of lipoproteins from the serum of cows, horses, dogs, pigs, rabbits and rats. Total lipoproteins were first isolated at d 1.21 then floated through a d 1.006 to d 1.21 gradient. Collection by mean of a gradient fractionator provided directly comparable lipoprotein profiles, allowed the determination of the exact density range of each lipoprotein class and the fraction by fraction analysis of composition. Cholesterol and apo AI recoveries were high. Horse, dog, rabbit and pig exhibited three distinct lipoprotein classes: VLDL, LDL and HDL. LDL were polydisperse in the pig (three components), light in the rabbit and scarce in the horse. In the Sprague-Dawley rat, LDL could not be individualized from HDL. In the bovine, LDL overlapped with a light form of HDL. Although AI was the main apoprotein in the HDL of all species, it ranged in proportion from 35% in the rat to 75% in the bovine. Apo AII was dimeric in the dog, as already known, but also in the horse, rabbit and bovine (MW:17,000) and in the pig MW:13,000). Apo AIV was present in the heavier HDL of all species. Rabbit, horse and pig HDL contained only one species of apo C which, in the pig was identified as apo CII.  相似文献   

19.
Reduction in VLDL, but not HDL, in plasma of rats deficient in choline   总被引:2,自引:0,他引:2  
We have analyzed plasma lipoprotein levels in young male rats fed a choline-deficient diet for 3 days. We confirmed previous studies that choline deficiency promotes 6.5-fold accumulation of triacyglycerol in the liver (23.9 +/- 6.0 versus 3.69 +/- 0.92 mumol/g liver) and reduction of triacylglycerol concentration in plasma by 60% (0.17 +/- 0.04 versus 0.46 +/- 0.10 mumol/mL plasma). Agarose gel electrophoresis showed that the plasma very low density lipoprotein (VLDL) levels were reduced in choline-deficient rats, but the concentration of plasma high density lipoproteins (HDL) was not affected. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis of fractionated plasma lipoproteins revealed that the concentrations of apolipoproteins (apo) BH, BL, and E in VLDL from choline-deficient rats were 37.1, 11.0, and 37.2% of normal levels, respectively. In contrast, the amount of apo A-I, the major one in HDL, was almost unchanged. Correspondingly, there were decreased lipid (mainly phosphatidylcholine and triacylglycerol) levels in VLDL from choline-deficient rats, but no change in the levels of phosphatidylcholine, cholesterol, and cholesterol ester in HDL. There were similar levels of apo B and E (components of VLDL) in homogenates of livers from normal and choline-deficient rats, as determined by immunoblotting. These results support the hypothesis that choline deficiency causes reduction of VLDL, but not HDL, levels in plasma as a consequence of impaired hepatic VLDL secretion.  相似文献   

20.
We have identified a new species of apolipoprotein (apo) B in an individual with heterozygous hypobetalipoproteinemia. The new apo B (apo B-32) is the result of a single point mutation (1450 Gln----Stop) in the apo B gene that prevents full length translation. Apo B-32 is predicted to contain the 1449 amino-terminal amino acids of apo B-100 and is associated with a markedly decreased low density lipoprotein (LDL) cholesterol level. The density distribution of apo B-32 in the plasma lipoproteins makes it unique amongst other truncated apo B species. Normally, apo B-100 is found in both very low density lipoprotein (VLDL) and LDL particles. However, the majority of the apo B-32 protein was found in the high density lipoprotein (HDL) and lipoprotein-deplete (d greater than 1.21 g/ml) fractions, suggesting that it was mainly assembled into abnormally dense lipoprotein particles. A small amount of apo B-32 was also found in the LDL, making it the shortest known apo B variant capable of forming particles in this density range. Apo B-32 was undetected in VLDL. The apo B-32 mutation further defines the minimum length of the apo B protein that is required for the assembly of LDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号