首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Věchet  B. 《Folia microbiologica》1968,13(5):379-390
The mutational synergism of caffeine and acriflavine was studied in five types ofEscherichia coli mutants induced by u. v.-radiation. The following types of mutations were compared: streptomycinrresistance (strain B/r), streptomycin-independence (strain Sd-4), and reversions to prototrophy (strains WP-14 pro, WP-2 try, and WP-2 try hcr). In all hcr+ strains tested the presence of caffeine or acriflavine in a post-irradiation plate medium slightly decreases the survival of u.v.-irradiated cells and increases considerably the frequency of induced mutations. The mutational synergism of caffeine and acriflavine in the str-r and str-i mutants is observed only within the range of low doses. The abovementioned dose-dependence of the synergistic effect is discussed from the point of view of qualitative difference between the premutational damage caused by low and high doses. The post-irradiation treatment by caffeine slightly increases the frequency of induced prototrophs also in the WP-2 hcr strain. This finding is explained by the inhibition of the residual HCR-activity of the strain. The post-irradiation mutational synergism of acriflavine was not found in the WP-2 hcr strain.  相似文献   

2.
In order to obtain an industrial strain with higher chitosanase yield, the wild strain Bacillus sp. S65 cells were mutated by a novel mutagen, nitrogen ion beam, with energy of 15 keV and dose ranging from 2.6 × 1014 to 5.2 × 1015 ions/cm2. One mutant, s65F5 with high yield of chitosanase was isolated. Results showed that the production of chitosanase of s65F5 was dramatically increased from 4.1 U/ml in s65 to 25 U/ml by ion beam implantation, while the fermentation time was shortened from 72 to 56 h, both of which greatly increased efficiency and reduced the cost of industrial production. Besides, the mutagenic effects of low-energy ion beam on survival rate showed characteristic down–up–down pattern, which was different from the traditional mutagens such as UV and γ-ray and the possible mutation mechanism was discussed.  相似文献   

3.
Summary UV irradiation of transforming DNA from Haemophilus influenzae, carrying a streptomycin resistance marker (Sr), results in decreased transforming activity. At high DNA concentration the marker survival is lower than it is at low concentration. The transition from high to low survival occurs at concentrations ranging from 2.5×10-3 to 2.5×10-2 g/ml; in this range the probability that transformed cells take up DNA fragments in addition to the marked one increases rapidly. A similar effect of DNA concentration on the percentage of transformants is observed for a mixture of unirradiated and irradiated DNA, where virtually all of the transformants originate from the unirradiated component. This eliminates the possible explanation that the concentration dependence of UV survival of a marker reflects increasing competition for a cellular repair system.It is concluded that the lower marker survival obtained at high DNA concentration involves lethality due to UV lesions present in the additional irradiated DNA taken up by the cell. Thus the steeper marker survival curve is due to the increasing UV dose which the additional DNa necessarily receives when a marker survival curve is being established. Intergration of UV lesions rendering a chromosomal DNA strand inviable is suggested by a slight delay in cell multiplication after uptake of irradiated and — to a lesser extent — unirradiated DNA. Acriflavine at a concentration of 0.5g/ml enhances the effect of DNA concentration on marker survival. Similarly the number of transformants obtained with unirradiated DNA in the presence of acriflavine is more strongly decreased at high than at low DNA concentration. It is suggested that each event of DNA integration involves a small change for lethality, which is enhanced if the DNA carries UV lesions or if acriflavine is present.Dedicated to Professor H. Nachtscheim on the occasion of his 80th birthday.  相似文献   

4.
Spores of Bacillus subtilis were exposed to a series of stratosphere simulations. In total, five distinct treatments measured the effect of reduced pressure, low temperature, high desiccation, and intense ultraviolet (UV) irradiation on stratosphere-isolated and ground-isolated B. subtilis strains. Environmental conditions were based on springtime data from a mid-latitude region of the lower stratosphere (20 km). Experimentally, each treatment consisted of the following independent or combined conditions: −70°C, 56 mb, 10–12% relative humidity and 0.00421, 5.11, and 54.64 W/m2 of UVC (200–280 nm), UVB (280–315 nm), UVA (315–400 nm), respectively. Bacteria were deposited on metal coupon surfaces in monolayers of ~1 × 106 spores and prepared with palagonite (particle size < 20 μm). After 6 h of exposure to the stratosphere environment, 99.9% of B. subtilis spores were killed due to UV irradiation. In contrast, temperature, desiccation, and pressure simulations without UV had no effect on spore viability up through 96 h. There were no differences in survival between the stratosphere-isolated versus ground-isolated B. subtilis strains. Inactivation of most bacteria in our simulation indicates that the stratosphere can be a critical barrier to long-distance microbial dispersal and that survival in the upper atmosphere may be constrained by UV irradiation.  相似文献   

5.
The clastogenic effect ofN-methyl-N′-nitro-N-nitrosoguanidine (MNNG) in Chinese hamster ovary (CHO) cells and its modulation by Na2SeO3 and caffeine were studied by metaphase analysis of chromosome aberrations (CA) as well as by measuring the formation and repair of single-strand (ss) DNA breaks employing hydroxylapatite chromatography. Treatment of CHO cells with MNNG (1.25 or 2.5 × 10-5M) for 3 h caused CA in 11 and 19% of metaphases scored, respectively. Pretreatment of cells with Na2SeO3 (1–5 μg/mL) or caffeine (0.2–2.0 mg/mL) for 2 h resulted in a 2–3.5-fold increase of CA frequency. Addition of both modulators during the mutagen exposure tended to cause a slight inhibition of clastogenic activity of MNNG (1.25 × 10−5 M) or had no effect on CA number when MNNG was used at a concentration of 2.5 × 10−5M. Posttreatment of CHO cells with Na2SeO3 for 20 h after MNNG was ineffective in influencing the number of metaphases with CA, whereas, at these conditions, caffeine enhanced up to 6-7-fold the clastogenic activity of MNNG. Addition of both modulators during the whole experiment, 2 h pretreatment included, resulted in a further significant increase of CA frequency up to the total pulverization of chromosomes in all metaphases scored. The coclastogenic effect of caffeine was greater in this case. The enhancement of chromosome-damaging activity of MNNG by selenite and caffeine was better expressed when this carcinogen was applied at the higher concentration used. An additive coclastogenic effect was observed in CHO cells treated simultaneously with Na2SeO3 and caffeine plus MNNG. In addition, the treatment of CHO cells with MNNG (5 × 10−6 M) caused a rapid increase of ssDNA breaks number reaching maximal values after 30–45 min. However, up to 50–60% of MNNG-induced ssDNA breaks were repaired during the first 60–150 min after the mutagen exposure. The 2 h pretreatment of CHO cells with Na2SeO3 (2 μg/mL) or the addition of this trace element after MNNG had no effect on formation and repair of MNNG-induced ssDNA breaks. The coclastogenic effect of Na2SeO3 in CHO cells treated with MNNG was not directly linked to the induction and disappearance of ssDNA breaks measured by hydroxylapatite chromatography.  相似文献   

6.
Certain chemical compounds increase mutation frequency of Escherichia coli B/r significantly when used in conjunction with nonlethal ultraviolet (UV) dosages. Studies were done to elucidate the mechanism of this enhancing mutational effect. Dark survival curves showed that 500 μg of caffeine per ml in the postirradiation medium markedly decreased survival to 60 ergs/mm2 of UV in strain B/r. Caffeine did not markedly decrease survival to UV in strain B/r WP-2 hcr. At least 90% of the mutations induced to streptomycin resistance by UV and 85% of those induced by UV with caffeine could be photoreversed. Experiments with thymine analogues suggested that thymine dimerization at the streptomycin locus was the primary premutational photoproduct induced by sublethal UV dosages. Caffeine did not interfere with the photoreversal of induced mutants, indicating that it probably does not bind to the photoreactivating enzyme or to a UV-induced lesion in the DNA. Addition of DNA or irradiated DNA with 500 μg of caffeine per ml resulted in no loss of the caffeine activity. The excision of UV-induced thymine-containing dimers from E. coli B/r T was investigated in the presence and absence of caffeine. Our results indicated that caffeine prevents excision of thymine dimers, presumably by binding to the excising enzyme. This binding results in an impairment of repair, which produces the increase in mutant numbers.  相似文献   

7.
We assessed the seasonal abundance and distribution of Vibrio species as well as some selected environmental parameters in the treated effluents of two wastewater treatment plants (WWTP), one each located in a suburban and urban community of Eastern Cape Province, South Africa. Vibrio population density ranged from 2.1×105 to 4.36×104 CFU/ml in the suburban community and from 2.80×105 to 1.80×105 CFU/ml in the urban community. Vibrio species associated with 180 μ, 60 μ, and 20 μ plankton sizes were observed at densities of 0–136×103 CFU/ml, 0–8.40×102 CFU/ml, and 0–6.80×102 CFU/ml, respectively at the suburban community’s WWTP. In the urban community, observed densities of culturable Vibrio were 0–2.80×102 CFU/ml (180 μ), 0–6.60×102 CFU/ml (60 μm), and 0–1.80× 103 CFU/ml (20 μm). The abundance of free-living Vibrio species ranged from 0 to 1.0×102 and 1.0×103 CFU/ml in the suburban and urban communities’ WWTPs, respectively. Molecular confirmation of the presumptive Vibrio isolates revealed the presence of V. fluvialis (41.38%), V. vulnificus (34.48%), and V. parahaemolyticus (24.14%) in the suburban community effluents. In the urban community molecular confirmation revealed that the same species were present at slightly different percentages, V. fluvialis (40%), V. vulnificus (36%), and V. parahaemolyticus (24%). There was no significant correlation between Vibrio abundance and season, either as free-living or plankton-associated entities, but Vibrio species abundance was positively correlated with temperature (r=0.565; p<0.01), salinity, and dissolved oxygen (p<0.05). Turbidity and pH showed significant seasonal variation (p<0.05) across the seasons in both locations. This study underscores the potential of WWTPs to be sources of Vibrio pathogens in the watershed of suburban and urban communities in South Africa.  相似文献   

8.
Summary The number of medical applications using autologous fibroblasts is increasing rapidly. We investigated thoroughly the procedure to isolate cells from skin using the enzymatic tissue dissociation procedure. Tissue digestion efficiency, cell viability, and yield were investigated in relation to size of tissue fragments, digestion volume to tissue ratio, digestion time, and importance of other protease activities present in Clostridium histolyticum collagenase (CHC) (neutral protease, clostripain, and trypsin). The results showed that digestion was optimal with small tissue fragments (2–3 mm3) and with volumes tissue ratios ≥2 ml/g tissue. For incubations ≤10 h, the digestion efficiency and cell isolation yields were significantly improved by increasing the collagenase, neutral protease, or clostripain activity, whereas trypsin activity had no effects. However, a too high proteolytic activity of one of the proteases present in CHC digestion solution or long exposure times interfered with cell viability and cell culture yields. The optimal range of CHC proteases activities per milliliter digestion solutions was determined for digestions ≤10 h (collagenase 2700–3900 Mandl U/ml, neutral protease 5100–10,000 caseinase U/ml, and clostripain 35–48 BAEE U/ml) and for longer digestions (>14 h) (collagenase 1350–3000 U/ml, neutral protease 2550–7700 U/ml, and clostripain 18–36 U/ml). Using these conditions, a maximum fibroblast expansion was achieved when isolated cells were seeded at 1×104 cells/cm2. These results did not only allow selection of optimal CHC batches able to digest dermal tissue with an high cell viability but also significantly increased the fibroblast yields, enabling us to produce autologous dermal tissue in a clinically acceptable time frame of 3 wk.  相似文献   

9.
Antioxidant activity of resveratrol in endotoxin-stimulated blood platelets   总被引:4,自引:0,他引:4  
Resveratrol (3,4′,5-trihydroxystilbene) is a natural molecule with antioxidant action. It is also considered to be a molecule with antiplatelet, anticancer and anti-inflammatory action. The effects of trans-resveratrol on the reactive oxygen species (ROS) generation and thiobarbituric acid-reactive substances (TBARS) in blood platelets induced by endotoxin (lipopolysaccharide, LPS) or thrombin were studiedin vitro. The production of superoxide radicals (O2 .–) and other reactive oxygen species (H2O2, singlet oxygen, and organic radicals) in the presence of resveratrol was measured by a chemiluminescence method in resting blood platelets and platelets stimulated by LPS (0.3 μg/108 platelets) or thrombin (2.5 U/108 platelets). We have shown that resveratrol (6.25–100 μg/ml) inhibits chemiluminescence and generation of O2 .– in blood platelets. It has an inhibitory effect on the production of ROS and TBARS in platelets caused by LPS or thrombin. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The effect of caffeine on nitrosoguanidine-induced mutagenesis ofSalmonella typhimurium & nd its P22 and L phages was studied. The detected mutations included phage “clear” mutations, reversions of phage “amber” mutation, and prototrophic reversions of thehis auxotroph ofSalmonella typhimurium. Neither therecA mutation of the host nor theerf mutation of the phage genome were found to affect the nitrosoguanidine-induced mutagenesis of the phage during vegetative growth. Beginning with a concentration of 0.2 mg/ml, caffeine decreased the frequency of mutants by 30–60%, attaining a maximum effect at 1.5 mg/ml and retaining this effect even at higher concentrations. A similar antimutagenic effeot was observed with the mutagenesis of the host cells. The nitrosoguanidine-induced mutagenesis does not seem to be related to the function of therecA cell gene or theerf phage gene. The mechanism of mutagenesis by nitrosoguanidine probably has two components, one of them caffeine sensitive, the other caffeine-resistant.  相似文献   

11.
Summary A preliminary comparative evaluation of the two commonly encountered free-living nitrogen fixers in the aquatic system, Azotobacter and Azospirillum was carried out in the laboratory for use as biofertilizers in aquaculture considering the importance of eco-friendly and econo-friendly productivity optimization of freshwater aquaculture. The ammonium–nitrogen levels in water media in Azotobacter treatment varied in the range 2.59–34.34 μg-N/l and was found to be significantly different from that of Azospirillum treatment (p < 0.05). The viable population of the respective nitrogen fixers as colony forming units (c.f.u.) in water media in charcoal-immobilized Azotobacter treatment ranged from 0.39 to 2.48 × 103 c.f.u./ml and were significantly higher (p < 0.05) than the counterparts. The nitrogenase activity in the same treatment similarly remained higher, at 8.3–12.15 nmol of ethylene/ml water/h followed by the alginate-immobilized Azotobacter treatment which was at 7.2–11.40 nmol of ethylene/ml water/h compared to 5.8–7.8 and 4.65–4.83 in the respective Azospirillum-treated counterparts. Hence, better performance of Azotobacter sp. over Azospirillum sp., and of charcoal immobilization over alginate immobilization were observed.  相似文献   

12.
Growth of Streptococcus zooepidemicus in a 10 l bioreactor with 50 g sucrose/l and 10 g casein hydrolysate/l gave 5–6 g hyaluronic acid/l after 24–28 h. Purification of hyaluronic acid gave a recovery of 65% with the final material having an Mr of ∼4 × 106 Da with less than 0.1% protein.  相似文献   

13.
The drugs griseofulvin (10 μg/ml), nalidixic acid (0.05 μg/ml), quinine dihydrochloride (50 μg/ml), quinine ethylcarbonate (50 μg/ml), quinine urea hydrochloride (50 μg/ml), quinine lactate (50 μg/ml), and pamaquine (50 μg/ml) were chosen for laboratory studies. The minimal inhibitory concentration of the drug was used for determining the range of drug concentration needed to produce “mutational synergism” with ultraviolet radiation. Forward mutation from streptomycin sensitivity to resistance was used as a marker for mutagenicity. No stimulatory or inhibitory effects were noted on viable counts and mutation frequency, when the drugs were added (20–60 μg/ml) to the growth medium of unirradiatedEscherichia coli HCR+, HCR, and irradiated HCR strains. These drugs increased mutation frequency and lethality of irradiated HCR+ bacteria. Incorporation of adenine (6 μm) into the minimal expression medium reverses the mutagenic effect of chloroquine. Chloroquine (50 μg/ml) did not interfere with the photoactivation of irradiated HCR+ cells. Our findings suggest that these chemicals selectively interfere with excision-repair.  相似文献   

14.
The biological effect of Se and Cu2+ on Escherichia coli (E. coli) growth was studied by using a 3114/3236 TAM Air Isothermal Calorimeter, ampoule method, at 37°C. From the thermogenesis curves, the thermokinetic equations were established under different conditions. The kinetics showed that a low concentration of Se (1–10 μg/mL) promoted the growth of E. coli, and a high concentration of Se (>10 μg/mL) inhibited the growth, but the Cu2+ was always inhibiting the growth of E. coli. Moreover, there was an antagonistic or positive synergistic effect of Se and Cu2+ on E. coli in the different culture medium when Se was 1–10 μg/ml and Cu2+ was 1–20 μg/ml. There was a negative synergistic effect of Se and Cu2+ on E. coli when Se was higher than 10 μg/ml and Cu2+ was higher than 20 μg/ml. The antagonistic or synergistic effect between Se and Cu2+ on E. coli was related to the formation of Cu–Se complexes under the different experimental conditions chosen.  相似文献   

15.
Late-exponential-phase cells of Escherichia coli O157:H- strain E32511/HSC became nonculturable in sterilized distilled water microcosms at 4 °C. Plate counts declined from 3 × 106 to less than 0.1 CFU/ml in about 21 days. However, when samples of microcosms at 21 days were inoculated onto an agar medium amended with catalase or nonenzyme peroxide-degrading compounds such as sodium pyruvate or α-ketoglutaric acid, plate counts increased to 104–105 CFU/ml within 48 h. The proposed mode of action of the catalase or pyruvate is via the degradation of the metabolic by-product H2O2, rather than through supplementation of a required nutrient in the recovery of nonculturable cells. Our studies were based on the assumption that E32511/HSC strain responds to starvation and a low temperature by entering a nonculturable state and that the correction of oxidative stress upon the inoculation of bacteria on agar plates promotes recovery of nonculturable cells. Received: 15 January 1999 / Accepted: 8 April 1999  相似文献   

16.
A bacterium identified as Pseudomonas fluorescence was isolated from Taxus baccata rhizosphere. Ethyl acetate extract from its culture filtrate yielded an active antimicrobial compound that was purified by TLC. The active metabolites were resolved by column chromatography on silica gel (60–120 mesh). The compound was further characterized on the basis of spectral data (UV, IR and 1HNMR), which indicated the presence of an aromatic ring and phenolic functionality. The compound showed significant antimicrobial activity against two-gram positive bacteria (B. subtilis and S. aureus), four-gram negative bacteria (E. coli, K. pneumoniae, S. flexneri and P. aeruginosa), and one pathogenic fungus (Candida albicans). The minimum inhibitory concentration (MIC) of the compound ranged between 75μg to 250 μg/ml.  相似文献   

17.
Protoplasts were isolated from embryogenic suspension cultures derived from avocado (Persea americana Mill.) zygotic embryos and nucellus in an enzyme digestion solution consisting of 1% cellulase Onozuka RS, 1% Macerase R10, 0.2% Pectolyase Y-23, 0.7 M mannitol. 24.5 mM CaCl2, 0.92 mM NaH2PO4 and 6.25 2-[N-morpholino]ethanesulfonic acid (1.5 ml) mixed with 0.7 M MS8P (2.5 ml). MS-8P medium consisted of Murashige and Skoog salts without NH4NO3, 1 mg l–1 thiamine HCl, 100 mg l–1 myo-inositol, 3.1 g l–1 glutamine and 8P organic addenda. Medium osmolarity was adjusted with 0.15 M sucrose and 0–0.55 M mannitol. Protoplast yields of 3.5×106 protoplasts g–1 were obtained. Growth and development of the protoplasts were significantly affected by osmolarity, nitrogen source, plating density and culture medium dilution. Under optimum conditions, proembryos developed directly from embryogenic protoplasts and subsequently into somatic embryos. Optimum conditions for somatic embryo development included the culture of protoplasts at a density of 0.8–1.6×105 ml–1 in 0.4 M MS8P for 2–3 weeks, followed by subculture in 0.15 M MS8P at a diluted density of 20–40× for 1 month in darkness to obtain somatic embryos. Mature somatic embryos were recovered on semisolid medium; however, a low frequency of plantlet recovery (≤1%) from protoplast-derived somatic embryos was observed. Received: 9 February 1998 / Revision received: 4 May 1998 / Accepted: 15 May 1998  相似文献   

18.
In order to explore compounds naturallly inhibitory to shrimp pathogenic vibrios, a culture filtrate of Pseudomonas sp. W3 at a pH of 2 was extracted with ethyl acetate (EtOAc) to produce 82.15 mg/l of a yellow–brown extract (EtOAc-W3) that had MIC values of 225-450 μg/ml against the growth of 18 shrimp pathogenic Vibrio harveyi strains. The MIC of EtOAc-W3 against the most pathogenic strain PSU 2015 was 450 μg/ml and this strain had the lowest LD50 (50% lethal dose) to pacific white shrimp (Litopenaeus vannamei, PL 21). At this MIC value, EtOAc-W3 in artificial sea water (ASW) killed strain PSU 2015; however in natural sea water, only a partial growth inhibition was observed. The toxicity to pacific white shrimp and antivibrio activity of the EtOAc-W3 were investigated by conducting an experiment with 4 sets; native control (commercial ASW), EtOAc-W3 control (MIC/10, 45 μg/ml), challenge (inoculation 6.0 × 106 c.f.u./ml PSU 2015) and treatment (6.0 × 106 c.f.u./ml PSU 2015 + 45 μg/ml EtOAc-W3). The same experiment was repeated by increasing the dose of EtOAc-W3 to 90 μg/ml (MIC/5). Both concentrations of EtOAc-W3 tested had no toxicity to postlarval shrimps. A significant decrease in shrimp mortality was observed over a 72 h period as approximately 80% of the shrimps died in each challenge set but only 63 and 23% died in the presence of 45 and 90 μg/ml EtOAc-W3. The major component of EtOAc-W3 was supposed to be 2-heptyl-4-quinolone (HHQ) by FAB-MS and 1H-NMR analyses of the purified fraction.  相似文献   

19.
The effect of caffeine (0.25–1.5 mM) on UV-irradiated (5 and 10 J/m2) primary cultures of mouse epidermal cells (EPD) and an in vitro transformed cell line (PDV) was studied at the cellular and molecular levels. A synergistic reduction in cell survival induced by caffeine with UV-irradiation was found in the PDV cells at 10 J/m2 but not at 5 J/m2. When conversion of low molecular weight newly-synthesized DNA to high molecular weight DNA was studied in both cell types, caffeine at 1.5 mM had no effect on this conversion in unirradiated cultures. At 5 J/m2, caffeine had a transitory inhibitory effect on this conversion. However, at 10 J/m2 caffeine had a strong permanent inhibitory effect on this conversion at doses higher than 0.5 mM in PDV cells and higher than 0.25 mM in EPD cells. This apparent inhibition of elongation by caffeine in irradiated cells could not be accounted for by an effect on the rate of DNA synthesis. In PDV cells there was a direct correlation in terms of effective caffeine dose level between synergistic reduction in cell survival after UV and the effect on DNA elongation. Irradiated EPD cells were more sensitive to the inhibitory effect of caffeine on DNA elongation.  相似文献   

20.
The insecticidal effect of Mamestra brassicae nucleopolyhedrovirus (MabrNPV) and the enhancing activity of proteins derived from occlusion bodies (OBs) of Xestia c-nigrum granulovirus (GVPs) on the infectivity of MabrNPV were evaluated in a bioassay with second-instar larvae of Autographa nigrisigna (Walker) fed virus-applied cabbage plants. The lethal concentrations of MabrNPV achieving 50 and 95% mortality for A. nigrisigna were estimated to be 1.4 × 105 and 3.1 × 106 OBs/ml, respectively. When larvae were fed cabbage plants treated with MabrNPV and various concentrations of GVPs, the requisite concentration of GVPs achieving 95% mortality of A. nigrisigna was estimated to be 26.2–138.8 μg/ml in combination with 104 OBs/ml MabrNPV and 8.46–24.09 μg/ml with 105 OBs/ml MabrNPV. Increases in the concentration of MabrNPV or GVPs caused larval death at younger instars. A. nigrisigna has lower susceptibility to MabrNPV than M. brassicae and Helicoverpa armigera reported in Mukawa and Goto (J Econ Entomol 103:257–264, 2010). We estimated that the requisite concentration of MabrNPV for the control of A. nigrisigna was 105 OBs/ml, which is a tenfold higher concentration than that for M. brassicae and H. armigera, with the increase achieved by adding 10 μg/ml GVPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号