首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is commonly accepted that the photosystem II subunit S protein, PsbS, is required for the dissipation of excess light energy in a process termed ‘non‐photochemical quenching’ (NPQ). This process prevents photo‐oxidative damage of photosystem II (PSII) thus avoiding photoinhibition which can decrease plant fitness and productivity. In this study Arabidopsis plants lacking PsbS (the npq4 mutant) were found to possess a competent mechanism of excess energy dissipation that protects against photoinhibitory damage. The process works on a slower timescale, taking about 1 h to reach the same level of NPQ achieved in the wild type in just a few minutes. The NPQ in npq4 was found to display very similar characteristics to the fast NPQ in the wild type. Firstly, it prevented the irreversible light‐induced closure of PSII reaction centres. Secondly, it was uncoupler‐sensitive, and thus triggered by the ΔpH across the thylakoid membrane. Thirdly, it was accompanied by significant quenching of the fluorescence under conditions when all PSII reaction centres were open (Fo state). Fourthly, it was accompanied by NPQ‐related absorption changes (ΔA535). Finally, it was modulated by the presence of the xanthophyll cycle carotenoid zeaxanthin. The existence of a mechanism of photoprotective energy dissipation in plants lacking PsbS suggests that this protein plays the role of a kinetic modulator of the energy dissipation process in the PSII light‐harvesting antenna, allowing plants to rapidly track fluctuations of light intensity in the environment, and is not the primary cause of NPQ or a direct carrier of the pigment acting as the non‐photochemical quencher.  相似文献   

2.
Johnson MP  Zia A  Ruban AV 《Planta》2012,235(1):193-204
The xanthophylls of the light-harvesting complexes of photosystem II (LHCII), zeaxanthin, and lutein are thought to be essential for non-photochemical quenching (NPQ). NPQ is a process of photoprotective energy dissipation in photosystem II (PSII). The major rapidly reversible component of NPQ, qE, is activated by the transmembrane proton gradient, and involves the quenching of antenna chlorophyll excited states by the xanthophylls lutein and zeaxanthin. Using diaminodurene (DAD), a mediator of cyclic electron flow around photosystem I, to enhance ΔpH we demonstrate that qE can still be formed in the absence of lutein and light-induced formation of zeaxanthin in chloroplasts derived from the normally qE-deficient lut2npq1 mutant of Arabidopsis. The qE induced by high ΔpH in lut2npq1 chloroplasts quenched the level of fluorescence when all PSII reaction centers were in the open state (F o state), protected PSII reaction centers from photoinhibition, was sensitive to the uncoupler nigericin, and was accompanied by absorption changes in the 410–565 nm region. Titrations show the ΔpH threshold for activation of qE in lut2npq1 chloroplasts lies outside the normal physiological range and is highly cooperative. Comparison of quenching in isolated trimeric (LHCII) and monomeric (CP26) light-harvesting complexes from lut2npq1 plants revealed a similarly shifted pH dependency compared with wild-type LHCII. The implications for the roles of lutein and zeaxanthin as direct quenchers of excitation energy are discussed. Furthermore, we argue that the control over the proton-antenna association constant, pK, occurs via influence of xanthophyll structure on the interconnected phenomena of light-harvesting antenna reorganization/aggregation and hydrophobicity.  相似文献   

3.
To prevent photo-oxidative damage to the photosynthetic membrane in strong light, plants dissipate excess absorbed light energy as heat in a mechanism known as non-photochemical quenching (NPQ). NPQ is triggered by the trans-membrane proton gradient (ΔpH), which causes the protonation of the photosystem II light-harvesting antenna (LHCII) and the PsbS protein, as well as the de-epoxidation of the xanthophyll violaxanthin to zeaxanthin. The combination of these factors brings about formation of dissipative pigment interactions that quench the excess energy. The formation of NPQ is associated with certain absorption changes that have been suggested to reflect a conformational change in LHCII brought about by its protonation. The light-minus-dark recovery absorption difference spectrum is characterized by a series of positive and negative bands, the best known of which is ΔA(535). Light-minus-dark recovery resonance Raman difference spectra performed at the wavelength of the absorption change of interest allows identification of the pigment responsible from its unique vibrational signature. Using this technique, the origin of ΔA(535) was previously shown to be a subpopulation of red-shifted zeaxanthin molecules. In the absence of zeaxanthin (and antheraxanthin), a proportion of NPQ remains, and the ΔA(535) change is blue-shifted to 525 nm (ΔA(525)). Using resonance Raman spectroscopy, it is shown that the ΔA(525) absorption change in Arabidopsis leaves lacking zeaxanthin belongs to a red-shifted subpopulation of violaxanthin molecules formed during NPQ. The presence of the same ΔA(535) and ΔA(525) Raman signatures in vitro in aggregated LHCII, containing zeaxanthin and violaxanthin, respectively, leads to a new proposal for the origin of the xanthophyll red shifts associated with NPQ.  相似文献   

4.
Variations in the light environment require higher plants to regulate the light harvesting process. Under high light a mechanism known as non-photochemical quenching (NPQ) is triggered to dissipate excess absorbed light energy within the photosystem II (PSII) antenna as heat, preventing photodamage to the reaction center. The major component of NPQ, known as qE, is rapidly reversible in the dark and dependent upon the transmembrane proton gradient (ΔpH), formed as a result of photosynthetic electron transport. Using diaminodurene and phenazine metasulfate, mediators of cyclic electron flow around photosystem I, to enhance ΔpH, it is demonstrated that rapidly reversible qE-type quenching can be observed in intact chloroplasts from Arabidopsis plants lacking the PsbS protein, previously believed to be indispensible for the process. The qE in chloroplasts lacking PsbS significantly quenched the level of fluorescence when all PSII reaction centers were in the open state (F(o) state), protected PSII reaction centers from photoinhibition, was modulated by zeaxanthin and was accompanied by the qE-typical absorption spectral changes, known as ΔA(535). Titrations of the ΔpH dependence of qE in the absence of PsbS reveal that this protein affects the cooperativity and sensitivity of the photoprotective process to protons. The roles of PsbS and zeaxanthin are discussed in light of their involvement in the control of the proton-antenna association constant, pK, via regulation of the interconnected phenomena of PSII antenna reorganization/aggregation and hydrophobicity.  相似文献   

5.
Kalituho L  Grasses T  Graf M  Rech J  Jahns P 《Planta》2006,223(3):532-541
Arabidopsis thaliana plants grown from ethyl methane sulfonate-treated seeds were screened for so-called que mutants, which are affected in non-photochemical energy quenching. Based on video imaging of chlorophyll fluorescence an energy dissipation mutant, que1, was identified, isolated and characterized. Similar to the npq mutants, the que1 mutant showed a drastically reduced capacity for pH-dependent energy dissipation, qE, but without affecting the Δ pH-dependent conformational changes at 535 nm (ΔA 535), which have been supposed to be obligatorily correlated with qE and to reflect pH-regulated binding of zeaxanthin to the PsbS protein. Western blot and DNA sequence analysis revealed that neither a reduced expression of the PsbS protein nor a mutation in the PsbS gene was responsible for the missing qE in que1. Measurements of 9-aminoacridine fluorescence quenching showed that the acidification of the thylakoid lumen was also not affected in the mutant. Furthermore, que1 was able to convert violaxanthin to zeaxanthin. However, unusual characteristics of zeaxanthin formation in the mutant pointed at an altered availability of violaxanthin for de-epoxidation. This was further accompanied by a decrease of the photochemical quenching of chlorophyll fluorescence (qP), an increase of the portion of oxidized P700 and a reduction of the electron transport rate. These characteristics indicate changes in the organization of the thylakoid membrane that affect linear electron transport (but not lumen acidification) and the formation of energy dissipation in photosystem II. Preliminary genetic analysis revealed that the phenotype of que1 is related to two different mutations, mapped to the lower arms of chromosomes 1 and 4.  相似文献   

6.
When the absorption of light energy exceeds the capacity for its utilization in photosynthesis, regulation of light harvesting is critical in order for photosynthetic organisms to minimize photo-oxidative damage. Thermal dissipation of excess absorbed light energy, measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence, is induced rapidly in response to excess light conditions, and it is known that xanthophylls such as zeaxanthin and lutein, the transthylakoid pH gradient, and the PsbS protein are involved in this mechanism. Although mutants affecting NPQ and the biosynthesis of zeaxanthin and lutein were originally isolated and characterized at the physiological level in the unicellular green alga Chlamydomonas reinhardtii, the molecular basis of several of these mutants, such as npq1 and lor1, has not been determined previously. The recent sequencing of the C. reinhardtii nuclear genome has facilitated the search for C. reinhardtii homologs of plant genes involved in xanthophyll biosynthesis and regulation of light harvesting. Here we report the identification of C. reinhardtii genes encoding PsbS and lycopene ɛ-cyclase, and we show that the lor1 mutation, which affects lutein synthesis, is located within the lycopene ɛ-cyclase gene. In contrast, no homolog of the plant violaxanthin de-epoxidase (VDE) gene was found. Molecular markers were used to map the npq1 mutation, which affects VDE activity, as a first step toward the map-based cloning of the NPQ1 gene.  相似文献   

7.
Higher plants have an array of photoprotection mechanisms alleviating the harmful effects of light. Non‐photochemical quenching (NPQ) is one of the photoprotective mechanisms, which dissipates the excess of light energy absorbed in the light‐harvesting complexes (LHCs) into thermal energy. The photosystem II subunit S (PsbS), a member of the LHC family thought to be present exclusively in higher plants, is supposed to activate NPQ through interactions with antenna proteins. However, the roles of PsbS in bamboo remain unclear. Here, two genes of bamboo (Phyllostachys edulis), PePsbS1 and PePsbS2, are investigated and functionally analyzed. PePsbS1 and PePsbS2 have a similar gene structure with three introns separated by two exons, which encode 269 and 268 amino acid residues, respectively. Tissue‐specific analysis showed that PePsbS1 and PePsbS2 are highly expressed in leaf blade. Besides, they are both upregulated in the leaf blade when plantlets are submitted to an increased and prolonged light intensity, suggesting that they are light‐induced. Western blot analysis indicated that the accumulation level of total PePsbSs is consistent with what obtained by quantitative real‐time polymerase chain reaction for PePsbS1 and PePsbS2. Transgenic Arabidopsis plants overexpressing PePsbS1 and PePsbS2 both displayed an enhanced photoprotection. Moreover, the expression of PePsbS1 and PePsbS2 could both rescue the NPQ of Arabidopsis npq4 mutant, indicating that the PsbSs are functionally conserved between monocots and dicots. These results indicated that both PePsbS1 and PePsbS2 could circumvent photoinhibition and enhance photoprotection, which are key factors for bamboo's adaptation to different light environment.  相似文献   

8.
Acclimation to changing environments, such as increases in light intensity, is necessary, especially for the survival of sedentary organisms like plants. To learn more about the importance of ascorbate in the acclimation of plants to high light (HL), vtc2, an ascorbate-deficient mutant of Arabidopsis, and the double mutants vtc2npq4 and vtc2npq1 were tested for growth in low light and HL and compared with the wild type. The vtc2 mutant has only 10% to 30% of wild-type levels of ascorbate, vtc2npq4 has lower ascorbate levels and lacks non-photochemical quenching of chlorophyll fluorescence (NPQ) because of the absence of the photosystem II protein PsbS, and vtc2npq1 is NPQ deficient and also lacks zeaxanthin in HL but has PsbS. All three genotypes were able to grow in HL and had wild-type levels of Lhcb1, cytochrome f, PsaF, and 2-cysteine peroxiredoxin. However, the mutants had lower electron transport and oxygen evolution rates and lower quantum efficiency of PSII compared with the wild type, implying that they experienced chronic photooxidative stress. The mutants lacking NPQ in addition to ascorbate were only slightly more affected than vtc2. All three mutants had higher glutathione levels than the wild type in HL, suggesting a possible compensation for the lower ascorbate content. These results demonstrate the importance of ascorbate for the long-term acclimation of plants to HL.  相似文献   

9.
The proton motive force (pmf) across the thylakoid membrane couples photosynthetic electron transport and ATP synthesis. In recent years, the electrochromic carotenoid and chlorophyll absorption band shift (ECS), peaking ∼515 nm, has become a widely used probe to measure pmf in leaves. However, the use of this technique to calculate the parsing of the pmf between the proton gradient (ΔpH) and electric potential (Δψ) components remains controversial. Interpretation of the ECS signal is complicated by overlapping absorption changes associated with violaxanthin de-epoxidation to zeaxanthin (ΔA505) and energy-dependent nonphotochemical quenching (qE; ΔA535). In this study, we used Arabidopsis (Arabidopsis thaliana) plants with altered xanthophyll cycle activity and photosystem II subunit S (PsbS) content to disentangle these overlapping contributions. In plants where overlap among ΔA505, ΔA535, and ECS is diminished, such as npq4 (lacking ΔA535) and npq1npq4 (also lacking ΔA505), the parsing method implies the Δψ contribution is virtually absent and pmf is solely composed of ΔpH. Conversely, in plants where ΔA535 and ECS overlap is enhanced, such as L17 (a PsbS overexpressor) and npq1 (where ΔA535 is blue-shifted to 525 nm) the parsing method implies a dominant contribution of Δψ to the total pmf. These results demonstrate the vast majority of the pmf attributed by the ECS parsing method to Δψ is caused by ΔA505 and ΔA535 overlap, confirming pmf is dominated by ΔpH following the first 60 s of continuous illumination under both low and high light conditions. Further implications of these findings for the regulation of photosynthesis are discussed.

Electrochromic shift absorption kinetics show the steady-state transthylakoid proton motive force in plants is dominated by the proton concentration gradient under both low and high light conditions.  相似文献   

10.
Non-photochemical quenching (NPQ) of chlorophyll fluorescence is the process by which excess light energy is harmlessly dissipated within the photosynthetic membrane. The fastest component of NPQ, known as energy-dependent quenching (qE), occurs within minutes, but the site and mechanism of qE remain of great debate. Here, the chlorophyll fluorescence of Arabidopsis thaliana wild type (WT) plants was compared to mutants lacking all minor antenna complexes (NoM). Upon illumination, NoM exhibits altered chlorophyll fluorescence quenching induction (i.e. from the dark-adapted state) characterised by three different stages: (i) a fast quenching component, (ii) transient fluorescence recovery and (iii) a second quenching component. The initial fast quenching component originates in light harvesting complex II (LHCII) trimers and is dependent upon PsbS and the formation of a proton gradient across the thylakoid membrane (ΔpH). Transient fluorescence recovery is likely to occur in both WT and NoM plants, but it cannot be overcome in NoM due to impaired ΔpH formation and a reduced zeaxanthin synthesis rate. Moreover, an enhanced fluorescence emission peak at ~679?nm in NoM plants indicates detachment of LHCII trimers from the bulk antenna system, which could also contribute to the transient fluorescence recovery. Finally, the second quenching component is triggered by both ΔpH and PsbS and enhanced by zeaxanthin synthesis. This study indicates that minor antenna complexes are not essential for qE, but reveals their importance in electron stransport, ΔpH formation and zeaxanthin synthesis.  相似文献   

11.
Havaux M  Dall'osto L  Bassi R 《Plant physiology》2007,145(4):1506-1520
The ch1 mutant of Arabidopsis (Arabidopsis thaliana) lacks chlorophyll (Chl) b. Leaves of this mutant are devoid of photosystem II (PSII) Chl-protein antenna complexes and have a very low capacity of nonphotochemical quenching (NPQ) of Chl fluorescence. Lhcb5 was the only PSII antenna protein that accumulated to a significant level in ch1 mutant leaves, but the apoprotein did not assemble in vivo with Chls to form a functional antenna. The abundance of Lhca proteins was also reduced to approximately 20% of the wild-type level. ch1 was crossed with various xanthophyll mutants to analyze the antioxidant activity of carotenoids unbound to PSII antenna. Suppression of zeaxanthin by crossing ch1 with npq1 resulted in oxidative stress in high light, while removing other xanthophylls or the PSII protein PsbS had no such effect. The tocopherol-deficient ch1 vte1 double mutant was as sensitive to high light as ch1 npq1, and the triple mutant ch1 npq1 vte1 exhibited an extreme sensitivity to photooxidative stress, indicating that zeaxanthin and tocopherols have cumulative effects. Conversely, constitutive accumulation of zeaxanthin in the ch1 npq2 double mutant led to an increased phototolerance relative to ch1. Comparison of ch1 npq2 with another zeaxanthin-accumulating mutant (ch1 lut2) that lacks lutein suggests that protection of polyunsaturated lipids by zeaxanthin is enhanced when lutein is also present. During photooxidative stress, alpha-tocopherol noticeably decreased in ch1 npq1 and increased in ch1 npq2 relative to ch1, suggesting protection of vitamin E by high zeaxanthin levels. Our results indicate that the antioxidant activity of zeaxanthin, distinct from NPQ, can occur in the absence of PSII light-harvesting complexes. The capacity of zeaxanthin to protect thylakoid membrane lipids is comparable to that of vitamin E but noticeably higher than that of all other xanthophylls of Arabidopsis leaves.  相似文献   

12.
Plants dissipate excess excitation energy as heat by non‐photochemical quenching (NPQ). NPQ has been thought to resemble in vitro aggregation quenching of the major antenna complex, light harvesting complex of photosystem II (LHC‐II). Both processes are widely believed to involve a conformational change that creates a quenching centre of two neighbouring pigments within the complex. Using recombinant LHC‐II lacking the pigments implicated in quenching, we show that they have no particular role. Single crystals of LHC‐II emit strong, orientation‐dependent fluorescence with an emission maximum at 680 nm. The average lifetime of the main 680 nm crystal emission at 100 K is 1.31 ns, but only 0.39 ns for LHC‐II aggregates under identical conditions. The strong emission and comparatively long fluorescence lifetimes of single LHC‐II crystals indicate that the complex is unquenched, and that therefore the crystal structure shows the active, energy‐transmitting state of LHC‐II. We conclude that quenching of excitation energy in the light‐harvesting antenna is due to the molecular interaction with external pigments in vitro or other pigment–protein complexes such as PsbS in vivo, and does not require a conformational change within the complex.  相似文献   

13.
14.
The regulation of light harvesting in higher plant photosynthesis, defined as stress-dependent modulation of the ratio of energy transfer to the reaction centers versus heat dissipation, was studied by means of carotenoid biosynthesis mutants and recombinant light harvesting complexes (LHCs) with modified chromophore binding. The npq2 mutant of Arabidopsis thaliana, blocked in the biosynthesis of violaxanthin and thus accumulating zeaxanthin, was shown to have a lower fluorescence yield of chlorophyll in vivo and, correspondingly, a higher level of energy dissipation, with respect to the wild-type strain and npq1 mutant, the latter of which is incapable of zeaxanthin accumulation. Experiments on purified thylakoid membranes from all three mutants showed that the major source of the difference between the npq2 and wild-type preparations was a change in pigment to protein interactions, which can explain the lower chlorophyll fluorescence yield in the npq2 samples. Analysis of the xanthophyll binding LHC proteins showed that the Lhcb5 photosystem II subunit (also called CP26) undergoes a change in its pI upon binding of zeaxanthin. The same effect was observed in wild-type CP26 upon treatment that leads to the accumulation of zeaxanthin in the membrane and was interpreted as the consequence of a conformational change. This hypothesis was confirmed by the analysis of two recombinant proteins obtained by overexpression of the Lhcb5 apoprotein in Escherichia coli and reconstitution in vitro with either violaxanthin or zeaxanthin. The V and Z containing pigment-protein complexes obtained by this procedure showed different pIs and high and low fluorescence yields, respectively. These results confirm that LHC proteins exist in multiple conformations, an idea suggested by previous spectroscopic measurements (Moya et al., 2001), and imply that the switch between the different LHC protein conformations is activated by the binding of zeaxanthin to the allosteric site L2. The results suggest that the quenching process induced by the accumulation of zeaxanthin contributes to qI, a component of NPQ whose origin was previously poorly understood.  相似文献   

15.
When grown at intermittent light regime, diatom alga Phaeodactylum tricornutum is able to form photoprotective non-photochemical chlorophyll fluorescence quenching (NPQ) three to five times larger than that observed in the higher plants. This quenching is sustained in the dark for 5 to 10 min, reverses completely within approximately 1 h and seems to be very tightly related to the presence of the zeaxanthin analogue, diatoxanthin. Addition of the uncoupler NH4Cl before illumination can completely abolish formation of NPQ, revealing the ΔpH-dependency of the xanthophyll cycle activity. Once established, NPQ can also be almost completely reversed by the uncoupler. However, the higher NPQ is formed the more time is required for its reversal. At the point when the fluorescence was approximately 90% recovered the level of illumination-induced diatoxanthin was found to be only partially reduced. This indicates that the proton gradient is a key triggering factor of NPQ. It was also noticed that NPQ in Phaeodactylum cells was absent even when majority of reaction centers were closed and the plastoquinone pool was significantly reduced. The absence of NPQ at these conditions could be due to very low levels of ΔpH. It is likely that in diatoms alternative sources of protons such as the PS I cyclic electron transfer and/or chlororespiration are important in generating the proton gradient sufficient to trigger NPQ. Absorption changes associated with the xanthophyll cycle activity were found to be larger than those for higher plants. The position of the positive maximum in the difference spectrum illuminated-minus-dark was 512–514 nm in comparison to the 505–508 nm for leaves. The 535 nm band associated with NPQ in plants is absent in Phaeodactylum. An uncoupler-sensitive absorption change at 522 nm was discovered. Kinetics of NPQ showed linear correlation with the 522 nm absorption change. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
17.
Non-photochemical quenching (NPQ) is an important photoprotective mechanism in plants, which dissipates excess energy and further protects the photosynthetic apparatus under high light stress. NPQ can be dissected into a number of components: qE, qZ, and qI. In general, NPQ is catalyzed by two independent mechanisms, with the faster-activated quenching catalyzed by the monomeric light-harvesting complex (LHCII) proteins and the slowly activated quenching catalyzed by LHCII trimers, both processes depending on zeaxanthin but to different extent. Here, we studied the NPQ of the intertidal green macroalga, Ulva prolifera, and found that the NPQ of U. prolifera lack the faster-activated quenching, and showed much greater sensitivity to dithiothreitol (DTT) than to dicyclohexylcarbodiimide (DCCD). Further results suggested that the monomeric LHC proteins in U. prolifera included only CP29 and CP26, but lacked CP24, unlike Arabidopsis thaliana and the moss Physcomitrella patens. Moreover, the expression levels of CP26 increased significantly following exposure to high light, but the concentrations of the two important photoprotective proteins (PsbS and light-harvesting complex stress-related [LhcSR]) did not change upon the same conditions. Analysis of the xanthophyll cycle pigments showed that, upon exposure to high light, zeaxanthin synthesis in U. prolifera was gradual and much slower than that in P. patens, and could effectively be inhibited by DTT. Based on these results, we speculate the enhancement of CP26 and slow zeaxanthin accumulation provide an atypical NPQ, making this green macroalga well adapted to the intertidal environments.  相似文献   

18.
Generally there is a correlation between the amount of zeaxanthin accumulated within the chloroplast of oxygenic photosynthetic organisms and the degree of non-photochemical quenching (NPQ). Although constitutive accumulation of zeaxanthin can help protect plants from photo-oxidative stress, organisms with such a phenotype have been reported to have altered rates of NPQ induction. In this study, basic fluorescence principles and the routinely used NPQ analysis technique were employed to investigate excitation energy quenching in the unicellular green alga Dunaliella salina, in both wild type (WT) and a mutant, zea1, constitutively accumulating zeaxanthin under all growth conditions. The results showed that, in D. salina, NPQ is a multi-component process consisting of energy- or ΔpH-dependent quenching (qE), state-transition quenching (qT), and photoinhibition quenching (qI). Despite the vast difference in the amount of zeaxanthin in WT and the zea1 mutant grown under low light, the overall kinetics of NPQ induction were almost the same. Only a slight difference in the relative contribution of each quenching component could be detected. Of all the NPQ subcomponents, qE seemed to be the primary NPQ operating in this alga in response to short-term exposure to excessive irradiance. Whenever qE could not operate, i.e., in the presence of nigericin, or under conditions where the level of photon flux is beyond its quenching power, qT and/or qI could adequately compensate its photoprotective function.  相似文献   

19.
Lhcb1-2 and PsbS proteins of photosystem II (PSII) have important roles in photoprotective thermal energy dissipation of the absorbed excess light energy. The light responses of chlorophyll fluorescence parameters were analyzed to examine how the absence of Lhcb1-2 or PsbS proteins can modify the energy allocation patterns of absorbed light energy in PSII using an antisense construct of lhcb2 and a psbS deletion (npq4-1) mutant of Arabidopsis thaliana. Both mutants exhibit reduced Stern–Volmer non-photochemical chlorophyll fluorescence quenching (NPQ). Here, we have adopted an approach, presented by Hendrickson et al. (Photosynth Res 82:73–81, 2004), to gain a better insight into the mechanism of the NPQ in these mutants. We have found no significant differences in the quantum yields of photochemical energy conversion (ΦPSII) between the mutants and the wild type. Nevertheless, as it was expected, the fraction of the energy, which is dissipated as heat via regulated pathways in PSII (ΦNPQ) for both mutants, were reduced as compared to the wild type. In a complementary way, the extent of non-regulated non-photochemical energy loss in PSII (ΦNO) for both mutants was significantly higher than that in the wild type. This reflects, together with the lower ΦNPQ (or NPQ) values, suboptimal capacity of photoprotective reactions at higher light intensities.  相似文献   

20.
The photosystem II subunit PsbS is essential for excess energy dissipation (qE); however, both lutein and zeaxanthin are needed for its full activation. Based on previous work, two models can be proposed in which PsbS is either 1) the gene product where the quenching activity is located or 2) a proton-sensing trigger that activates the quencher molecules. The first hypothesis requires xanthophyll binding to two PsbS-binding sites, each activated by the protonation of a dicyclohexylcarbodiimide-binding lumen-exposed glutamic acid residue. To assess the existence and properties of these xanthophyll-binding sites, PsbS point mutants on each of the two Glu residues PsbS E122Q and PsbS E226Q were crossed with the npq1/npq4 and lut2/npq4 mutants lacking zeaxanthin and lutein, respectively. Double mutants E122Q/npq1 and E226Q/npq1 had no qE, whereas E122Q/lut2 and E226Q/lut2 showed a strong qE reduction with respect to both lut2 and single glutamate mutants. These findings exclude a specific interaction between lutein or zeaxanthin and a dicyclohexylcarbodiimide-binding site and suggest that the dependence of nonphotochemical quenching on xanthophyll composition is not due to pigment binding to PsbS. To verify, in vitro, the capacity of xanthophylls to bind PsbS, we have produced recombinant PsbS refolded with purified pigments and shown that Raman signals, previously attributed to PsbS-zeaxanthin interactions, are in fact due to xanthophyll aggregation. We conclude that the xanthophyll dependence of qE is not due to PsbS but to other pigment-binding proteins, probably of the Lhcb type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号