首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Telotrophic ovarioles of scale insects are subdivided into tropharia (=trophic chambers) and vitellaria that contain single developing oocytes. Tropharium encloses trophocytes (=nurse cells) and arrested oocytes. The central area of the tropharium, termed the trophic core, is devoid of cells. Both trophocytes and oocytes are connected to the trophic core: trophocytes by cytoplasmic processes, oocytes by means of nutritive cords. The trophic core, processes and nutritive cords are filled with bundles of microtubules. The trophocytes contain large lobated nuclei with giant nucleoli. Fluorescent labelling with DAPI has shown that trophocyte nuclei are characterized by high contents of DNA. In the cortical cytoplasm of trophocytes, numerous microfilaments are present. The developing oocyte is surrounded by a simple follicular epithelium. The cortical cytoplasm of follicular cells contains numerous microtubules and microfilaments.  相似文献   

2.
PROTEIN UPTAKE IN THE OOCYTES OF THE CECROPIA MOTH   总被引:8,自引:7,他引:1       下载免费PDF全文
The formation of yolk spheres in the oocyte of the cecropia moth, Hyalophora cecropia (L.), is known immunologically to result largely from uptake of a sex-limited blood protein. Recent electron microscope analyses of insect and other animal oocytes have demonstrated fine structural configurations consistent with uptake of proteins by pinocytosis. An electron microscope analysis of the cecropia ovary confirms the presence of similar structural modifications. With the exception of two apparently amorphous layers, the basement lamella on the outer surface of the follicular epithelium and the vitelline membrane on the inner, there is free access of blood to the oocyte surface between follicle cells. Dense material is found in the interfollicular cell space and adsorbed to the outer surface of the much folded oocyte membrane. Pits in the oocyte membrane and vesicles immediately under it are lined with the same dense material not unlike the yolk spheres in appearance. Introduction of ferritin into the blood of a developing cecropia moth and its localization adsorbed to the surface of the oocyte, and within the vesicles and yolk spheres of the oocyte cortex, is experimental evidence that the structural modifications of the oocyte cortex represent stages in the pinocytosis of blood proteins which arrive at the oocyte surface largely by an intercellular route. Small tubules attached to the yolk spheres are provisionally interpreted as a manifestation of oocyte-synthesized protein being contributed to the yolk spheres.  相似文献   

3.
The structure of the developing oocytes in the ovary of unfed and fed femaleArgas (Persicargas) arboreus is described as seen by scanning (SEM) and transmission (TEM) electron microscopy. The unfed female ovary contains small oocytes protruding onto the surface and its epithelium consists of interstitial cells, oogonia and young oocytes. Feeding initiates oocyte growth through the previtellogenic and vitellogenic phases of development. These phases can be observed by SEM in the same ovary.The surface of isolated, growing oocytes is covered by microvilli which closely contact the basal lamina investing the ovarian epithelium and contains a shallow, circular area with cytoplasmic projections and a deep pit, or micropyle, at the epithelium side. In more advanced oocytes the shell is deposited between microvilli and later completely covers the surface.Transmission EM of growing oocytes in the previtellogenic phase reveals nuclear and nucleolar activity in the emission of dense granules passing into the cytoplasm and the formation of surface microvilli. The cell cytoplasm is rich in free ribosomes and polysomes and contains several dictyosomes associated with dense vesicles and mitochondria which undergo morphogenic changes as growth proceeds. Membrane-limited multivesiculate bodies, probably originating from modified mitochondria, dictyosomes and ribosomal aggregates, are also observed. Rough endoplasmic reticulum is in the form of annulate lamellae. During vitellogenesis, proteinaceous yolk bodies are formed by both endogenous and exogenous sources. The former is involved in the formation of multivesicular bodies which become primary yolk bodies, whereas the latter process involves internalization from the haemolymph through micropinocytosis in pits, vesicles and reservoirs. These fuse with the primary yolk bodies forming large yolk spheres. Glycogen and lipid inclusions are found in the cytoplasm between the yolk spheres.  相似文献   

4.
We describe a provitellogenic stage, a previously unrecognized stage of follicle development in moths, and show that oocytes begin yolk sphere formation prior to the development of patency by the follicular epithelium. The vitellogenic activities of follicles from pharate adult femalePlodia interpunctella (Hübner) were determined by visualizing the subunits of vitellin (YP1 and YP3) and the follicular epithelium yolk protein (YP2 and YP4) using monospecific antisera to each subunit to immunolabel whole-mounted ovaries or ultrathin sections. At 92 h after pupation, yolk spheres that contained only YP2 began to proliferate in the oocytes. The inter-follicular epithelial cell spaces were closed at 92 h making vitellogenin inaccessible to the oocyte, and consequently, the vitellin subunits were not observed in the yolk spheres. YP2 uptake most likely occurred across the brush border from the follicular epithelial cells to the oocyte at this time. At 105 h, the inter-follicular epithelial cell spaces appeared closed yet trace amounts of labeling for vitellin were observed in the spaces and also in the yolk spheres along with YP2. Equivalent labeling for all four YPs in yolk spheres was finally observed at 112 h after pupation when the follicular epithelium had become patent. These data indicate that the provitellogenic stage is an extended transition period between the previtellogenic and vitellogenic stages that lasts for approximately 13 h, and it is marked at the beginning by YP2 yolk sphere formation in the oocyte and at the end by patency in the follicular epithelium.  相似文献   

5.
The cortical zone of oocytes, which lies just below the follicular epithelium appears in the early stages of development, but reaches its fullest growth in vitellogenic oocytes. In the present studies it was found that the cortical zone of Hemidactylus flaviviridis consists of proteins, lipoproteins, carbohydrates, fatty yolk, RNA and little amount of DNA in mature oocytes along with mitochondria and Golgi bodies. In the early oocyte, this zone is fine granular in nature, but during the yolky stages of oocyte, it becomes filled by the vacuolar structure, which shows in it's the presence of fatty and compound yolk. The L1 and L2 types of lipid globules are also observed in the cortical zone during vitellogenic oocyte.  相似文献   

6.
Summary TheGolgi apparatus can be seen in the usual juxtanuclear position in a very young oocyte. Later, the mass increases in size and resolves itself into very minuteGolgi spheres which disperse gradually in the general cytoplasm. There is some evidence of the infiltrati on of theGolgi bodies from the follicular epithelium to the egg. The granular mitochondria arise also in the juxtanuclear area, and with the increase in the size of the oocyte they get dispersed in the cytoplasm. The filamentar and beaded mitochondria appear in the older oocytes. Fatty yolk arises through the agency of theGolgi bodies by the swelling of aGolgi granule or by the deposition of new material on the concave side of one or more crescenticGolgi bodies. Albuminous yolk appears to be formed directly or indirectly by mitochondria. With 8 figures in the text.  相似文献   

7.
In March through April when the oocyte growth in the ovaries of the wall lizard (Hemidactylus) is very rapid, the yolk nucleus continues to persist through various stages of previtellogenesis. This persisting yolk nucleus and associated cell components have been studied with histochemical techniques. The spherical and dense yolk nucleus stains for protein, lipoprotein and RNA. It does not form any close morphological association with the other cell components such as the mitochondria, lipid bodies (L2), spaces or canals, diffuse sudanophilic substance and dense bodies, which are arranged into three zones round the yolk nucleus proper. The mitochondria stain for lipoprotein; the L2 bodies consist of phospholipid; the spaces do not contain any material demonstrable with histochemical techniques; and the ooplasm containing the diffuse sudanophilic substance and dense bodies shows lipoprotein, protein and RNA. Eventually, the yolk nucleus disintegrates, and its substance as well as the other cell components are distributed in the cortical ooplasm of oocytes which are ready to form the yolk bodies. Concepts of the origin, morphology, cytochemistry and function of the yolk nucleus in the oocytes of invertebrates and vertebrates, which have come about recently through the application of cytochemical and submicroscopical techniques, are discussed.  相似文献   

8.
Histochemical and electron microscopic methods have revealed that there are four types of cell inclusions in the late vitellogenic oocytes of Oncopeltus. (a) Type 1 is a vacuole which seems to be contributed from the tropharium via the nutritive tubes. It is suggested that this type consists partly at least of nucleolus-like material (ribonucleoprotein) emitted from the nuclei of the Zone III trophocytes. (b) Type 2 is lipid yolk which in early stage oocytes seems to be produced in the “Balbiani body.” In the vitellogenic oocytes these lipid spheres are apparently imported by the oocyte from the haemolymph either through the follicle cells, or through the extracellular space in the follicular epithelium. (c) Type 3 is carbohydrate/protein yolk where at least part of the protein (“vitellogenic protein”) is taken up from the haemolymph, transported through the extracellular space in the follicular epithelium, and deposited into the oocyte by pinocytosis. (d) Glycogen is deposited from the early phases of vitellogenesis. The tropharium may contribute, besides Type 1 vacuoles, ribosomes, mitochondria, stacks of annulated lamellae, and “food vacuoles” to the oocytes. Specialized cells which line the tropharium and send projections toward the trophic core have been called “peripheral trophocytes.” Contrary to the regular trophocytes, they contain glycogen and an abundance of Golgi complexes.  相似文献   

9.
Abstract. Ovarian ultrastructure and oogenesis in two pycnogonid species, Cilunculus armatus and Ammothella biunguiculata , were investigated. The ovary is morphologically and functionally divided into trunk and pedal parts. The former represents the germarium and contains very young germ cells in a pachytene or postpachytene phase, whereas the latter houses developing previtellogenic and vitellogenic oocytes and represents the vitellarium. Intercellular bridges were occasionally found between young (trunk) germ cells. This indicates that in pycnogonids, as in other animal groups, at the onset of oogenesis clusters of germ cells are generated. As nurse cells are absent in the ovaries of investigated species, the clusters must secondarily split into individual oocytes. In the vitellarium, the oocytes are located outside the ovary. Each oocyte is connected to the ovarian tissue by a stalk composed of several somatic cells. The stalk cells directly associated with the oocyte are equipped with irregular projections that reach the oocyte plasma membrane. This observation suggests that the stalk cells may play a nutritive role. The ooplasm of vitellogenic oocytes comprises mitochondria, free ribosomes, stacks of annulate lamellae, active Golgi complexes, and vesicles derived from these complexes. Within the latter, numerous electron-dense bodies are present. We suggest that these bodies contribute to yolk formation.  相似文献   

10.
Detection of calcium in the follicles of Galleria mellonella (Lepidoptera) was performed using two cytochemical methods. Calcium precipitation was obtained either with ammonium oxalate (AO) or with N,N-naphtaloylhydroxylamine (NHA). In both cases the X-ray "on line" analysis monitored the presence of calcium in the oocytes, which was correlated with the accumulation of yolk spheres. Concentration of calcium in oocytes filled with yolk and treated with AO amounted to 9 mmoles per 1,000 g tissue wet weight. This value is similar to that calculated previously for follicles untreated with any reagent and prepared for the analysis by the freeze-drying technique (Prze?ecka et al. 1980). Examination of the ultrastructure of oocytes treated with NHA revealed calcium precipitate at the follicular epithelium/oocyte interface, in endocytotic canaliculi and vesicles formed by the oocyte plasma membrane, in ooplasm, and in yolk spheres. In oocytes treated with AO, the calcium-precipitate intermingled with the precipitate produced by the osmium alone. The presumed cause of this phenomenon is discussed.  相似文献   

11.
Summary Comparative histochemical studies on the fish (Channa maruleus) and amphibian (Bufo stomaticus) oogenesis demonstrate a great similarity in the growth and differentiation of their egg follicle. The ooplasm, germinal vesicle and egg-membranes show distinct morphological and cytochemical changes during previtellogenesis and vitellogenesis.During previtellogenesis the various components of the follicle are engaged in the synthesis of protoplasm as shown by the proliferation of yolk nucleus substance, mitochondria and some lipid bodies in the ooplasm and of nucleoli in the germinal vesicle. The substance of the yolk nucleus consisting of proteins, lipoproteins and RNA first appears adjacent to the nuclear membrane. Numerous mitochondria of lipoprotein composition, and some lipid bodies consisting of unsaturated phospholipids lie in association with the yolk nucleus which forms substratum for the former. The lipid bodies, present inside the germinal vesicle, follicular epithelium, and adjacent to the plasma membrane in association with some pinocytotic vacuoles, have been considered to play a significant role in the active transport of some substances from the environment into the ooplasm and from the latter into the germinal vesicle. The follicular epithelium itself is very poorly developed, negating its appreciable role in the contribution of specific substances into the oocyte, which seem to be contributed by the germinal vesicle showing a considerable development of nuclear sap, basophilic granules and nucleoli consisting of RNA and proteins; many large nucleoli bodily pass into the cytoplasm during the previtellogenesis of Channa, where their substance is gradually dissolved. The intense, diffuse, basophilic substance of the cytoplasm is believed due to free ribosomes described in many previous ultrastructural studies.During vitellogenesis, the various deutoplasmic inclusions, namely carbohydrate yolk, proteid yolk and fatty yolk, are deposited in the ooplasm. The carbohydrate yolk bodies rich in carbohydrates originate in association with the plasma membrane and correspond to vesicles and cortical granules of previous studies. The proteid yolk consisting of proteins and some lipoproteins, and fatty yolk containing first phospholipids and some triglycerides and then triglycerides only are deposited under the influence of yolk nucleus substance, mitochondria and cytoplasm. The mitochondria and yolk nucleus substance foreshadow in some way the pattern of these two deutoplasmic inclusions and persist at the animal pole of mature egg while the other inclusions of previtellogenesis disappear from view. The pigment granules, which also show a gradient from the animal to vegetal pole in Bufo, are also formed in association with yolk nucleus substance and mitochondria. Some glycogen also appears in both the species. The nuclear membrane becomes irregular due to the formation of lobes. The lipid bodies of the germinal vesicle come to lie outside the nuclear membrane, suggesting active transport of some substances into the ooplasm; many nucleoli bodily pass into the ooplasm of Bufo, where they are gradually absorbed. The amount of basophilic granules is considerably increased in the germinal vesicle during vitellogenesis. Various egg-membranes such as outer epithelium, thin theca, single-layered follicular epithelium, zona pellucida or vitelline membrane surround the vitellogenic oocytes. The zona pellucida formed between the oocyte and follicle cells consists of a carbohydrate-protein complex. The follicle cells show lipid droplets, mitochondria and basophilic substance in their cytoplasm. The various changes that occur in the components of the follicle during vitellogenesis seem to be initiated by gonadrotrophins formed under the influence of specific environmental conditions.The author wishes to express sincere appreciation and gratitude to Dr. Gilbert S. Greenwald, who has made the completion of this investigation possible.Ph. D. Population Council Post-doctoral Fellow.  相似文献   

12.
The ovaries of Orthezia urticae and Newsteadia floccosa are paired and composed of numerous short ovarioles. Each ovariole consists of an anterior trophic chamber and a posterior vitellarium that contains one developing oocyte. The trophic chamber contains large nurse cells (trophocytes) and arrested oocytes. The total number of germ cells per ovariole (i.e., cluster) is variable, but it is always higher than 32 and less than 64. This suggests that five successive mitotic cycles of a cystoblast plus additional divisions of individual cells are responsible for the generation of the cluster. Cells of the trophic chamber maintain contact with the oocyte via a relatively broad nutritive cord. The trophic chamber and oocyte are surrounded by somatic cells that constitute the inner epithelial sheath around the former and the follicular epithelium around the latter. Anagenesis of hemipteran ovarioles is discussed in relation to the findings presented. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Morphological and biochemical investigations were made on the yolk formation in ovaries of the quail Coturnix japonica. Morphologically, two ways of nutrient uptake were observed in follicles. In small oocytes of white follicles, vitellogenin (VTG) was taken up through fluid-phase endocytosis which was assisted by follicular lining bodies. The lining bodies were produced in follicle cells. They adhered to the lateral cell membrane, moved along the membrane in the direction of the enclosed oocyte and were posted to the tips of the microvilli. These tips, now with lining bodies, were pinched off from the main cell body, engulfed by indented cell membranes of the oocyte, and transported to yolk spheres. In large oocytes of yellow follicles, VTG and very-low-density lipoproteins (VLDL) were taken up through receptor-mediated endocytosis. The VTG and VLDL particles diffused through the huge interspaces between follicle cells, and once in oocytes were transported to yolk spheres via coated vesicles. Immunohistochemistry showed that the VTG resides on or near the surface of the follicle cell membrane at the zona radiata whereas the cathepsin D resides at or near the oocytic cell membranes. Tubular and round vesicles in the cortical cytoplasm of oocytes were also stained with both antisera, suggesting that these vesicles are the sites where the VTG is enzymatically processed by cathepsin D. Upon analysis by SDS-PAGE, a profile similar to that of yolk-granule proteins was produced by incubating VTG with a quail cathepsin D of 40 kD.  相似文献   

14.
The oocytes of saturniid moths take up proteins selectively from the blood. The distribution of blood proteins in the ovary during protein uptake was investigated by staining 2 µ sections of freeze-dried ovaries with fluorescein-labeled antibodies. The results indicate that blood proteins occur primarily in the intercellular spaces of the follicle cell layer, in association with a brush border at the surface of the oocyte, and within the oocyte in the yolk spheres. That proteins derived from the blood are associated with the yolk spheres was confirmed by isolating these bodies and showing that lysis, which can be induced by any of a number of mechanical means, causes them to release immunologically defined proteins known to be derived from the blood. That the level of blood proteins in the cytoplasm is low relatively to that in the yolk spheres was confirmed by the observation that the yellow pigments associated with several blood proteins, although conspicuous in the yolk spheres, are not visible in the translucent layer of centrifuged oocytes. From these and previous physiological observations, it is proposed that blood proteins reach the surface of the oocyte by an intercellular route, that they combine with some component of the brush border, and that they are transformed into yolk spheres by a process akin to pinocytosis.  相似文献   

15.
The ovaries consist of large number of panoistic ovarioles in the last instar nymph and the adult dragonfly Orthetrum chrysis (Selys). In the nymph the vitellaria are compactly filled with the primary oocytes and the vitellogenesis takes place only in the adult stage. During vitellogenesis oocytes change widely in their shape, size and cytological organisation and their developmental stages can be divided into pre-vitellogenic, early-vitellogenic, vitellogenic, late-vitellogenic and maturation age. PAS-positive material appears first around the germinal vesicle in the early-vitellogenic stage and lateron it migrates towards the periphery. Glycogen appears in the late-vitellogenic stage. DNA is abundantly present in the nuclei of the oocytes during the pre-vitellogenic and completely absent in early-vitellogenic, vitellogenic, late-vitellogenic and maturation stages. It is observed in the nuclei of follicular epithelial cells of all the stages. RNA is abundantly present in cytoplasm of the pre-vitellogenic oocytes but lateron is gradually decreases. During the early-vitellogenic and vitellogenic stages high concentration of RNA in the follicular epithelial cells has been observed. The protein bodies appear first in the interfollicular spaces and towards the periphery of the oocytes just near the enveloping follicular epithelial cells, during the early-vitellogenic stage suggesting the formation of yolk proteins from the haemolymph. In Orthetrum chrysis the sudanophilic bodies appear first in the follicular cells and then lie in the peripheral region of the oocytes suggesting the incorporation of yolk lipid either from the follicular epithelium or from the haemolymph through the follicular epithelium. The phospholipids are synthesised in pre-vitellogenic to the late-vitellogenic stages. In the late-vitellogenic stages the phospholipid granules are present abundantly in the follicular epithelium while in the maturation stage they disappear suggesting their utilisation in the formation of membranes like vitelline and chorion. The neutral fats are present in the form of large number of droplets in the oocytes during the maturation stage.  相似文献   

16.
Oogenesis and the relationships between oocytes and other ovarian tissues have been studied in Sypharochiton septentriones. The ovarian tissues were examined by electron microscopy and by histochemical methods. The sac-like ovary is dorsal, below the aorta, and opens to the exterior by two posterior oviducts. Ventrally, the ovarian epithelium is folded inwards to form a series of plates of tissue, which support the developing ova. Each ovum is attached to a tissue plate by a stalk, the plasma membrane of which is bathed by the blood in the tissue plate sinus. Dorsally, ciliated vessels from the aorta enter the ovary and open into blood sinuses in the top of the plates. After each germinal epithelial cell rounds up to become a primary oogonium, it undergoes four mitotic divisions to give rise to a cluster of 16 secondary oogonia. Of these, the outer ones become follicle cells and the inner ones become oocytes. As in other molluses, the increases in nuclear and nucleolar volume are relatively greatest towards the end of previtellogenesis, when chromosomal and nucleolar activity are most intense. This phase of activity is accompanied by a great increase in cytoplasmic basophilia. Subsequently this basophilia is decreased during vitellogenesis, when chromosomal and nucleolar activity diminish. Fluid filled interstices appear in the cytoplasm during early vitellogenesis. Protein yolk deposition is associated with these interstices, but the lipid yolk appears to arise de novo. The follicle cells do not appear to be directly involved in oocyte nutrition. At times during oogenesis, certain manifestations of polarity can be found in the oocyte. This polarity is based on an apical-basal axis and can be related to the nutritive source of the oocyte, namely the blood which bathes the plasma membrane of the oocyte in the stalk. Numerous granulated cells are present in the ovarian tissue plates and ventral epithelium as storage cells containing lysosomes, and they are capable of phagocytosis and micropinocytosis of extracellular material. A scheme is outlined whereby reserves in these cells may be incorporated into the oocyte cytoplasm. Lysosomal activity is responsible for autolysis of the cells as well as resorption of unspawned ova.  相似文献   

17.
Summary Detection of calcium in the follicles of Galleria mellonella (Lepidoptera) was performed using two cytochemical methods. Calcium precipitation was obtained either with ammonium oxalate (AO) or with N,N-naphtaloyl-hydroxylamine (NHA). In both cases the X-ray on line analysis monitored the presence of calcium in the oocytes, which was correlated with the accumulation of yolk spheres. concentration of calcium in oocytes filled with yolk and treated with AO amounted to 9 mmoles per 1,000 g tissue we weight. This value is similar to that calculated previously for follicles untreated with any reagent and prepared for the analysis by the freeze-drying technique (Przelcka et al. 1980).Examination of the ultrastructure of oocytes treated with NHA revealed calcium precipitate at the follicular epithelium/oocyte interface, in endocytotic canaliculi and vesicles formed by the oocyte plasma membrane, in ooplasm, and in yolk spheres. In oocytes treated with AO, the calcium-precipitate intermingled with the precipitate produced by the osmium alone. The presumed cause of this phenomenon is discussed.  相似文献   

18.
The ultra- and microstructure of the female reproductive system of Matsucoccus matsumurae was studied using light microscopy, scanning and transmission electron microscopy. The results revealed that the female reproductive system of M. matsumurae is composed of a pair of ovaries, a common oviduct, a pair of lateral oviducts, a spermatheca and two pairs of accessory glands. Each ovary is composed of approximately 50 telotrophic ovarioles that are devoid of terminal filaments. Each ovariole is subdivided into an apical tropharium, a vitellarium and a short pedicel connected to a lateral oviduct. The tropharium contains 8–10 trophocytes and two early previtellogenic oocytes termed arrested oocytes. The trophocytes degenerate after egg maturation, and the arrested oocytes are capable of further development. The vitellarium contains 3–6 oocytes of different developmental stages: previtellogenesis, vitellogenesis and choriogenesis. The surface of the vitellarium is rough and composed of a pattern of polygonal reticular formations with a center protuberance. The oocyte possesses numerous yolk spheres and lipid droplets, and is surrounded by a mono-layered follicular epithelium that becomes binucleate at the beginning of vitellogenesis. Accessory nuclei are observed in the peripheral ooplasm during vitellogenesis.  相似文献   

19.
In the annelid Enchytraeus albidus the ovary is composed of packets containing eight synchronously developing oocytes. Each oocyte in the packet is connected, via a bridge, to a common cytoplasmic mass. Developmental synchrony of oocytes within individual packets is probably related to the ooplasmic continuity. The young previtellogenic oocyte contains many polysomes, a few cisternae of smooth and rough endoplasmic reticulum, small Golgi complexes, and mitochondria. Many of the mitochondria are dumbbell-shaped and may thus represent division stages. Vitellogenesis is marked by the appearance of peripherally located lipid yolk and small, densely staining granules scattered throughout the ooplasm. There is an increase of smooth endoplasmic reticulum, mitochondria, and enlarged Golgi elements. Small multivesicular-like bodies, the early stages of developing yolk, are derived from the Golgi complex. The mature yolk sphere is bipartite and consists of (a) a variable number of dense spheres, the core bodies, which are produced in the ooplasm by the Golgi complex and which become embedded in (b) a dense matrix. The electron opaque tracer, horseradish peroxidase is incorporated into the oocyte and deposited in the matrix suggesting that this component of the yolk sphere is obtained by micropinocytosis. Enzyme digestions and various cytochemical techniques suggest that the core bodies are rich in carbohydrate, probably as glyco- or mucoproteins, and that the matrix is rich in lipid.  相似文献   

20.
Histology and histochemistry are useful tools to study reproductive mechanisms in fish and they have been applied in this study. In the bluefin tuna, Thunnus thymus L., oocyte development can be divided into 4 principal phases based on the morphological features of developing oocytes and follicles. The primary growth phase includes oogonia and basophilic or previtellogenic oocytes classified as chromatin-nucleolus and perinucleolus stages. The secondary growth phase is represented by vitellogenic oocytes at early (lipid globule and yolk granule 1), mid (yolk granule 2) and late (yolk granule 3) vitellogenesis stages. The maturation phase involves postvitellogenic oocytes undergoing maturation process. During the spawning period, both postovulatory follicles, which indicate spawning, and atretic follicles can be distinguished in the ovary. Carbohydrates, lipids, proteins and specially those rich in tyrosine, tryptophan, cystine, arginine, lysine and cysteine, as well phospholipids and/or glycolipids and neutral glycoproteins were detected in yolk granules. Moreover, affinity for different lectins (ConA, WGA, DBA and UEA) was detected in vitellogenic oocytes (yolk granules, cortical alveoli, follicular layer and zona radiata), indicating the presence of glycoconjugates with different sugar residues (Mannose- Man- and/or Glucose -Glc-; N-acetyl-D-glucosamine- GlcNAc- and/or sialic acid- NANA-; N-acetyl-D-galactosamine- GalNAc-; L-Fucose -Fuc-). Histochemical techniques also demonstrated the presence of neutral lipids in globules (vacuoles in paraffin sections) and neutral and carboxylated mucosubstances in cortical alveoli. By using anti-vitellogenin (VTG) serum, immunohistochemical positive results were demonstrated in yolk granules, granular cytoplasm and follicular cells of vitellogenic oocytes. Calcium was also detected in yolk granules and weakly in follicular envelope. In females, the gonadosomatic index (GSI) increased progressively from May, during early vitellogenesis, until June during mid and late vitellogenesis, where the highest values were reached. Subsequently, throughout the maturation-spawning phases (July), GSI decreased progressively reaching the minimal values during recovering-resting period (October).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号