首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ruminal cellulolytic bacterium Fibrobacter succinogenes S85 was grown in cellulose-fed continuous culture at 22 different combinations of dilution rate (D, 0.014–0.076 h-1) and extracellular pH (6.11–6.84). Effects of pH and D on the fermentation were determined by subjecting data on cellulose consumption, cell yield, product yield (succinate, acetate, formate), and soluble sugar concentrationto response surface analysis. The extent of cellulose conversion decreased with increasing D. First-order rate constants at rapid growth rates were estimated as 0.07–0.11 h-1, and decreased with decreasing pH. Apparent decreases in the rate constant with increasing D was not due to inadequate mixing or preferential utilization of the more amorphous regions of the cellulose. Significant quantities of soluble sugars (0.04–0.18 g/l, primarily glucose) were detected in all cultures, suggesting that glucose uptake was rather inefficient. Cell yields (0.11–0.24 g cells/g cellulose consumed) increased with increasing D. Pirt plots of the predicted yield data were used to determined that maintenance coefficient (0.04–0.06 g cellulose/g cells · h) and true growth yield (0.23–0.25 g cells/g cellulose consumed) varied slightly with pH. Yields of succinate, the major fermentation endproduct, were as high as 1.15 mol/mol anhydroglucose fermented, and were slightly affected by dilution rate but were not affected by pH. Comparison of the fermentation data with that of other ruminal cellulolytic bacteria indicates that F. succinogenes S85 is capable of rapid hydrolysis of crystalline cellulose and efficient growth, despite a lower max on microcrystalline cellulose.  相似文献   

2.
Cocultivation of cellulolytic and saccharolytic microbial populations is a promising strategy to improve bioethanol production from the fermentation of recalcitrant cellulosic materials. Earlier studies have demonstrated the effectiveness of cocultivation in enhancing ethanolic fermentation of cellulose in batch fermentation. To further enhance process efficiency, a semicontinuous cyclic fed-batch fermentor configuration was evaluated for its potential in enhancing the efficiency of cellulose fermentation using cocultivation. Cocultures of cellulolytic Clostridium thermocellum LQRI and saccharolytic Thermoanaerobacter pseudethanolicus strain X514 were tested in the semicontinuous fermentor as a model system. Initial cellulose concentration and pH were identified as the key process parameters controlling cellulose fermentation performance in the fixed-volume cyclic fed-batch coculture system. At an initial cellulose concentration of 40 g liter−1, the concentration of ethanol produced with pH control was 4.5-fold higher than that without pH control. It was also found that efficient cellulosic bioethanol production by cocultivation was sustained in the semicontinuous configuration, with bioethanol production reaching 474 mM in 96 h with an initial cellulose concentration of 80 g liter−1 and pH controlled at 6.5 to 6.8. These results suggested the advantages of the cyclic fed-batch process for cellulosic bioethanol fermentation by the cocultures.  相似文献   

3.
Summary A wild coculture of obligately thermophilic bacteria, including only a single cellulolytic species Clostridium, ferments 2% crystalline cellulose and produces 4.6–5.1 g·l–1 of ethanol at 55°–60° C; that is, 0.96–1.1 moles of ethanol from 1 mole of glucose equivalent of cellulose degraded. However, the ethanol yield decreases with increasing cellulose concentration. Ethanolacetic acid ratio varies around 1 and cannot be influenced by substrate concentration. However, this ratio can be influenced by changing pH and temperature. For the ethanol production from cellulose, neutral and weekly alkaline media with a pH of 7.0–8.0 and a temperature of 55° C are optimal. Experiments in which the coculture was subjected to high ethanol concentrations showed that higher concentrations of added ethanol (up to 20 g·l–1) suppress cellulose degradation by 50% and inhibit the actual production of ethanol.  相似文献   

4.
D(–)-Lactic acid was produced from cellulose by simultaneous saccharification and fermentation (SSF) in media containing cellulolytic enzymes and Lactobacillus coryniformis subsp. torquens ATCC 25600 at 39 °C and pH 5.4, yielding 0.89 g D(–)-lactic acid g–1 cellulose at a mean volumetric productivity of 0.5 g l–1 h–1. No L(+)-lactic acid was found in the medium.  相似文献   

5.
Summary When Clostridium acetobutylicum was grown in continuous culture under phosphate limitation (0.74 mM) at a pH of 4.3, glucose was fermented to butanol, acetone and ethanol as the major products. At a dilution rate of D=0.025 h–1 and a glucose concentration of 300 mM, the maximal butanol and acetone concentrations were 130 mM and 74 mM, respectively. 20% of the glucose remained in the medium. On the basis of these results a two-stage continuous process was developed in which 87.5% of the glucose was converted into butanol, acetone and ethanol. The cells and minor amounts of acetate and butyrate accounted for the remaining 12.5% of the substrate. The first stage was run at D=0.125 h–1 and 37° C and the second stage at D=0.04 h–1 and 33° C. High yields of butanol and acetone were also obtained in batch culture under phosphate limitation.  相似文献   

6.
Summary An anaerobic continuous culture device was constructed that permits accurate delivery of media containing insoluble substrates, even at very low volumetric flow rates (<3 ml/h). The system consisted of: (1) a reservoir in which the medium slurry was mixed well by the combined use of stirring and diffusive gas sparging to suspend a cellulose substrate of small (< 45 m) particle size; (2) a delivery system that segmented the slurry into small (~ 20l) discrete liquid segments separated by intervening bubbles of CO2 gas; and (3) a stirred, temperature-controlled 2-l fermentation vessel. The device was used to examine substrate consumption, product formation, and cell yield by the anaerobic ruminal cellulolytic bacterium Ruminococcus flavefaciens FD-1 under steady-state, cellulose-limited conditions at six different dilution rates (D) ranging from 0.017 to 0.101 h–1 (pH 6.4–6.6). Cellulose consumption decreased from 4.00 g/1 (at D=0.017 h–1) to 2.56 g/1 (at D=0.101 h–1). Increases in D resulted in a progressive shift toward production of more acetate and formate, and less succinate. Redox balance calculations revealed a deficiency in reduced products, probably due to the production of H2, which was not directly measured. Reducing sugar values remained low (0.05–0.10 g/1, as glucose) at all D values. The cellulose fermentation was characterized by a low maintenance coefficient (0.07 g cellulose/g cells per hour) and a high true growth yield (YG = 0.24 g cells/g cellulose, corrected for maintenance). Comparison of the data with literature values suggests that the fermentation of cellulose by this organism gives cell yields at least as great as the yields obtained from the fermentation of soluble sugars.Mention of specific products is for the benefit of the reader and does not constitute an endorsement of said products over other products not mentionedOffprint requests to: P. J. Weimer  相似文献   

7.
Biofilms are a natural form of cell immobilization that result from microbial attachment to solid supports. Biofilm reactors with polypropylene composite-supports containing up to 25% (w/w) of various agricultural materials (corn hulls, cellulose, oat hulls, soybean hulls or starch) and nutrients (soybean flour or zein) were used for ethanol production. Pure cultures ofZymomonas mobilis, ATCC 31821 orSaccharomyces cerevisiae ATCC 24859 and mixed cultures with either of these ethanol-producing microorganisms and the biofilm-formingStreptomyces viridosporus T7A ATCC 39115 were evaluated. An ethanol productivity of 374g L–1 h–1 (44% yield) was obtained on polypropylene composite-supports of soybean hull-zein-polypropylene by usingZ. mobilis, whereas mixed-culture fermentations withS. viridosporus resulted in ethanol productivity of 147.5 g L–1 h–1 when polypropylene composite-supports of corn starch-soybean flour were used. WithS. cerevisiae, maximum productivity of 40 g L–1 h–1 (47% yield) was obtained on polypropylene composite-supports of soybean hull-soybean flour, whereas mixed-culture fermentation withS. viridosporus resulted in ethanol productivity of 190g L–1 h–1 (35% yield) when polypropylene composite-supports of oat hull-polypropylene were used. The maximum productivities obtained without supports (suspension culture) were 124 g L–1 h–1 and 5 g L–1 h–1 withZ. mobilis andS. cerevisiae, respectively. Therefore, forZ. mobilis andS. cerevisiae, ethanol productivities in biofilm fermentations were three- and eight-fold higher than suspension culture fermentations, respectively. Biofilm formation on the chips was detected by weight change and Gram staining of the support material at the end of the fermentation. The ethanol production rate and concentrations were consistently greater in biofilm reactors than in suspension cultures.This is Journal Paper No. J-16356 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

8.
Cellulose in wastewater was converted into H2 by a mixed culture in batch experiments at 55°C with various wastewaters pH (5.5–8.5) and cellulose concentrations (10–40 g l–1). At the optimal pH of 6.5, the maximum H2 yield was 102 ml g–1 cellulose and the maximum production rate was 287 ml d–1 for each gram of volatile suspended solids (VSS). Analysis of 16S rDNA sequences showed that the cellulose-degrading mixed culture was composed of microbes closely affiliated to genus Thermoanaerobacterium.  相似文献   

9.
Lactic acid was added to batch very high gravity (VHG) fermentations and to continuous VHG fermentations equilibrated to steady state with Saccharomyces cerevisiae. A 53% reduction in colony-forming units (CFU) ml–1 of S. cerevisiae was observed in continuous fermentation at an undissociated lactic acid concentration of 3.44% w/v; and greater than 99.9% reduction was evident at 5.35% w/v lactic acid. The differences in yeast cell number in these fermentations were not due to pH, since batch fermentations over a pH range of 2.5–5.0 did not lead to changes in growth rate. Similar fermentations performed in batch showed that growth inhibition with added lactic acid was nearly identical. This indicates that the apparent high resistance of S. cerevisiae to lactic acid in continuous VHG fermentations is not a function of culture mode. Although the total amount of ethanol decreased from 48.7 g l–1 to 14.5 g l–1 when 4.74% w/v undissociated lactic acid was added, the specific ethanol productivity increased ca. 3.2-fold (from 7.42×10–7 g to 24.0×10–7 g ethanol CFU–1 h–1), which indicated that lactic acid stress improved the ethanol production of each surviving cell. In multistage continuous fermentations, lactic acid was not responsible for the 83% (CFU ml–1) reduction in viable S. cerevisiae yeasts when Lactobacillus paracasei was introduced to the system at a controlled pH of 6.0. The competition for trace nutrients in those fermentations and not lactic acid produced by L. paracasei likely caused the yeast inhibition.  相似文献   

10.
The inhibitory effect of ammonia on the growth of the polychlorinated xenobiotic-degrading bacterium Mycobacterium chlorophenolicum was examined. The strain is inhibited by both the ionized and nonionized forms of ammonia. At pH 6.9 50% reduction of the growth rate was observed at 6.8 g l–1 total ammonium. For 23 experiments performed in shake-flask culture at different pH values and ammonium concentrations a growth model based on the extended Monod kinetic fits the data with a deviation of 5.3%. To overcome growth inhibition in bioreactors a pH-controlled feeding strategy was developed for effective cultivation of M. chlorophenolicum at an ammonium level below 0.3 g l–1. The ammonium addition was controlled on-line by the stoichiometric interdependence of ammonium consumption and pH decline. With this on-line control strategy a biomass concentration as high as 26.2 g l–1 can be achieved within less than 1 week of cultivation, compared to a biomass concentration of 15.5 g l–1 in normal batch culture after 2 weeks of cultivation. The yield is also increased from 0.32 g to 0.43 g biomass (g glucose)–1. The strategy developed provides an effective method for the production of biomass of M. chlorophenolicum serving as the inoculum in remediation technologies.  相似文献   

11.
Summary A continuous thermophilic cellulose fermentation by aCl. thermocellum-containing mixed culture was carried out in an upflow reactor for a period of 100 days. The cellulose conversion rate was finally 0.35 g.1–1.h–1. Evidence that the fermentation process was influenced by both pH and dilution rate was given by the changes of concentration of the main fermentation products, acetic acid and ethanol. The role of cellodextrins and glucose as reactive intermediates in the process of cellulose breakdown was established.  相似文献   

12.
Growth kinetics ofSaccharomyces cerevisiae in glucose syrup from cassava starch and sugarcane molasses were studied using batch and fed-batch cultivation. The optimum temperature and pH required for growth were 30°C and pH 5.5, respectively. In batch culture the productivity and overall cell yield were 0.31 g L–1 h–1 and 0.23 g cells g–1 sugar, respectively, on glucose syrup and 0.22 g L–1 h–1 and 0.18 g cells g–1 sugar, respectively, on molasses. In fed-batch cultivation, a productivity of 3.12 g L–1 h–1 and an overall cell yield of 0.52 g cells g–1 sugar in glucose syrup cultivation and a productivity of 2.33 g L–1 h–1 and an overall cell yield of 0.46 g cells g–1 sugar were achieved in molasses cultivation by controlling the reducing sugar concentration at its optimum level obtained from the fermentation model. By using an on-line ethanol sensor combined with a porous Teflon® tubing method in automating the feeding of substrate in the fed-batch culture, a productivity of 2.15 g L–1 h–1 with a yield of 0.47 g cells g–1 sugar was achieved using glucose syrup as substrate when ethanol concentration was kept at a constant level by automatic control.  相似文献   

13.
Cellulase activity of a haloalkaliphilic anaerobic bacterium, strain Z-7026   总被引:3,自引:0,他引:3  
Summary The cellulolytic activity of an alkaliphilic obligate anaerobic bacterium, Z-7026, which was isolated from the microbial community of soda-lake sediments and belongs to the cluster III of Clostridia with low G+C content, was studied. The bacterium was capable of growing in media with cellulose or cellobiose as the sole energy sources. Its maximal growth rate on cellobiose (0.042–0.046 h–1) was observed at an initial pH value of 8.5–9.0, whereas the maximal rate of cellulase synthesis, assayed by using a novel fluorimetric approach, was found to be 0.1 h–1 at pH 8–8.5. Secreted proteins revealed high affinity for cellulose and were represented by two major forms of molecular masses of 75 and 84 kDa, whereas the general protein composition of the precipitated and cellulose-bound preparations was similar to cellulosome subunits of Clostridium thermocellum. The optimum pH of the partially purified enzyme preparation towards both amorphous and crystalline cellulose was in the range 6–9, with more than 70% and less than 50% of maximal activity being retained at pH 9.2 and 5.0, respectively.  相似文献   

14.
Summary A system was developed for the semi-continuous cultivation of an anaerobic fungus, Piromyces sp. strain E2 (isolated from an Indian elephant), on Avicel (microcrystalline cellulose). The fungus was grown in a semi-continuous culture system: solids and fungal biomass was retained by means of a simple filter construction whereas the culture fluid was removed continuously. The production of fermentation products (acetate, ethanol, formate, lactate, hydrogen or methane), cellulolytic and xylanolytic enzymes, and protein by the fungus in monoculture or co-culture with Methanobacterium formicicum during growth on Avicel was monitored up to 45 days. These productions stabilized after an adaptation period of 24 and 30 days in the semi-continuous co-culture and monoculture, respectively. After this period the average (±SD) avicelase, -glucosidase, endoglucanase, and xylanase production in the semi-continuous monoculture were 27±6, 140±16, 1057±120 and 5012±583 IU.l–1.dya–1, respectively. Co-culture with the methanogen caused a shift in fermentation products to more acetate, and less ethanol and lactate. Furthermore, the production of all cellulolytic enzymes increased (40%) and xylanolytic enzyme production decreased (35%).Correspondence to: H. J. M. Op den Camp  相似文献   

15.
Recombinant rotavirus VP6 production was 0.49 mg l–1 when 10 mM sodium butyrate was added to the suspension culture of transgenic tomato cells after 6 days' incubation. Recombinant VP6 production increased to 0.73 mg l–1, when the culture was supplemented with 10 mM sodium butyrate on day 6 and 9 after incubation. Total protein extracts of transgenic tomato cells from sodium butyrate-supplemented culture were examined by two-dimensional electrophoresis: 14 proteins were up-regulated and 7 down-regulated.  相似文献   

16.
Batch experiments were conducted to investigate the thermophilic biohydrogen production using an enrichment culture from a Turkish hot spring. Following the enrichment, the culture was heat treated at 100 °C for 10 min to select for spore-forming bacteria. H2 production was accompanied by production of acetate, butyrate, lactate and ethanol. H2 production was associated by acetate–butyrate type fermentation while accumulation of lactate and ethanol negatively affected the H2 yield. H2 production was highest in the temperature range from 49.6 to 54.8 °C and optimum values for initial pH and concentrations of iron, yeast extract and glucose were 6.5, 40 mg/l, 4–13.5 g/l, respectively. PCR–DGGE profiling showed that the heat treated culture consisted of species closely affiliated to genus Thermoanaerobacterium.  相似文献   

17.
Summary In ammonium-limitation (4.55 mM NH4 +) at a dilution rate (D)=0.081 h–1,Clostridium butyricum produced 2 mol H2 per mol glucose consumed at pH 5.0, but at a low fermentation rate. At higher pH, important amounts of extracellular protein were produced. Phosphatelimitation (0.5 mM PO4 –3) at D=0.061 h–1 and pH 7.0 were the best conditions tested for hydrogen gas production (2.22 mol H2 per mol glucose consumed) at a high fermentation rate. Steady-state growth at lower pH and with 0.1 mM PO4 –3 resulted in proportional higher glucose incorporation into biomass and lower H2 production. C. pasteurianum in NH4 + limitation showed higher fermentation rates thanC. butyricum and a stabilized H2 production around 2.08 (±0.06) mol per mol glucose consumed at various defined pH conditions, although the acetate/butyrate ratio increased to 1 at pH 7.0. The latter was also observed in phosphate-limitation, but here H2 production was maximal (1.90 mol. per mol glucose consumed) at the lowest pH (5.5) tested.  相似文献   

18.
Zymomonas mobilis ZM4/AcR (pZB5), a mutant recombinant strain with increased acetate resistance, has been isolated following electroporation of Z. mobilis ZM4/AcR. This mutant strain showed enhanced kinetic characteristics in the presence of 12 g sodium acetate l–1 at pH 5 in batch culture on 40 g glucose, 40 g xylose l–1 medium when compared to ZM4 (pZB5). In continuous culture, there was evidence of increased maintenance energy requirements/uncoupling of metabolism for ZM4/AcR (pZB5) in the presence of sodium acetate; a result confirmed by analysis of the effect of acetate on other strains of Z. mobilis. Nomenclature m Cell maintenance energy coefficient (g g–1 h–1)Maximum overall specific growth rate (1 h–1)Maximum specific ethanol production rate (g g–1 h–1)Maximum specific total sugar utilization rate (g g–1 h–1)Biomass yield per mole of ATP (g mole–1 Ethanol yield on total sugars (g g–1)Biomass yield on total sugars (g g–1)True biomass yield on total sugars (g g–1)  相似文献   

19.
Summary A salicylate-hydroxylase-producing strain of Pseudomonas putida with an unusual capability to grow at toxic levels of salicylate up to 10 g l–1 has been isolated. It grew well under continuous culture conditions, with optimum growth at pH 6.5 and a temperature of 25° C. The use of an ammonium salt as a nitrogen source, instead of nitrate, resulted in a 30–40% increase in its biomass yield coefficient. Optimum growth under continuous culture conditions was achieved using 4 g l–1 salicylate at 25° C, pH 6.5 and 0.2 h–1 dilution rate. High salicylate hydroxylase enzyme activity [236 units (U) l–1] and productivity (424.8 U h–1) were obtained at a dilution rate of 0.45 h–1 using a mineral medium containing 4 g l–1 of salicylate. Operating under continuous culture conditions with oxygen limitation and a slight accumulation of residual salicylate (0.2 g l–1) resulted in a decrease in culture performance and enzyme productivity. Correspondence to: R. Marchant  相似文献   

20.
Summary Direct alcoholic fermentation of dextrin or soluble starch with selected amylolytic yeasts was studied in both batch and immobilized cell systems. In batch fermentations, Saccharomyces diastaticus was capable of fermenting high dextrin concentrations much more efficiently than Schwanniomyces castellii. From 200 g·l–1 of dextrin S. diastaticus produced 77 g·l–1 of ethanol (75% conversion efficiency). The conversion efficiency decreased to 59% but a higher final ethanol concentration of 120 g·l–1 was obtained with a medium containing 400 g·l–1 of dextrin. With a mixed culture of S. diastaticus and Schw. castellii 136 g·l–1 of ethanol was produced from 400 g·l–1 of dextrin (67% conversion efficiency). S. diastaticus cells attached well to polyurethane foam cubes and a S. diastaticus immobilized cell reactor produced 69 g·l–1 of ethanol from 200 g·l–1 of dextrin, corresponding to an ethanol productivity of 7.6g·l–1·h–1. The effluent from a two-stage immobilized cell reactor with S. diastaticus and Endomycopsis fibuligera contained 70 g·l–1 and 80 g·l–1 of ethanol using initial dextrin concentrations of 200 and 250 g·l–1 respectively. The corresponding values for ethanol productivity were 12.7 and 9.6 g·l–1·h–1. The productivity of the immobilized cell systems was higher than for the batch systems, but much lower than for glucose fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号