首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The epiblast of the chick embryo gives rise to the ectoderm, mesoderm, and endoderm during gastrulation. Previous studies revealed that MyoD-positive cells were present throughout the epiblast, suggesting that skeletal muscle precursors would become incorporated into all three germ layers. The focus of the present study was to examine a variety of organs from the chicken fetus for the presence of myogenic cells. RT-PCR and in situ hybridizations demonstrated that MyoD-positive cells were present in the brain, lung, intestine, kidney, spleen, heart, and liver. When these organs were dissociated and placed in culture, a subpopulation of cells differentiated into skeletal muscle. The G8 antibody was used to label those cells that expressed MyoD in vivo and to follow their fate in vitro. Most, if not all, of the muscle that formed in culture arose from cells that expressed MyoD and G8 in vivo. Practically all of the G8-positive cells from the intestine differentiated after purification by FACS. This population of ectopically located cells appears to be distinct from multipotential stem cells and myofibroblasts. They closely resemble quiescent, stably programmed skeletal myoblasts with the capacity to differentiate when placed in a permissive environment.  相似文献   

2.
3.
The epiblast of the chick embryo contains cells that express MyoD mRNA but not MyoD protein. We investigated whether MyoD-positive (MyoDpos) epiblast cells are stably committed to the skeletal muscle lineage or whether their fate can be altered in different environments. A small number of MyoDpos epiblast cells were tracked into the heart and nervous system. In these locations, they expressed MyoD mRNA and some synthesized MyoD protein. No MyoDpos epiblast cells differentiated into cardiac muscle or neurons. Similar results were obtained when MyoDpos cells were isolated from the epiblast and microinjected into the precardiac mesoderm or neural plate. In contrast, epiblast cells lacking MyoD differentiated according to their environment. These results demonstrate that the epiblast contains both multipotent cells and a subpopulation of cells that are stably committed to the skeletal muscle lineage before the onset of gastrulation. Stable programming in the epiblast may ensure that MyoDpos cells express similar signaling molecules in a variety of environments.  相似文献   

4.
Embryonic stem cells are derived from the epiblast. A subpopulation of epiblast cells expresses MyoD mRNA and the G8 antigen in vivo. G8 positive (G8pos) and G8 negative (G8neg) populations were isolated by magnetic cell sorting. Nearly all G8pos cells switched from E- to N-cadherin and differentiated into skeletal muscle in culture. G8neg cells were impaired in their ability to switch cadherins and few formed skeletal muscle. Medium conditioned by G8pos cells stimulated skeletal myogenesis and N-cadherin synthesis in G8neg cultures. The effect of conditioned medium from G8pos cultures was inhibited by bone morphogenetic protein (BMP) 4. Treatment of G8neg cells with a soluble form of the BMP receptor-IA or Noggin promoted N-cadherin synthesis and skeletal myogenesis. These results demonstrate that MyoD-positive epiblast cells recruit pluripotent cells to the skeletal muscle lineage. The mechanism of recruitment involves blocking the BMP signaling pathway.  相似文献   

5.
Cells that express MyoD mRNA, the G8 antigen and the bone morphogenetic protein (BMP) inhibitor noggin (Nog) are present in the epiblast before gastrulation. Ablation of “Myo/Nog” cells in the blastocyst results in an expansion of canonical BMP signaling and prevents the expression of noggin and follistatin before and after the onset of gastrulation. Once eliminated in the epiblast, they are neither replaced nor compensated for as development progresses. Older embryos lacking Myo/Nog cells exhibit severe axial malformations. Although Wnts and Sonic hedgehog are expressed in ablated embryos, skeletal muscle progenitors expressing Pax3 are missing in the somites. Pax3+ cells do emerge adjacent to Wnt3a+ cells in vitro; however, few undergo skeletal myogenesis. Ablation of Myo/Nog cells also results in ectopically placed cardiac progenitors and cardiomyocytes in the somites. Reintroduction of Myo/Nog cells into the epiblast of ablated embryos restores normal patterns of BMP signaling, morphogenesis and skeletal myogenesis, and inhibits the expression of cardiac markers in the somites. This study demonstrates that Myo/Nog cells are essential regulators of BMP signaling in the early epiblast and are indispensable for normal morphogenesis and striated muscle lineage specification.  相似文献   

6.
7.
8.
9.
10.
We described the ex vivo production of mature and functional human smooth muscle cells (SMCs) derived from skeletal myoblasts. Initially, myoblasts expressed all myogenic cell-related markers such as Myf5, MyoD and Myogenin and differentiate into myotubes. After culture in a medium containing vascular endothelial growth factor (VEGF), these cells were shown to have adopted a differentiated SMC identity as demonstrated by alphaSMA, SM22alpha, calponin and smooth muscle-myosin heavy chain expression. Moreover, the cells cultured in the presence of VEGF did not express MyoD anymore and were unable to fuse in multinucleated myotubes. We demonstrated that myoblasts-derived SMCs (MDSMCs) interacted with endothelial cells to form, in vitro, a capillary-like network in three-dimensional collagen culture and, in vivo, a functional vascular structure in a Matrigel implant in nonobese diabetic-severe combined immunodeficient mice. Based on the easily available tissue source and their differentiation into functional SMCs, these data argue that skeletal myoblasts might represent an important tool for SMCs-based cell therapy.  相似文献   

11.
A subpopulation of cells expresses MyoD mRNA and the cell surface G8 antigen in the epiblast prior to the onset of gastrulation. When an antibody to the G8 antigen was applied to the epiblast, labeled cells were later found in the ocular primordia and muscle and non-muscle forming tissues of the eyes. In the lens, retina and periocular mesenchyme, G8-positive cells synthesized MyoD mRNA and the bone morphogenetic protein inhibitor Noggin. MyoD expressing cells were ablated in the epiblast by labeling them with the G8 MAb and lysing them with complement. Their ablation in the epiblast resulted in eye defects, including anopthalmia, micropthalmia, altered pigmentation and malformations of the lens and/or retina. The right eye was more severely affected than the left eye. The asymmetry of the eye defects in ablated embryos correlated with differences in the number of residual Noggin producing, MyoD-positive cells in ocular tissues. Exogenously supplied Noggin compensated for the ablated epiblast cells. This study demonstrates that MyoD expressing cells serve as a Noggin delivery system to regulate the morphogenesis of the lens and optic cup.  相似文献   

12.
A variety of differentiated cell types can be converted to skeletal muscle cells following transfection with the myogenic regulatory gene MyoD1. To determine whether multipotent embryonic stem (ES) cells respond similarly, cultures of two ES cell lines were electroporated with a MyoD1 cDNA driven by the beta-actin promoter. All transfected clones, carrying a single copy of the exogenous gene, expressed high levels of MyoD1 mRNA. Surprisingly, although maintained in mitogen-rich medium, this ectopic expression was associated with a transactivation of the endogenous myogenin and myosin light chain 2 gene but not the endogenous MyoD1, MRF4, Myf5, the skeletal muscle actin, or the myosin heavy chain genes. Preferential myogenesis and the appearance of contracting skeletal muscle fibers were observed only when the transfected cells were allowed to differentiate in vitro, via embryoid bodies, in low-mitogen-containing medium. Myogenesis was associated with the activation of MRF4 and Myf5 genes and resulted in a significant increase in the level of myogenin mRNA. Not all cells were converted to skeletal muscle cells, indicating that only a subset of stem cells can respond to MyoD1. Moreover, the continued expression of the introduced gene was not required for myogenesis. These results show that ES cells can respond to MyoD1, but environmental factors control the expression of its myogenic differentiation function, that MyoD1 functions in ES cells even under environmental conditions that favor differentiation is not dominant (incomplete penetrance), that MyoD1 expression is required for the establishment of the myogenic program but not for its maintenance, and that the exogenous MyoD1 gene can trans-activate the endogenous myogenin and MLC2 genes in undifferentiated ES cells.  相似文献   

13.
MyoD mRNA is expressed in a subpopulation of cells within the embryonic epiblast. Most of these cells are incorporated into somites and synthesize Noggin. Ablation of MyoD-positive cells in the epiblast subsequently results in the herniation of organs through the ventral body wall, a decrease in the expression of Noggin, MyoD, Myf5, and myosin in the somites and limbs, and an increase in Pax-3-positive myogenic precursors. The addition of Noggin lateral to the somites compensates for the loss of MyoD-positive epiblast cells. Skeletal muscle stem cells that arise in the epiblast are utilized in the somites to promote muscle differentiation by serving as a source of Noggin.  相似文献   

14.
15.
Members of the myogenic regulatory gene family, including MyoD, Myf5, Myogenin and MRF4, are specifically expressed in myoblast and skeletal muscle cells and play important roles in regulating skeletal muscle development and growth. They are capable of converting a variety of non-muscle cells into myoblasts and myotubes. To better understand their roles in the development of fish muscles, we have isolated the MyoD genomic genes from gilthead seabream (Sparus aurata), analyzed the genomic structures, patterns of expression and the regulation of muscle-specific expression. We have demonstrated that seabream contain two distinct non-allelic MyoDgenes, MyoD1 and MyoD2. Sequence analysis revealed that these two MyoD genes shared a similar gene structure. Expression studies demonstrated that they exhibited overlapping but distinct patterns of expression in seabream embryos and adult slow and fast muscles. MyoD1 was expressed in adaxial cells that give rise to slow muscles, and lateral somitic cells that give rise to fast muscles. Similarly, MyoD2 was initially expressed in both slow and fast muscle precursors. However, MyoD2 expression gradually disappeared in the adaxial cells of 10- to 15-somite-stage embryos, whereas its expression in fast muscle precursor cells was maintained. In adult skeletal muscles, MyoD1 was expressed in both slow and fast muscles, whereas MyoD2 was specifically expressed in fast muscles. Treating seabream embryos with forskolin, a protein kinase A activator, inhibited MyoD1 expression in adaxial cells, while expression in fast muscle precursors was not affected. Promoter analysis demonstrated that both MyoD1 and MyoD2 promoters could drive green fluorescence protein expression in muscle cells of zebrafish embryos. Together, these data suggest that the two non-allelic MyoD genes are functional in seabream and their expression is regulated differently in fast and slow muscles. Hedgehog signaling is required for induction of MyoDexpression in adaxial cells.  相似文献   

16.
17.
A mouse myogenic determination gene, MyoD1, was transfected into the human osteogenic sarcoma cell line TE85. Several stably transfected clones were isolated which, at low frequencies, formed multinucleated cells with the appearance of skeletal myotubes. Southern blot analysis confirmed the integration of multiple copies of the mouse MyoD1 gene, and Northern analysis and immunofluorescence confirmed its expression in the transfectants. Characterization of the transfectants showed that they expressed immunologically detectable myosin, desmin, mRNA for myogenin, and the delta subunit of the acetylcholine receptor. The cells assembled a functional contractile apparatus since they contracted in response to acetylcholine added to the culture medium. The presence of MyoD1 protein did not abrogate the expression of two genes active in bone cells but not in muscle cells. The transfected cells therefore displayed a chimeric phenotype by expressing simultaneously bone and muscle genes. Interestingly, treatment of the MyoD1 transfected cells with 5-aza-2'-deoxycytidine resulted in a substantial increase in the frequency of myogenic conversion. Thus, the methylation inhibitor increased the ability of MyoD1 to function as a trans-acting factor and activate the muscle phenotype.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号