首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We conducted three experiments to examine the influence of ultraviolet-B radiation (UV-B; 280–320 nm) exposure on reproduction in Brassica rapa (Brassicaceae). Plants were grown in a greenhouse under three biologically effective UV-B levels that simulated either an ambient stratospheric ozone level (control), 16% (“low enhanced”), or 32% (“high enhanced”) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment, we examined whether UV-B level during plant growth influenced in vivo pollen production and viability, and flower production. Pollen production and viability per flower were reduced by ≈50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollen was reduced under high-enhanced UV-B to 17% of that of ambient controls. Whole-plant production of viable pollen was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, we collected pollen from plants under the three UV-B levels and examined whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B treatments had initially lower germination and viability than pollen from the ambient level. After in vitro exposure to the high-enhanced UV-B levels for 6 h, viability of the pollen from plants grown under ambient UV-B was reduced from 65 to 18%. In contrast, viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from ≈43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B exposure. In the third experiment, we used pollen collected from source plants under the three UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa.  相似文献   

2.
We assessed the effects of enhanced ultraviolet-B radiation (UV-B; 280–320 nm) on biomass allocation to roots, shoots, leaves and flowers in the annual Brassica rapa. In addition, we investigated how concentrations of chlorophyll and UV-B-absorbing compounds in leaves, ovaries and pollen changed in response to enhanced UV-B. Plants were grown for 38 d in a greenhouse under lampbanks providing daily biologically effective UV-B doses equivalent to those under ambient mid-March stratospheric ozone levels or 16% (low-enhanced UV-B) or 32% (high-enhanced UV-B) ozone depletion levels for Morgantown, WV, USA. Total and aboveground biomass of plants was less under low-enhanced UV-B, but similar to ambient controls under high-enhanced UV-B. Concentrations of UV-B-absorbing compounds in leaves (area basis) increased under high-enhanced UV-B by about 20%, but were similar to ambient controls under low-enhanced UV-B. More effective protection due to higher screening-compound concentrations in plants under high-enhanced UV-B may explain why biomass production was not reduced. Plants under high-enhanced UV-B also had more reproductive biomass and produced more flowers, and had less root mass, than plants under ambient or low-enhanced UV-B. Concentrations of leaf total chlorophyll were not affected by UV-B treatment. While UV-B treatment had no affect on concentrations of UV-B-absorbing compounds in ovaries, concentrations in pollen from plants under both enhanced-UV-B treatments were >40% greater than ambient controls.  相似文献   

3.
Plants ofLolium perenne, grown with and without the balansoidfungal leaf endophyteNeotyphodium lolii, were exposed to threeultraviolet radiation treatments at an outdoor facility in theUK for 172 d. Plants were exposed to either (a) a 30% elevationabove the ambient erythemally-weighted level of UV-B (280–315nm) radiation under banks of cellulose diacetate filtered fluorescentlamps that also produce UV-A (315–400 nm) radiation (UV-B+A);(b) elevated UV-A radiation alone under banks of polyester filteredlamps; or (c) ambient levels of solar radiation under banksof unenergized lamps. The fertility of plants grown withN. loliiwassignificantly reduced by the elevated UV-B+A exposure. After172 d, these plants produced 70% fewer spikes, 75% fewer seeds,71% lower total weight of seed and 78% fewer seeds per g d.wt of plant tissue than plants colonized byN. loliiwhich wereexposed to ambient radiation. There was no discernible effectof elevated UV-B+A exposure on the fertility of endophyte-freeplants. Plants irradiated with UV-B+A developed 14% thickerleaves than those exposed to ambient radiation. Those whichwere irradiated with elevated UV-A alone produced seeds thatwere 20% heavier than plants exposed to ambient levels of radiation.Plants grown withN. loliihad 7% thicker leaves, 4% thicker stembases and 7% fewer tillers than those grown without it. Thefresh mass of tillers of plants grown withN. loliiwas 11% greaterthan those of endophyte-free plants, owing to their higher moisturecontents. These results suggest that the fertility ofL. perennecolonizedbyN. loliiin the natural environment could be deleteriouslyaffected by elevated fluxes of UV-B radiation associated withstratospheric ozone depletion and that this may affect the populationdynamics of the species.Copyright 1998 Annals of Botany Company Fungal leaf endophyte,Neotyphodium lolii, perennial ryegrass (Lolium perenne), stratospheric ozone depletion, UV-B radiation.  相似文献   

4.
Gaberščik  Alenka  Novak  Mateja  Trošt  Tadeja  Mazej  Zdenka  Germ  Mateja  Björn  Lars-Olof 《Plant Ecology》2001,154(1-2):49-56
Pulmonaria officinalis is an understorey spring geophyte, which starts its vegetative period before full foliation of the tree storey. During its early growth phase it is exposed to full solar radiation, therefore the enhanced UV-B radiation could present a threat to this species. An outdoor experiment in which potted plants were exposed to below ambient, ambient, and above ambient (corresponding to 17% ozone reduction) UV-B radiation, was conducted in order to evaluate the radiation effects. The amount of photosynthetic pigments and photochemical efficiency of PSII were not affected, but the amount of UV-B absorbing compounds was lower in plants grown under reduced UV-B. This change was measurable after only fourteen days in reproductive shoots, while in the vegetative shoots, it was not detectable until after three months. The leaves of P. officinalis are variegated and the light green spots became less transparent to PAR under enhanced UV-B. The results reveal that under simulated 17% ozone depletion the harmful effects of UV-B on the measured parameters were negligible.  相似文献   

5.
The response of faba bean seedlings to the combined effects of increased atmospheric CO2 concentrations ([CO2]) and solar UV-B irradiance was studied using open-top chambers transparent to UV-B radiation. The purpose of the study was to determine whether effects of increased [CO2] on growth and physiology are modified by the present solar UV-B fluence rate in the Netherlands. Seedlings were exposed to 350 or 700 micromoles mol-1 CO2. At both [CO2], solar UV-B irradiance was either present or reduced using polyester foil opaque to UV-B radiation. To obtain information on the time dependence of increased [CO2] and UV-B radiation effects, three harvests were performed during the experiment. CO2 enrichment resulted in increased biomass production at all harvests. At the final harvest, UV-B radiation did not affect biomass production but a significant decrease was observed after 14 d of treatment. A reduction of the UV-B fluence increased shoot length at both [CO2] throughout the experiment. UV-B radiation slightly altered biomass allocation. Plants grown at reduced levels of UV-B radiation invested less biomass in flowers and more in stem material compared to plants grown at ambient UV-B levels. CO2 enrichment resulted in a stimulation of net photosynthesis after 26 and 38 d of treatment. UV-B reduction did not alter this response. After 26 d of treatment, photosynthetic acclimation to CO2 enrichment was observed, which was probably the result of accumulation of carbohydrates in the leaves. After 38 d, photosynthetic acclimation was no longer present. The UV absorbance of methanolic leaf extracts was increased by CO2 enrichment only. Both CO2 enrichment and solar UV-B reduced the transmittance of radiation through intact attached leaves. Interaction between [CO2] and UV-B radiation was limited to UV-A transmittance of leaves. Under prevalent experimental conditions, UV-B radiation did not affect the measured physiological parameters. Most open-top chambers used for climate change research are constructed of materials which do not transmit UV-B radiation. Our results indicate that part of the 'chamber effects' on plant height often described in the literature might be explained by the absence of solar UV-B radiation in these chambers.  相似文献   

6.
The regulation of oxyradicals and PSII activity by UV-B (280-315 nm) and UV-A (315-400 nm) components were investigated in the leaves of maize [Zea mays L. var: HQPM.1]. The impact of ambient UV radiation on the production of superoxide (O2-) and hydroxyl (.OH) radicals were analysed in the leaves of 20-day-old plants. The amount of O2.- and .OH radicals and the radical scavenging activity were significantly higher in the leaves exposed to ambient UV radiation as compared to the leaves of the plants grown under UV exclusion filters. Smaller amount of oxyradicals in the leaves of UV excluded plants was accompanied by a substantial increase in quantum yield of electron transport (phi Eo), rate of electron transport (psi o) and performance index (PIABS), as indicated by chlorophyll a fluorescence transient. Although higher amounts of oxyradicals invoked higher activity of antioxidant enzymes like superoxide dismutase and peroxidase under ambient UV, they also imposed limitation on the photosynthetic efficiency of PSII. Exclusion of UV components (UV-B 280-315 nm; UV-A 315-400 nm) translated to enhanced photosynthesis, growth and biomass. Thus, solar UV components, especially in the tropical region, could be a major limiting factor in the photosynthetic efficiency of the crop plants.  相似文献   

7.
Absorption or screening of ultraviolet-B (UV-B) radiation by the epidermis may be an important protective method by which plants avoid damage upon exposure to potentially harmful UV-B radiation. In the present study we examined the relationships among epidermal screening effectiveness, concentration of UV-absorbing compounds, epidermal anatomy and growth responses in seedlings of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.). Seedlings of each species were grown in a greenhouse at the University of Maryland under either no UV-B radiation or daily supplemental UV-B radiation levels of 4, 8 or 11 kJ m?2 of biologically effective UV-B (UV-BBE) radiation. Loblolly pine seedlings were subsequently grown in the field under either ambient or supplemental levels of UV-B radiation. At the conclusion of the growing season, measurements of epidermal UV-B screening effectiveness were made with a fiber-optic microprobe. In loblolly pine, less than 0.5% of incident UV-B radiation was transmitted through the epidermis of fascicle needles and about 1% was transmitted in primary needles. In contrast, epidermal transmittance in sweetgum ranged from about 20% in leaves not preconditioned to UV-B exposure, to about 10% in leaves grown under UV-B radiation. The concentration of UV-absorbing compounds was unaffected by UV-B exposure, but generally increased with leaf age. Increases in epidermal thickness were observed in response to UV-B treatment in loblolly pine, and this accounted for over half of the variability in UV-B screening effectiveness. In spite of the low levels of UV-B penetration into the mesophyll, delays in leaf development (both species) and final needle size (loblolly pine) were observed. Seedling biomass was reduced by supplemental UV-B radiation in loblolly pine. We hypothesize that the UV-induced growth reductions were manifested by changes in either epidermal anatomy or epidermal secondary chemistry that might negatively impact cell elongation.  相似文献   

8.
The effects of enhanced UV-B radiation on hormone changes in vegetative and reproductive tissues of tomato (Lycopersicon esculentum Mill.) and their relationships with reproductive characteristics were studied. Two cultivars, TongHui (TH) and XiaGuang (XG), were grown in the field for one growing season under ambient (Control), ambient plus 2.54 kJ m–2 d–1 (T1) or ambient plus 4.25 kJ m–2 d–1 (T2) of supplemental ultraviolet-B (280–320 nm). The number of open flowers increased significantly in the TH cultivar under T2 while it declined in the XG cultivar under T1. Although pollen germination from both cultivars was inhibited by UV-B treatment, fruit number was enhanced in the TH cultivar at both UV-B doses and in the XG cultivar at the low dose. On the other hand, seed size (dry weight) was reduced in the XG cultivar by both UV-B doses and in the TH cultivar at the low UV-B dose. The final germination rates of seeds from control and UV-B treated plants of both cultivars showed no significant differences (p > 0.05), while germination was delayed in the TH cultivar at both doses of UV-B and in the XG cultivar only for T2. To determine the mechanism of UV-B's effects on developmental processes, hormone concentrations in leaves, pistils and seeds were analyzed using ELISA on partially purified extracts. The results suggested that enhanced UV-B radiation induced hormone changes in both vegetative and reproductive tissues. The alteration of flower number may be associated with the changes of ZR in leaves under enhanced UV-B radiation and the delayed germination may due to the changes in seed ABA and GAs.  相似文献   

9.
The effects of ultraviolet-B (UV-B between 290 and 320 nm) on photosynthesis and growth characteristics were investigated in field grown cassava (Manihot esculentum Crantz). Plants were grown at ambient and ambient plus a 5.5kJ m?2 d?1 supplementation of UV-B radiation for 95 d. The supplemental UV-B fluence used in this experiment simulated a 15% depletion in stratospheric ozone at the equator (0°N). Carbon dioxide exchange, oxygen evolution, and the ratio of variable to maximum fluorescence (Fv/Fm) were determined for fully expanded leaves after 64–76 d of UV-B exposure. AH plants were harvested after 95 d of UV-B exposure, assayed for chlorophyll and UV-B absorbing compounds, and separated into leaves, petioles, stems and roots. Exposure to UV-B radiation had no effect on in situ rates of photosynthesis or dark respiration. No difference in the concentration of UV-B absorbing compounds was observed between treatments. A 2-d daytime diurnal comparison of Fv to Fm ratios indicated a significant decline in Fv/Fm ratios and a subsequent increase in photoinhibition under enhanced UV-B radiation if temperature or PPF exceeded 35°C or 1800μmol m?2 s?1, respectively. However, UV-B effects on fluorescence kinetics appeared to be temporal since maximal photosynthetic rates as determined by oxygen evolution at saturated CO2 and PPF remained unchanged. Although total biomass was unaltered with UV-B exposure, alterations in the growth characteristics of cassava grown with supplemental UV-B radiation are consistent with auxin destruction and reduced apical dominance. Changes in growth included an alteration of biomass partitioning with a significant increase in shoot/root ratio noted for plants receiving supplemental UV-B radiation. The increase in shoot/root ratio was due primarily to a significant decrease in root weight (–32%) with UV-B exposure. Because root production determines the harvest-able portion of cassava, UV-B radiation may still influence the yield of an important tropical agronomic species, even though photosynthesis and total dry biomass may not be directly affected.  相似文献   

10.
The effects of elevated UV-B radiation on growth, symbiotic function and concentration of metabolites were assessed in purely symbiotic and NO3-fed nodulated plants of Lupinus luteus and Vicia atropurpurea grown outdoors either on tables under supplemental UV-B radiation or in chambers covered with different types of plexi-glass to attenuate solar ultraviolet radiation. Moderately and highly elevated UV-B exposures simulating 15% and 25% ozone depletion as well as sub- ambient UV-B did not alter organ growth, plant total dry matter and N content per plant in both L. luteus and V. atropurpurea. In contrast, elevated UV-B increased (P <0.05) flavonoid and anthocyanin concentrations in roots and leaves of L. luteus, but not of V. atropurpurea. Feeding nodulated plants of L. luteus under elevated UV-B radiation with 2 mM NO3 increased (P <0.05) nodule, leaf and total dry matter, and whole plant N content. With V. atropurpurea, NO3 reduced (P <0.05) nodule activity, root %N and concentrations of flavonoids, anthocyanins in roots and leaves and soluble sugars in roots, in contrast to an observed increase (P <0.05) in nodule dry matter per plant. Similarly, supplying 2 mM NO3 to L. luteus plants exposed to sub-ambient UV-B radiation significantly reduced individual organ growth, plant total biomass, nodule dry matter, nodule %N, and whole plant N content, as well as root concentrations of flavonoids, anthocyanins, soluble sugars, and starch of L. luteus, but not V. atropurpurea plants. These results show no adverse effect of elevated UV-B radiation on growth and symbiotic function of L. luteus and V. atropurpurea plants. However, NO3 supply promoted growth in L. luteus plants exposed to the highly elevated UV-B radiation.  相似文献   

11.
Plants exposed to natural solar radiation usually show acclimation responses on a daily and seasonal basis. Many of these responses are complex and modified by interactions with acclimation responses to other climatic factors. While changes in photosynthetically active radiation (PAR, 400-700 nm) are the driving force for many acclimation responses in plants, radiation outside the PAR range is also important. Recently, interest has increased in the potential role of UV-A (320-400 nm) and UV-B (280-320 nm) components of sunlight in plant developmental, physiological and daily acclimation processes. In order to explore the role of UV-B further, Brassica napus L. cv Paroll plants were grown to maturity under 13 kJ d(-1) of biologically effective ultraviolet-B radiation (UV-B(BE), 280-320 nm) plus 800 micromol photons m(-2) s(-1) photosynthetically active radiation (PAR, 400-700 nm) or PAR alone. Leaf anatomy and palisade cell structure were quantified using stereological techniques. The leaves of plants grown under UV-B radiation exhibited an increase in overall leaf width, although no change in leaf anatomy was discerned. Palisade cells in UV-B exposed leaves showed a significant decrease in chloroplast, mitochondrial, starch, and microbody volume density (Vv), while the vacuolar Vv increased compared to cells exposed to PAR only. In UV-B exposed leaves, there was an increase in the appressed and non-appressed thylakoid surface area density (Sv) within the chloroplasts. Since the relative proportion of appressed to non-appressed thylakoid surface area did not change, both thylakoid systems changed in concert with each other. Thylakoid stacks were broader and shorter in leaves subjected to UV-B. In general these responses were similar to those which occurred in plants moved from a high to low PAR environment and similar to mature plants exposed to 13 kJ d(-1) UV-B(BE) for only a short period of time. Although UV absorbing pigments increased by 21% in UV-B exposed leaves, there was no significant difference in chlorophyll a,b or carotenoid content compared to plants exposed to only PAR.  相似文献   

12.
Antonelli  F.  Grifoni  D.  Sabatini  F.  Zipoli  G. 《Plant Ecology》1997,128(1-2):127-136
During the last few decades many experiments have been performed to evaluate the responses of plants to enhanced solar UV-B radiation (280–320 nm) that may occur because of stratospheric ozone depletion; most of them were performed in controlled environment conditions where plants were exposed to low photosynthetically active radiation (PAR) levels and high UV-B irradiance. Since environmental radiative regimes can play a role in the response of plants to UV-B enhancement, it appears doubtful whether it is valid to extrapolate the results from these experiments to plants grown in natural conditions. The objective of this work was to evaluate the effects on physiology and morphology of a bean (Phaseolus vulgaris L.) cultivar Nano Bobis, exposed to supplemental UV radiation in the open-air. UV-B radiation was supplied by fluorescent lamps to simulate a 20% stratospheric ozone reduction. Three groups of plants were grown: control (no supplemental UV), UV-A treatment (supplementation in the UV-A band) and UV-B treatment (supplemental UV-B and UV-A radiation). Each group was replicated three times. After 33 days of treatment plants grown under UV-B treatment had lower biomass, leaf area and reduced leaf elongation compared to UV-A treatment. No significant differences were detected in photosynthetic parameters, photosynthetic pigments and UV-B absorbing compounds among the three groups of plants. However, plants exposed to UV-A treatment showed a sort of 'stimulation' of their growth when compared to the control. The results of this experiment showed that plants may be sensitive to UV-A radiation, thus it is difficult to evaluate the specific effects of UV-B (280–320 nm) radiation from fluorescent lamps and it is important to choose the appropriate control. Environmental conditions strongly affect plant response to UV radiation so further field studies are necessary to assess the interaction between UV-B exposure and meteorological variability.  相似文献   

13.
The effects of sub-ambient levels of UV-B radiation on the shrub Rosmarinus officinalis L. were investigated in a field filtration experiment in which the ambient UV-B was manipulated by a combination of UV-B transmitting and UV-B absorbing filters. As a result, the plants were receiving near-ambient or drastically reduced UV-B radiation doses. Drastic reduction of UV-B radiation had no effect on mean, total and maximum stem length, number of stems per plant, dry mass of leaves, stems and roots and leaf nitrogen and phenolic contents. However, flowering was more pronounced under reduced UV-B radiation during the winter period which coincides with ascending ambient UV-B radiation. In contrast, during autumn and early winter, a period which coincides with descending ambient UV-B radiation, flowering was unaffected by reduced UV-B radiation. We can conclude that natural UV-B radiation does not affect growth of Rosmarinus officinalis, but its reduction could influence the flowering pattern of the species.  相似文献   

14.
Using quartz optical fibres, penetration of both monochromatic (310 nm) and polychromatic UV-B (280–320 nm) radiation in leaves of Brassica napus L. (cv. Ceres) was measured. Plants were grown under either visible light (750 μmol m−2 s−1 photosynthetically active radiation) or with the addition of 8. 9 KJ m−2 day−1 biologically effective UV-B (UV-BBE) radiation. Results showed that of the 310 nm radiation that penetreated the leaf, 90% was within the intial one third of the leaf with high attenuation in the leaf epidermis, especially in UV-treated plants. Polychromatic UV-B radiation, relative to incident radiation, showed a relatively uniform spectral distribution within the leaf, except for collimated radiation. Over 30% of the UV-screening pigments in the leaf, including flavonoids, were found in the adaxial epidermal layer, making this layer less transparent to UV-B radiation than the abaxial epidermis, which contained less than 12% of the UV-screening pigments. UV-screening pigments increased by 20% in UV-treated leaves relative to control leaves. Densely arranged epicuticular wax on the adaxial leaf surface of UV-treated plants may have further decreased penetration of UV-B radiation by reflectance. An increased leaf thickness, and decreases in leaf area and leaf dry weight were also found for UV-treated plants.  相似文献   

15.
As a result of stratospheric ozone depletion, more solar ultraviolet-B radiation (UV-B, 280–315 nm) is reaching the Earth's surface. Enhanced levels of UV-B may, in turn, alter ecosystem processes such as decomposition. Solar UV-B radiation could affect decomposition both indirectly, by changes in the chemical composition of leaves during growth, or directly by photochemical breakdown of litter and through changes in decomposer communities exposed to sunlight. In this experiment, we studied indirect and direct effects of solar UV-B radiation on decomposition of barley (Hordeum vulgare). We used barley straw and leaf litter grown under reduced UV-B (20% of ambient UV-B) or under near-ambient UV-B (90% of ambient UV-B) in Buenos Aires, Argentina, and decomposed the litter under reduced or near-ambient solar UV-B for 29 months in Tierra del Fuego, Argentina. We found that the UV-B treatment applied during growth decreased the decay rate. On the other hand, there was a marginally significant direct effect of elevated UV-B during the early stages of decomposition, suggesting increased mass loss. The effect of UV-B during growth on decomposition was likely the result of changes in plant litter chemical composition. Near-ambient UV-B received during plant growth decreased the concentrations of nitrogen, soluble carbohydrates, and N/P ratio, and increased the concentrations of phosphorus, cellulose, UV-B-absorbing compounds, and lignin/N ratio. Thus, solar UV-B radiation affects the decomposition of barley litter directly and indirectly, and indirect effects are persistent for the whole decomposition period.  相似文献   

16.
Spectral balance and UV-B sensitivity of soybean: a field experiment   总被引:12,自引:5,他引:7  
Soybean [Glycine max (L.) Merr.] cultivar Essex was grown and tested for sensitivity to UV-B radiation (280–320 nm) under different combinations of UV-A (320–400 nm) and PFD (400–700 nm) radiation in four simultaneous field experiments. The radiation conditions were effected with combinations of filtered solar radiation and UV-B and UV-A lamps electronically modulated to track ambient radiation. Significant UV-B-caused decreases in total aboveground production and growth were seen only when PFD and UV-A were reduced to less than half their flux in sunlight. When PFD was low, UV-A appeared to be particularly effective in mitigating UV-B damage. However, when PFD was high, substantial UV-A did not appear to be required for UV-B damage mitigation. Leaf chlorophyll fluorescence did not indicate photosynthetic damage under any radiation combination. With UV-B, leaves in all experiments exhibited increased UV-absorbing pigments and decreased whole-leaf UV transmittance. Results of these field experiments indicate difficulties in extrapolating from UV-B experiments conducted in glasshouse or growth cabinet conditions to plant UV-B sensitivity in the field. Implications for UV radiation weighting functions in evaluating atmospheric ozone reduction are also raised.  相似文献   

17.
Levizou  Efi  Manetas  Yiannis 《Plant Ecology》2001,154(1-2):211-218
The combined effects of additional UV-B radiation and artificial wounding on leaf phenolics were studied in a short term field experiment with the drought semi-deciduous Mediterranean shrub Phlomis fruticosa L. The seedlings were grown under ambient or ambient plus supplemental UV-B radiation (biologically equivalent to a 15% ozone depletion over Patras, 38.3° N, 29.1° E) for 7 months before wounding. Unexpectedly, supplemental UV-B radiation decreased leaf phenolics. Subsequently, wounding was effected by removing leaf discs from some of the plants, while the rest remained intact and served as controls. Wounding significantly increased phenolics of the wounded leaves and the increase was more pronounced under supplemental UV-B radiation. In addition, wounding had a significant positive effect on the phenolics of the opposite, intact leaf, but only under additional UV-B radiation. We conclude that UV-B radiation, wounding and their combination may affect the chemical defensive potential of Phlomis fruticosa. In addition, increased levels of phenolics after herbivore attack under field conditions may afford extra protection against enhanced UV-B radiation levels.  相似文献   

18.
The aim of the present investigation was to define the role of soluble flavonoids as UV-B protectants in the primary leaf of barley (Hordeum vulgare L.). For this purpose we used a mutant line (Ant 287) from the Carlsberg collection of proanthocyanidin-free barley containing only 7% of total extractable flavonoids in the primary leaf as compared to the mother variety (Hiege 550/75). Seven-day-old leaves from plants grown under high visible light with or without supplementary UV-B radiation were used for the determination of UV-B sensitivity. UV-B-induced changes were assessed from parameters of chlorophyll fluorescence of photosystem II, including initial and maximum fluorescence, apparent quantum yield, and photochemical and non-photochemical quenching. A quartz fibre-optic microprobe was used to evaluate the amount of potentially harmful UV-B (310 nm radiation) penetrating into the leaf as a direct consequence of flavonoid deficiency. Our data indicate an essential role of flavonoids in UV-B protection of barley primary leaves. In leaves of the mutant line grown under supplementary UV-B, an increase in 310nm radiation in the mesophyll and a strong decrease in the quantum yield of photosynthesis were observed as compared to the corresponding mother variety. Primary leaves of liege responded to supplementary UV-B radiation with a 30% increase in the major flavonoid saponarin and a 500% increase in the minor compound lutonarin. This is assumed to be an efficient protective response since no changes in variable chlorophyll fluorescence were apparent. In addition, a further reduction in UV-B penetration into the mesophyll was recorded in these leaves.  相似文献   

19.
IR68 and Dular rice cultivars were grown under ambient, 13.0 (simulating 20% ozone depletion) and 19.1 (simulating 40% ozone depletion) kJ m-2 day-1 of biologically effective ultraviolet-B (UV-BBE) for 4 weeks. Plant height and leaf area were significantly reduced by supplemental UV-BBE radiation. Greater reduction in leaf area than of plant height was observed. A decrease in indole-3-acetic acid (IAA) content and increase in peroxidase and IAA oxidase activities of UV-B treated plants in both cultivars were observed compared with ambient control. Calmodulin content also decreased after plants were treated with high supplemental UV-B for two weeks and medium UV-B treatment for four weeks. The results indicated that peroxidase and IAA oxidase activities in rice leaves were stimulated by supplemental UV-B, resulting in the destruction of IAA which in turn may cause inhibition of rice leaf growth. Although the mechanism is unclear, calmodulin is most likely involved in leaf growth.  相似文献   

20.
Plants of Phaseolus vulgaris L. (cv. Stella) were grown in controlledconditions under three different irradiances of visible lightwith or without UV-B (280–320nm) radiation. The biologicallyeffective UV-B radiation (UV-BBE) was 6.17 kJ m–2 d–1,and simulated a c. 5% decrease in stratospheric ozone at 55.7?N,13.4?E. The photon flux densities of the photosyntheticallyactive radiation (PAR, 400–700 nm) were either 700 µmolm–2–1 (HL), 500, µmol m–2 s–1(ML) or 230 µmol m–2 s–1 PAR (LL). Under highlight (HL) conditions plus UV-B radiation, bean plants appearedmost resistant to the enhanced levels of UV-B radiation, andresponded only by increasing leaf thickness by c. 18%. A smallincrease in UV screening pigments was also observed. Both thelower irradiances (ML and LL) increased the sensitivity of theplants to UV-B radiation. Changes in leaf structure were alsoobserved. Photosystem II was inhibited under ML and LL togetherwith UV-B radiation, as determined by Chi fluorescence inductionand calculation of the fluorescence half-rise times. Leaf reflectivitymeasurements showed that the amount of PAR able to penetrateleaves of UV-B treated plants was reduced, and that a possiblecorrelation may exist between the reduced PAR levels, loss ofChi and lowered photosynthetic activity, especially for LL +UV-Bgrown plants, where surface reflection from leaves was highest.Changes in leaf chlorophyll content were mostly confined toplants grown under LL + UV-B, where a decrease of c. 20% wasfound. With regard to protective pigments (the carotenoids andUV screening pigments) plants subjected to different visiblelight conditions responded differently. Among the growth parametersmeasured, there was a substantial decrease in leaf area, particularlyunder LL + UV-B (c. 47% relative to controls), where leaf dryweight was also reduced by c. 25%. Key words: Chlorophyll fluorescence induction, bean, flavonoids, Phaseolus vulgaris, reflectance, UV-B radiation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号