首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
任海云 《Acta Botanica Sinica》1999,41(10):1099-1103
以植物花粉为材料,利用肌动蛋白可以与其单体结合蛋白———profilin特异性结合的特性及profilin的多聚脯氨酸亲和柱层析法,获得较大量、高纯度,具有活性的植物肌动蛋白,并用羧酸俄勒冈绿对所获纯化肌动蛋白进行了荧光标记。结果显示,从10g玉米(ZeamaysL.)花粉中可得到1.2mg具有绿色荧光的肌动蛋白,标记率为60%。体外实验结果表明,所得荧光肌动蛋白在适宜条件下可聚合成绿色荧光微丝。  相似文献   

2.
Actin cytoskeleton undergoes rapid reorganization in response to internal and external cues. How the dynamics of actin cytoskeleton are regulated, and how its dynamics relate to its function are fundamental questions in plant cell biology. The pollen tube is a well characterized actin-based cell morphogenesis in plants. One of the striking features of actin cytoskeleton characterized in the pollen tube is its surprisingly low level of actin polymer. This special phenomenon might relate to the function of actin cytoskeleton in pollen tubes. Understanding the molecular mechanism underlying this special phenomenon requires careful analysis of actin-binding proteins that modulate actin dynamics directly. Recent biochemical and biophysical analyses of several highly conserved plant actin-binding proteins reveal unusual and unexpected properties, which emphasizes the importance of carefully analyzing their action mechanism and cellular activity. In this review, we highlight an actin monomer sequestering protein, a barbed end capping protein and an F-actin severing and dynamizing protein in plant. We propose that these proteins function in harmony to regulate actin dynamics and maintain the low level of actin polymer in pollen tubes.  相似文献   

3.
Actin Purified from Maize Pollen Functions in Living Plant Cells   总被引:12,自引:1,他引:11       下载免费PDF全文
A vast array of actin binding proteins (ABPs), together with intracellular signaling molecules, modulates the spatiotemporal distribution of actin filaments in eukaryotic cells. To investigate the complex regulation of actin organization in plant cells, we designed experiments to reconstitute actin-ABP interactions in vitro with purified components. Because vertebrate skeletal [alpha]-actin has distinct and unpredictable binding affinity for nonvertebrate ABPs, it is essential that these in vitro studies be performed with purified plant actin. Here, we report the development of a new method for isolating functional actin from maize pollen. The addition of large amounts of recombinant profilin to pollen extracts facilitated the depolymerization of actin filaments and the formation of a profilin-actin complex. The profilin-actin complex was then isolated by affinity chromatography on poly-L-proline-Sepharose, and actin was selectively eluted with a salt wash. Pollen actin was further purified by one cycle of polymerization and depolymerization. The recovery of functional actin by this rapid and convenient procedure was substantial; the average yield was 6 mg of actin from 10 g of pollen. We undertook an initial physicochemical characterization of this native pollen actin. Under physiological conditions, pollen actin polymerized with kinetics similar in quality to those for vertebrate [alpha]-actin and had a critical concentration for assembly of 0.6 [mu]M. Moreover, pollen actin interacted specifically and in a characteristic fashion with several ABPs. Tradescantia cells were microinjected and used as an experimental system to study the behavior of pollen actin in vivo. We demonstrated that purified pollen actin ameliorated the effects of injecting excess profilin into live stamen hair cells.  相似文献   

4.
The self-incompatibility system of the plant species Brassica is controlled by the S-locus, which contains S-RECEPTOR KINASE (SRK) and S-LOCUS PROTEIN11 (SP11). SP11 binding to SRK induces SRK autophosphorylation and initiates a signaling cascade leading to the rejection of self pollen. However, the mechanism controlling hydration and germination arrest during self-pollination is unclear. In this study, we examined the role of actin, a key cytoskeletal component regulating the transport system for hydration and germination in the papilla cell during pollination. Using rhodamine-phalloidin staining, we showed that cross-pollination induced actin polymerization, whereas self-pollination induced actin reorganization and likely depolymerization. By monitoring transiently expressed green fluorescent protein fused to the actin-binding domain of mouse talin, we observed the concentration of actin bundles at the cross-pollen attachment site and actin reorganization and likely depolymerization at the self-pollen attachment site; the results correspond to those obtained by rhodamine-phalloidin staining. We further showed that the coat of self pollen is sufficient to mediate this response. The actin-depolymerizing drug cytochalasin D significantly inhibited pollen hydration and germination during cross-pollination, further emphasizing a role for actin in these processes. Additionally, three-dimensional electron microscopic tomography revealed the close association of the actin cytoskeleton with an apical vacuole network. Self-pollination disrupted the vacuole network, whereas cross-pollination led to vacuolar rearrangements toward the site of pollen attachment. Taken together, our data suggest that self- and cross-pollination differentially affect the dynamics of the actin cytoskeleton, leading to changes in vacuolar structure associated with hydration and germination.  相似文献   

5.
在三维结构上对百合花粉母细胞actin的免疫定位   总被引:2,自引:0,他引:2  
传统的切片仅仅能够显示样品的平面结构,不能用于细胞中三维网络结构的研究。笔者在DGD(diethylene glycol distearate)包埋去包埋的基础上,结合电镜免疫胶体金技术对大卫百合花粉母细胞胞间及胞内细胞的骨架系统进行了研究,观察到高反差细胞微梁结构的三维网络,actin这一细胞骨架的主要成员被定位在该微梁结构纤维上。三维结构上的研究表明,actin不但是植物细胞核及细胞质骨架的成员,而且也存在于胞间连接结构(胞质桥和胞间连丝)中,推测它可能与细胞融合有关。实验结果同时表明,三维结构免疫胶体金技术对于细胞骨架和核基质的结构蛋白研究是行之有效的。  相似文献   

6.
Gibbon BC  Kovar DR  Staiger CJ 《The Plant cell》1999,11(12):2349-2363
The actin cytoskeleton is absolutely required for pollen germination and tube growth, but little is known about the regulation of actin polymer concentrations or dynamics in pollen. Here, we report that latrunculin B (LATB), a potent inhibitor of actin polymerization, had effects on pollen that were distinct from those of cytochalasin D. The equilibrium dissociation constant measured for LATB binding to maize pollen actin was determined to be 74 nM. This high affinity for pollen actin suggested that treatment of pollen with LATB would have marked effects on actin function. Indeed, LATB inhibited maize pollen germination half-maximally at 50 nM, yet it blocked pollen tube growth at one-tenth of that concentration. Low concentrations of LATB also caused partial disruption of the actin cytoskeleton in germinated maize pollen, as visualized by light microscopy and fluorescent-phalloidin staining. The amounts of filamentous actin (F-actin) in pollen were quantified by measuring phalloidin binding sites, a sensitive assay that had not been used previously for plant cells. The amount of F-actin in maize pollen increased slightly upon germination, whereas the total actin protein level did not change. LATB treatment caused a dose-dependent depolymerization of F-actin in populations of maize pollen grains and tubes. Moreover, the same concentrations of LATB caused similar depolymerization in pollen grains before germination and in pollen tubes. These data indicate that the increased sensitivity of pollen tube growth to LATB was not due to general destabilization of the actin cytoskeleton or to decreases in F-actin amounts after germination. We postulate that germination is less sensitive to LATB than tube extension because the presence of a small population of LATB-sensitive actin filaments is critical for maintenance of tip growth but not for germination of pollen, or because germination is less sensitive to partial depolymerization of the actin cytoskeleton.  相似文献   

7.
Actin filaments (AFs) and microtubules (MTs) are essential constituentsof the cytoskeleton in plant cells. Sliding of motor proteinsalong these cytoskeletons is believed to be necessary in variouscellular functions. In our previous study [Yokota et al. (1995b)Plant Cell Physiol. 36: 1563], we succeeded in isolating tubulinfrom cultured tobacco BY-2 cells, which in its polymerized formcan be translocated by the MT-based motor protein, dynein, invitro. In the present study, the method was modified to purifyboth tubulin and actin. Purified actin could be polymerizedand decorated by subfragment-1 (S-1) of skeletal muscle myosin.In the motility assay in vitro, AFs, thus prepared, could betranslocated by plant myosin isolated from lily pollen tubes.The sliding velocity of those AFs was similar to that of animalAFs prepared from chicken breast muscle, and comparable withthe velocity of cytoplasmic streaming in living pollen tubesof lily. Using S-1, motility assay was carried out. The slidingvelocity of plant AFs and that of muscle AFs were also similar.As far as we know, this is the first report of the sliding ofisolated plant AFs with myosin. (Received April 30, 1999; Accepted September 7, 1999)  相似文献   

8.
The actin binding protein profilin has dramatic effects on actin polymerization in vitro and in living cells. Plants have large multigene families encoding profilins, and many cells or tissues can express multiple profilin isoforms. Recently, we characterized several profilin isoforms from maize pollen for their ability to alter cytoarchitecture when microinjected into living plant cells and for their association with poly-L-proline and monomeric actin from maize pollen. In this study, we characterize a new profilin isoform from maize, which has been designated ZmPRO4, that is expressed predominantly in endosperm but is also found at low levels in all tissues examined, including mature and germinated pollen. The affinity of ZmPRO4 for monomeric actin, which was measured by two independent methods, is similar to that of the three profilin isoforms previously identified in pollen. In contrast, the affinity of ZmPRO4 for poly-L-proline is nearly twofold higher than that of native pollen profilin and the other recombinant profilin isoforms. When ZmPRO4 was microinjected into plant cells, the effect on actin-dependent nuclear position was significantly more rapid than that of another pollen profilin isoform, ZmPRO1. A gain-of-function mutant (ZmPRO1-Y6F) was created and found to enhance poly-L-proline binding activity and to disrupt cytoarchitecture as effectively as ZmPRO4. In this study, we demonstrate that profilin isoforms expressed in a single cell can have different effects on actin in living cells and that the poly-L-proline binding function of profilin may have important consequences for the regulation of actin cytoskeletal dynamics in plant cells.  相似文献   

9.
ATFIM1 is a widely expressed gene in Arabidopsis thaliana that encodes a putative actin filament-crosslinking protein, AtFim1, belonging to the fimbrin/plastin class of actin-binding proteins. In this report we have used bacterially expressed AtFim1 and actin isolated from Zea mays pollen to demonstrate that AtFim1 functions as an actin filament-crosslinking protein. AtFim1 binds pollen actin filaments (F-actin) in a calcium-independent manner, with an average dissociation constant (Kd) of 0.55+/-0.21 microM and with a stoichiometry at saturation of 1:4 (mol AtFim1 : mol actin monomer). AtFim1 also crosslinks pollen F-actin by a calcium-independent mechanism, in contrast to crosslinking of plant actin by human T-plastin, a known calcium-sensitive actin-crosslinking protein. When micro-injected at high concentration into living Tradescantia virginiana stamen hair cells, AtFim1 caused cessation of both cytoplasmic streaming and transvacuolar strand dynamics within 2-4 min. Using the 'nuclear displacement assay' as a measure of the integrity of the actin cytoskeleton in living stamen hair cells, we demonstrated that AtFim1 protects actin filaments in these cells from Z. mays profilin (ZmPRO5)-induced depolymerization, in a dose-dependent manner. The apparent ability of AtFim1 to protect actin filaments in vivo from profilin-mediated depolymerization was confirmed by in vitro sedimentation assays. Our results indicate that AtFim1 is a calcium-independent, actin filament-crosslinking protein that interacts with the actin cytoskeleton in living plant cells.  相似文献   

10.
Mechanical forces can regulate various functions in living cells. The cytoskeleton is a crucial element for the transduction of forces in cell-internal signals and subsequent biological responses. Accordingly, many studies in cellular biomechanics have been focused on the role of the contractile acto-myosin system in such processes. A widely used method to observe the dynamic actin network in living cells is the transgenic expression of fluorescent proteins fused to actin. However, adverse effects of GFP-actin fusion proteins on cell spreading, migration and cell adhesion strength have been reported. These shortcomings were shown to be partly overcome by fusions of actin binding peptides to fluorescent proteins. Nevertheless, it is not understood whether direct labeling by actin fusion proteins or indirect labeling via these chimaeras alters biomechanical responses of cells and the cytoskeleton to forces. We investigated the dynamic reorganization of actin stress fibers in cells under cyclic mechanical loading by transiently expressing either egfp-Lifeact or eyfp-actin in rat embryonic fibroblasts and observing them by means of live cell microscopy. Our results demonstrate that mechanically-induced actin stress fiber reorganization exhibits very different kinetics in EYFP-actin cells and EGFP-Lifeact cells, the latter showing a remarkable agreement with the reorganization kinetics of non-transfected cells under the same experimental conditions.  相似文献   

11.
Summary We report on the novel features of the actin cytoskeleton and its development in characean internodal cells. Images obtained by confocal laser scanning microscopy after microinjection of living cells with fluorescent derivatives of F-actin-specific phallotoxins, and by modified immunofluorescence methods using fixed cells, were mutually confirmatory at all stages of internodal cell growth. The microinjection method allowed capture of 3-dimensional images of high quality even though photobleaching and apparent loss of the probes through degradation and uptake into the vacuole made it difficult to record phallotoxin-labelled actin over long periods of time. When injected at appropriate concentrations, phallotoxins affected neither the rate of cytoplasmic streaming nor the long-term viability of cells. Recently formed internodal cells have relatively disorganized actin bundles that become oriented in the subcortical cytoplasm approximately parallel to the newly established long axis and traverse the cell through transvacuolar strands. In older cells with central vacuoles not traversed by cytoplasmic strands, subcortical bundles are organized in parallel groups that associate closely with stationary chloroplasts, now in files. The parallel arrangement and continuity of actin bundles is maintained where they pass round nodal regions of the cell, even in the absence of chloroplast files. This study reports on two novel structural features of the characean internodal actin cytoskeleton: a distinct array of actin strands near the plasma membrane that is oriented transversely during cell growth and rings of actin around the chloroplasts bordering the neutral line, the zone that separates opposing flows of endoplasm.  相似文献   

12.
The organization and dynamics of the actin cytoskeleton play key roles in many aspects of plant cell development. The actin cytoskeleton responds to internal developmental cues and environmental signals and is involved in cell division, subcellular organelle movement, cell polarity and polar cell growth. The tipgrowing pollen tubes provide an ideal model system to investigate fundamental mechanisms of underlying polarized cell growth. In this system, most signaling cascades required for tip growth...  相似文献   

13.
The cytoskeleton of plant and animal cells serves as a transmitter, transducer, and effector of cell signaling mechanisms. In plants, pathways for proliferation, differentiation, intracellular vesicular transport, cell-wall biosynthesis, symbiosis, secretion, and membrane recycling depend on the organization and dynamic properties of actin- and tubulin-based structures that are either associated with the plasma membrane or traverse the cytoplasm. Recently, a new in vivo cytoskeletal assay (cell optical displacement assay) was introduced to measure the tension within subdomains (cortical, transvacuolar, and perinuclear) of the actin network in living plant cells. Cell optical displacement assay measurements within soybean (Glycine max [L.]) root cells previously demonstrated that lipophilic signals, e.g. linoleic acid and arachidonic acid or changes in cytoplasmic pH gradients, could induce significant reductions in the tension within the actin network of transvacuolar strands. In contrast, enhancement of cytoplasmic free Ca2+ resulted in an increase in tension. In the present communication we have used these measurements to show that a similar antipodal pattern of activity exists for auxins and cytokinins (in their ability to modify the tension within the actin network of plant cells). It is suggested that these growth substances exert their effect on the cytoskeleton through the activation of signaling cascades, which result in the production of lipophilic and ionic second messengers, both of which have been demonstrated to directly effect the tension within the actin network of soybean root cells.  相似文献   

14.
Higher order actin filament structures are necessary for cytoplasmic streaming, organelle movement, and other physiological processes. However, the mechanism by which the higher order cytoskeleton is formed in plants remains unknown. In this study, we identified a novel actin-cross-linking protein family (named CROLIN) that is well conserved only in the plant kingdom. There are six isovariants of CROLIN in the Arabidopsis genome, with CROLIN1 specifically expressed in pollen. In vitro biochemical analyses showed that CROLIN1 is a novel actin-cross-linking protein with binding and stabilizing activities. Remarkably, CROLIN1 can cross-link actin bundles into actin networks. CROLIN1 loss of function induces pollen germination and pollen tube growth hypersensitive to latrunculin B. All of these results demonstrate that CROLIN1 may play an important role in stabilizing and remodeling actin filaments by binding to and cross-linking actin filaments.  相似文献   

15.
The actin cytoskeleton is a dynamic network required for intracellular transport, signal transduction, movement, attachment to the extracellular matrix, cellular stiffness and cell shape. Cell shape and the actin cytoskeletal configuration are linked to chondrocyte phenotype with regard to gene expression and matrix synthesis. Historically, the chondrocyte actin cytoskeleton has been studied after formaldehyde fixation - precluding real-time measurements of actin dynamics, or in monolayer cultured cells. Here we characterize the actin cytoskeleton of living low-passage human chondrocytes grown in three-dimensional culture using a stably expressed actin-GFP construct. GFP-actin expression does not substantially alter the production of endogenous actin at the protein level. GFP-actin incorporates into all actin structures stained by fluorescent phalloidin, and does not affect the actin cytoskeleton as seen by fluorescence microscopy. GFP-actin expression does not significantly change the chondrocyte cytosolic stiffness. GFP-actin does not alter the gene expression response to cytokines and growth factors such as IL-1band TGF-b. Finally, GFP-actin does not alter production of extracellular matrix as measured by radiosulfate incorporation. Having established that GFP-actin does not measurably affect the chondrocyte phenotype, we tested the hypothesis that IL-1band TGF-bdifferentially alter the actin cytoskeleton using time-lapse microscopy. TGF-bincreases actin extensions and lamellar ruffling indicative of Rac/CDC42 activation, while IL-1bcauses cellular contraction indicative of RhoA activation. The ability to visualize GFP-actin in living chondrocytes in 3D culture without disrupting the organization or function of the cytoskeleton is an advance in chondrocyte cell biology and provides a powerful tool for future studies in actin-dependent chondrocyte differentiation and mechanotransduction pathways.  相似文献   

16.
Microspores develop inside the anther, where they are surrounded by nourishing tapetal cells. However, many cellular processes occurring during microspore development in the locule are poorly characterized. The actin cytoskeleton is known to play a crucial role in various aspects of the plant developmental process. During pollen tube tip growth, actin cytoskeleton serves as an efficient molecular transportation track, although how it functions in pollen development is unknown. The plant actin bundler PLIM2s have been shown to regulate actin bundling in different cells. Here, we investigate the biological function of three Arabidopsis pollen-specific LIM proteins, PLIM2a, PLIM2b, and PLIM2c (collectively, PLIM2s), in pollen development and tube growth. Variable degrees of suppressed expression of the PLIM2s by RNA interference resulted in aberrant phenotypes. Complete suppression of the PLIM2s totally disrupted pollen development, producing abortive pollen grains and rendering the transgenic plants sterile. Partial suppression of the PLIM2s arrested pollen tube growth to a lesser extent, resulting in short and swollen pollen tubes. Finally, the PLIM2c promoter initiated expression in pollen during stamen filament elongation, and the PLIM2c protein was located on particle structures in the developing pollen grains in Arabidopsis. These suggest that the actin bundler, PLIM2s, are an important factor for Arabidopsis pollen development and tube growth.  相似文献   

17.
利用绿色荧光蛋白基因结合鼠Talin基因表达技术及水稻转基因技术,在未成熟花粉发育期(即生殖细胞在形成后从靠壁部位移向中央部位的阶段)的水稻(Oryza sativa L.)内发现了一系列前人未曾报道过的微丝骨架的形成和多变过程。在这一发育阶段,未成熟花粉内的生殖细胞呈圆形,中央部位存有一个大液泡,大量微丝在细胞的中央胞质内形成。微丝首先在营养核的核膜表面形成两个集结中心,中心内的微丝呈短粗状。尔后,中心微丝不断瞎长,最终在细胞中央的胞质内形成一个非常 类似多个纺锤体结合在一起的网络结构。这一网络的中间部位经常包围着营养核和生殖细胞,网络的部分微丝则与存在周缘细胞质(或称周质)的微丝网络形成连接,在连接点部位则形成一些由微丝环状组成的结构。未成熟花粉中央的微丝网络可能与营养核和生殖细胞在未成熟花粉内的运动有密切关系。  相似文献   

18.
Actin polymerization processes in plant cells   总被引:5,自引:0,他引:5  
Growing evidence shows that the actin cytoskeleton is a key effector of signal transduction, which controls and maintains the shape of plant cells, as well as playing roles in plant morphogenesis. Recently, several signaling pathways, including those triggered by hormones, Ca(2+), and cAMP, have been reported to be connected to the reorganization of the actin cytoskeleton. The molecular mechanisms involved in such signaling cascades are, however, largely unknown. The Arabidopsis genome sequence is a valuable tool for identifying some of the highly conserved molecules that are involved in such signaling cascades. Recent work has begun to unravel these complex pathways using a panoply of techniques, including genetic analysis, live-cell imaging of intracellular actin dynamics, in vivo localization of factors that are involved in the control of actin dynamics, and the biochemical characterization of how these factors function.  相似文献   

19.
20.
Fei Du  Haiyun Ren 《Protoplasma》2011,248(2):239-250
The actin cytoskeleton is one of the most important components of eukaryotic cytoskeletons. It participates in numerous crucial procedures of cells and has been studied by using various methods. The development and application of appropriate probes for actin visualization is the first and foremost step for functional analysis of actin in vivo. Since the actin cytoskeleton is a highly dynamic and sensitive structure, methods previously used to visualize actin often harm cells and cannot reveal the native state of the actin cytoskeleton in living cells. The development of labeling technologies for living plant cells, especially the emergence and application of green fluorescent protein-tagged actin markers, has provided new insights into the structure and function of the actin cytoskeleton in vivo. There has been a number of probes for actin labeling in living plant cells though they each present different advantages and defects. In this review, we discuss and compare those widely used methods for actin visualization and analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号