首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
Mesenchymal stem cells (MSCs) were treated with bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) dose-dependently and time-dependently. Together they caused a strong synergistic effect on the osteogenic differentiation of MSCs, with lower concentrations of each factor being enough to show the synergistic promotion (50 ng BMP-2/ml, 1 ng VEGF/ml and 10 ng bFGF/ml). When both VEGF and bFGF were added in the early proliferating stage (the first 7 days) and BMP-2 was added in the late differentiation stage (the last 7 days), osteogenic differentiation of MSCs could be enhanced more effectively.  相似文献   

2.
Vascular endothelial growth factor (VEGF), plays a key role in angiogenesis. Many endogenous factors can affect angiogenesis in endothelial cells. VEGF is known to be a strong migration, sprouting, survival, and proliferation factor for endothelial cells during angiogenesis in endothelial cells. Searching for novel genes, involved in VEGF signaling during angiogenesis, we carried out differential display polymerase chain reaction on RNA from VEGF-stimulated human umbilical vein endothelial cells (HUVECs). In this study, follistatin (FS) differentially expressed in VEGF-treated HUVECs, compared with controls. Addition of VEGF (10 ng/mL) produced an approximately 11.8-fold increase of FS mRNA. FS or VEGF produced approximately 1.8- or 2.9-fold increases, respectively, in matrix metalloproteinase-2 (MMP-2) secretion for 12 h, compared to the addition of a control buffer. We suggest that VEGF may affect the angiogenic effect of HUVECs, through a combination of the direct effects of VEGF itself, and the indirect effects mediated via induction of FSin vitro.  相似文献   

3.
Angiopoietin-2 (Ang2) promotes tumor growth and metastasis by specifically priming endothelial cells for angiogenesis. Multiple angiogenic factors up-regulate expression of Ang2, suggesting that Ang2 may be the common pathway in growth factor initiated-angiogenesis. Using phage display technology, we generated single chain Fv molecule against human Ang2 (scFv-Ang2) with high affinity (K(d)=0.01 microM) from a mouse phage antibody library. Compared with control scFv, the mouse scFv-Ang2 completely inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) treated with vascular endothelial growth factor (VEGF, 10 ng/ml), but not that of the cells treated with either basic fibroblast growth factor, or angiotensin II, or Ang2. Chemotaxis assay showed that scFv-Ang2 could block completely Ang2-induced (100%) and partially VEGF-induced (49%) migration of HUVECs. The results indicate that Ang2 takes part in the VEGF-induced angiogenesis and scFv-Ang2 might be a promising compound in blocking both VEGF and Ang2 induced angiogenesis.  相似文献   

4.
5.
The CXC chemokine platelet factor 4 (PF4) appears to inhibit tumour growth through its modulation of the activity of angiogenic growth factors. We investigated the heparan sulphate-dependent mechanism of PF4 inhibition of fibroblast growth factor 2 (FGF-2). The ability of PF4 to bind simultaneously to both FGF-2 and HS was assessed using affinity gel chromatography. Thirty-three to forty-two percent more HS bound to the FGF-2 affinity gel in the presence of PF4 than with HS alone. Protection assays showed that PF4 and FGF-2 bound to adjacent or overlapping sites together covering a 12 kDa stretch of HS. This study suggests that the three components may form a ternary complex. PF4 released at sites of angiogenesis may bind to angiogenic growth factors attached to endothelial cell surface HS to disrupt or prevent them from interacting with their signalling receptors. Manipulation of this mechanism may prove useful for clinical intervention of angiogenesis.  相似文献   

6.
The anticoagulant serpin antithrombin acquires a potent antiangiogenic activity upon undergoing conformational alterations to cleaved or latent forms. Here we show that antithrombin antiangiogenic activity is mediated at least in part through the ability of the conformationally altered serpin to block the proangiogenic growth factors fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF) from forming signaling competent ternary complexes with their protein receptors and heparan sulfate co-receptors on endothelial cells. Cleaved and latent but not native forms of antithrombin blocked the formation of FGF-2-FGF receptor-1 ectodomain-heparin ternary complexes, and the dimerization of these complexes in solution and similarly inhibited the formation of FGF-2-heparin binary complexes and their dimerization. Only antiangiogenic forms of antithrombin likewise inhibited (125)I-FGF-2 binding to its low affinity heparan sulfate co-receptor and blocked FGF receptor-1 autophosphorylation and p42/44 MAP kinase phosphorylation in cultured human umbilical vein endothelial cells (HUVECs). Moreover, treatment of HUVECs with heparinase III to specifically eliminate the FGF-2 heparan sulfate co-receptor suppressed the ability of antiangiogenic antithrombin to inhibit growth factor-stimulated proliferation. Antiangiogenic antithrombin inhibited full-length VEGF(165) stimulation of HUVEC proliferation but did not affect the stimulation of cells by the heparin-binding domain-deleted VEGF(121). Taken together, these results demonstrate that antiangiogenic forms of antithrombin block the proangiogenic effects of FGF-2 and VEGF on endothelial cells by competing with the growth factors for binding the heparan sulfate co-receptor, which mediates growth factor-receptor interactions. Moreover, the inability of native antithrombin to bind this co-receptor implies that native and conformationally altered forms of antithrombin differentially bind proangiogenic heparan sulfate domains.  相似文献   

7.
The spatial and temporal pattern of the appearance of the fibroblast growth factor proteins (FGF-8 and FGF-10), the bone morphogenetic proteins (BMP-2/4 subfamily and BMP-7) and the vascular endothelial growth factor protein (VEGF) was investigated in the human mesonephros and metanephros of the 5-9 week-old conceptuses. In the mesonephros, both FGF's and BMP's were found in all structures and their expression slightly decreased in the early fetal period. VEGF positivity appeared in all mesonephric structures, and increased in the fetal period coincidently with formation of the mesonephric blood vessel network. In the metanephros, FGF-8 first appeared only in the metanephric mesenchyme, but from the 7th week on, its reactivity increased and spread to other metanephric structures. FGF-10 positive cells appeared in all metanephric structures already in the 5th week, and slightly intensified with progression of development. Cell survival and nephrogenesis in the permanent kidney might be associated with the appearance of both growth factors. Both BMP-2/4 and BMP-7 displayed a similar pattern of reactivity in all metanephric structures, and their reactivity intensified with advancing development. Alterations in their pattern of appearance might lead to the formation of small and dysplastic kidneys. Already in the earliest developmental stages, VEGF protein appeared in all metanephric structures. At later stages, VEGF showed more intense reaction in the collecting system than in the differentiating nephrons and interstitium. Due to VEGF involvement in vasculogenesis and angiogenesis, abnormal VEGF appearance might lead to impaired formation of the blood vessel network in the human permanent kidney.  相似文献   

8.
To explore the potential of combined delivery of osteogenic and angiogenic factors to bone marrow stromal cells (BMSCs) for repair of critical-size bone defects, we followed the formation of bone and vessels in tissue-engineered constructs in nude mice and rabbit bone defects upon introducing different combinations of BMP-2, vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) to BMSCs with adenoviral vectors. Better osteogenesis and angiogenesis were found in co-delivery group of BMP-2, VEGF and angiopoietin-1 than any other combination of these factors in both animal models, indicating combined gene delivery of angiopoietin-1 and VEGF165 into a tissue-engineered construct produces an additive effect on BMP-2-induced osteogenesis.  相似文献   

9.
The quinazoline-derived alpha1-adrenoceptor antagonists, doxazosin and terazosin have been recently shown to induce an anoikis effect in human prostate cancer cells and to suppress prostate tumor vascularity in clinical specimens [Keledjian and Kyprianou, 2003]. This study sought to examine the ability of doxazosin to affect the growth of human vascular endothelial cells and to modulate vascular endothelial growth factor (VEGF)-mediated angiogenesis. Human umbilical vein endothelial cells (HUVECs) were used as an in vitro model to determine the effect of doxazosin on cell growth, apoptosis, adhesion, migration, and angiogenic response of endothelial cells. The effect of doxazosin on cell viability and apoptosis induction of human endothelial cells, was evaluated on the basis of trypan blue and Hoechst 33342 staining, respectively. Doxazosin antagonized the VEGF-mediated angiogenic response of HUVEC cells, by abrogating cell adhesion to fibronectin and collagen-coated surfaces and inhibiting cell migration, via a potential downregulation of VEGF expression. Furthermore there was a significant suppression of in vitro angiogenesis by doxazosin on the basis of VEGF-mediated endothelial tube formation (P < 0.01). Fibroblast growth factor-2 (FGF-2) significantly enhanced HUVEC cell tube formation (P < 0.01) and this effect was suppressed by doxazosin. These findings provide new insight into the ability of doxazosin to suppress the growth and angiogenic response of human endothelial cells by interfering with VEGF and FGF-2 action. This evidence may have potential therapeutic significance in using this quinazoline-based compound as an antiangiogenic agent for the treatment of advanced prostate cancer.  相似文献   

10.
11.
When FGF-1 or FGF-2 and VEGF were added together, the mitogenic effect of FGF-1 or FGF-2 and VEGF on HUVEC was additive. However, when HUVECs were preincubated for 2 days with 10 ng/ml FGF-1 in the absence of VEGF, the Scatchard plot of [125I]VEGF binding sites was shifted to the right: both affinity classes of VEGF binding sites were equally affected, such that the total number of sites increased twofold. It is suggested that this type of interaction may be related to tumor angiogenesis and wound repair.  相似文献   

12.
R-(-)-β-O-methylsynephrine (OMe-Syn) is an active compound isolated from a plant of the Rutaceae family. We conducted cell proliferation assays on various cell lines and found that OMe-Syn more strongly inhibited the growth of human umbilical vein endothelial cells (HUVECs) than that of other normal and cancer cell lines tested. In angiogenesis assays, it inhibited vascular endothelial growth factor (VEGF)-induced invasion and tube formation of HUVECs with no toxicity. The anti-angiogenic activity of OMe-Syn was also validated in vivo using the chorioallantonic membrane (CAM) assay in growing chick embryos. Expression of the growth factors VEGF, hepatocyte growth factor, and basic fibroblast growth factor was suppressed by OMe-Syn in a dose-dependent manner. Taken together, our results indicate that this compound could be a novel basis for a small molecule targeting angiogenesis.  相似文献   

13.
Investigations were carried out to understand the molecular basis of the effect of ursolic acid on angiogenesis by analysing its effects on the expression of modulators of angiogenesis by HUVECs in culture. Treatment with ursolic acid increased the expression of adhesion molecules such as E-selectin, CD-31 and I-CAM, upregulated angiogenic growth factors such as VEGF and FGF-2 and their receptors and caused increase in the ratio of PGE2 to PGD2. Reversal of the effect of ursolic acid by inhibition of PI3K-Akt pathway and increase in the level of phospho Akt suggest that the ursolic acid effect is mediated through PI3K-Akt pathway.  相似文献   

14.
Indomethacin is a nonsteroidal anti-inflammatory drug used frequently to control chronic or temporary pain. In the kidney, indomethacin decreases medullary and cortical perfusion, resulting in hypoxia. Kidney hypoxia has many effects, including changes in gene expression, and is a strong stimulus for angiogenesis. Other angiogenic factors include vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2), transforming growth factor beta 1 (TGFbeta1), and platelet-derived growth factor (PDGF). Our goal was to examine the influence of indomethacin on mRNA expression of these factors and their selected receptors in the renal cortex of healthy rats. Groups of 8 healthy, male, six-week-old Wistar rats received either indomethacin (5 mg/kg/day) or placebo orally for three months. RNA from renal cortex biopsies was analyzed by real-time polymerase chain reaction to quantify the mRNA levels of each cytokine. We observed significantly higher mRNA levels for VEGF (1.73-fold), FGF-2 (5.6-fold) and TGFbeta receptor III (2.93-fold), PDGF receptor alpha (2.93-fold) and receptor beta (2.91-fold) in rats receiving indomethacin compared to rats given placebo (p < 0.05). Amounts of mRNA for TGFbeta1, PDGF, FGF receptors 1 and 2 and TGFbeta receptor I did not differ between analysed groups. Our data indicates that indomethacin may regulate the expression of potent angiogenic factors VEGF and FGF-2.  相似文献   

15.
To examine the role of endothelial heparan sulfate during angiogenesis, we generated mice bearing an endothelial-targeted deletion in the biosynthetic enzyme N-acetylglucosamine N-deacetylase/N-sulfotransferase 1 (Ndst1). Physiological angiogenesis during cutaneous wound repair was unaffected, as was growth and reproductive capacity of the mice. In contrast, pathological angiogenesis in experimental tumors was altered, resulting in smaller tumors and reduced microvascular density and branching. To simulate the angiogenic environment of the tumor, endothelial cells were isolated and propagated in vitro with proangiogenic growth factors. Binding of FGF-2 and VEGF(164) to cells and to purified heparan sulfate was dramatically reduced. Mutant endothelial cells also exhibited altered sprouting responses to FGF-2 and VEGF(164), reduced Erk phosphorylation, and an increase in apoptosis in branching assays. Corresponding changes in growth factor binding to tumor endothelium and apoptosis were also observed in vivo. These findings demonstrate a cell-autonomous effect of heparan sulfate on endothelial cell growth in the context of tumor angiogenesis.  相似文献   

16.
应用鸡胚绒毛尿囊膜模型(chick embryo chorioallantoic membrane,CAM),观察人骨肉瘤OS-732细胞系诱导血管生成过程及血管生长相关因子的表达。结果显示,本细胞系具有较强的促血管生成能力并表达血管内皮生长因子(vacular endothelial growth factor,VEGF),碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF0,鸡胚绒毛尿囊膜OS-732细胞系接种瘤细胞中血管内皮生长因子(VEGF),转化生长因子β1(Transforming growth factor,TGF-β1)均呈阳性表达,而且VEGF呈持续高表达,结果表明VEGF,bFGF、TGF-β1可能共同参与骨肉瘤OS-732细胞系诱导的血管生成,而VEGF可能起着主要作用,提示阻断VEGF的作用可能影响骨肉瘤OS-732细胞系诱导的血管生成,此研究为以VEGF为靶点进行抗血管生成实验提供了依据。  相似文献   

17.
gamma-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of gamma-secretase in the regulation of postnatal angiogenesis using gamma-secretase inhibitors (GSI). In endothelial cell (EC), gamma-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-induced angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that gamma-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.  相似文献   

18.
19.
Tumor angiogenesis is believed to result from an imbalance of pro- and anti-angiogenic factors, some of which are candidates for targeted therapy. Such therapy has raised hopes for patients with undifferentiated thyroid carcinomas, who are facing a grave prognosis with a survival of only months. In this study, in vivo growth of xenografted human thyroid carcinomas unexpectedly responded quite differently to neutralizing anti-vascular endothelial growth factor (VEGF) antibody. In particular, lasting inhibition as well as accelerated growth occurred after treatment. Consequently, a panel of anti-angiogenic factors was addressed in a representative sample of thyroid carcinoma lines. VEGF, fibroblast growth factor (FGF-2), and endostatin were demonstrated by Western blotting and EIA, whereas PDGF-A, PDGF-B, and IL-6 were negative. Quantification of VEGF, FGF-2, and endostatin revealed a wide range of concentrations from 500 to 4,200 pg/ml VEGF, 5 to 60 pg/ml FGF-2, and 50 to 300 pg/ml endostatin, not related to a particular histologic thyroid carcinoma background. Angiostatin (kringles 1-3) was detected in all, but one of the cell lines. Finally, aaATIII was confirmed in FTC133 cells. These data highlight the complex regulation of angiogenesis in thyroid carcinoma cell lines and suggest that the array of angiogenic factors differs markedly between individual cell lines. For the first time, angiostatin, endostatin, and possibly also aaATIII are identified as novel candidate regulators of angiogenesis in thyroid carcinoma cells.  相似文献   

20.
The CAM is an extraembryonic membrane which serves as a gas exchange surface and its respiratory function is provided by an extensive capillary network. The development of the vascular system of the CAM is a complex, highly regulated process that depends on genetic and epigenetic factors expressed by endothelial and non-endothelial cells. In spite of the evidence that several growth factors are angiogenic in the CAM assay, poorly investigated is their role in the development of the CAM's vascular system. This article reviews our studies concerning the role of exogenous and endogenous fibroblast growth factor-2 (FGF-2) in the CAM vascularization. The findings in all these studies support the importance of FGF-2 as an autocrine paracrine stimulator of angiogenesis and its key role in the development of the vascular system in the avian embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号