首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N-Acetyl-beta-hexosaminidase A was purified 1000-fold from human urine by chromatography on DEAE-Sephadex followed by concanavalin A--Sepharose affinity chromatography. The optimal pH range was 4.4--4.5 for both the N-acetylglucosamine and N-acetylgalactosamine derivatives. The Km values were 0.51 mM and 0.28 mM respectively for the N-acetylglucosamine and N-acetylgalactosamine derivatives. The glycoprotein nature of the urinary enzyme was established by its affinity towards concanavalin A as well as by the presence of sialic acid, galactose, glucose, mannose and hexosamines in the molecule.  相似文献   

2.
Angiotensin-converting enzyme from rabbit serum was purified almost 60,000-fold to apparent homogeneity by a procedure exploiting its affinity for antibodies prepared against the enzyme from lung. The pure serum and pulmonary enzymes exhibited identical behavior during gel filtration, sucrose gradient centrifugation, and disc gel electrophoresis in the reduced, denatured state. Their catalytic properties with hippurylhistidylleucine, angiotensin I, and bradykinin as substrates were similar and their reactivity with antilung enzyme antibody was indistinguishable as examined by immunodiffusion, inhibition dose-response curves, and radioimmunoassay. Their content of fucose, mannose, galactose, and N-acetylglucosamine was also comparable; however, N-acetylneuraminic acid was much more abundant in the serum glycoprotein. This difference may reflect selective removal of sialic acid-deficient enzyme molecules from the circulation by the hepatic lectin which has been postulated to initiate the catabolic phase for plasma glycoproteins (Ashwell, G., and Morell, A.G. (1974) Adv. Enzymol. Relat. Areas Mol. Biol. 41, 91-128).  相似文献   

3.
CSF-1 was isolated from a large volume of human normal urine (10,000 l), using the following 5 stages of purification: concentration by dialysis, silica gel adsorption, hydrophobic chromatography on phenyl-Sepharose CL-6B, fast protein liquid chromatography (FPLC) and finally preparative electrophoresis on polyacrylamide gels. We have isolated 8 mg of purified CSF-1 which migrated as a single band under non-reducing conditions in SDS-PAGE (staining with Coomassie Blue and the sensitive silver techniques). But in the presence of dithiothreitol, the SDS-PAGE pattern revealed a minor second band with a molecular mass of 50,000 Da. CSF-1 was purified 100,000-fold and has a specific activity of 2.16 X 10(7) units/mg protein. Its apparent molecular mass is 57,000 Da with an isoelectric point, pI = 5.8-6.0. The amino-acid composition is reported and compared with that of murine CSF-1. The carbohydrate content (sialic acid, sulphate groups, N-acetylglucosamine, N-acetylgalactosamine) was also determined, and it shows that CSF is a glycoprotein.  相似文献   

4.
1. Oxytocinase enzymes were purified from maternal serum and human placenta, run by SDS-PAGE and transferred onto nitrocellulose. Both enzymes were homogeneous in protein staining with Mr of 145,000. 2. Both serum and placental oxytocinases bound concanavalin A (Con A), limax flavus agglutinin (LFA) and wheat germ agglutinin (WGA). The WGA-binding of the placental enzyme was more strongly inhibited by 0.2 M N-acetylglucosamine than that of the serum enzyme which may indicate a higher sialic acid content in the serum enzyme. 3. Neuraminidase treatment did not affect the binding of Con A but decreased the binding of WGA to serum and placental enzymes. Serum enzyme showed a pl 4.7 on isoelectric focusing.  相似文献   

5.
A sialic acid-specific lectin was isolated from the albumin glands of the garden snail Cepaea hortensis by affinity chromatography on fetuin-Sepharose following gel filtration on Superdex 200. The purified native lectin showed a molecular mass of about 95 kDa by gel filtration and 100 kDa by SDS electrophoresis. It was cleaved by boiling in buffer containing SDS in three serological identical bands corresponding to molecular masses of about 24, 20 and 16 kDa, respectively. From these three fragments, only the 24- and the 20-kDa bands were found to be glycosylated. Only the three sugars mannose, galactose and N-acetylglucosamine could be detected in a molar ratio of 3:8.6:2. The oligosaccharide moieties seem to be N- and partially O-glycosidic bound. Isoelectric focusing (IEF) of the purified lectin revealed a heterogeneous pattern with bands in the pH range of 4.3-5.0. Isolated bands of different isoelectric points showed in SDS electrophoresis the same three fragments with molecular masses of 24, 20 or 16 kDa. The heterogeneity of the lectin was revealed either by IEF or amino acid sequencing of internal tryptic peptides.  相似文献   

6.
The nature and function of oligosaccharide modification in glucocerebrosidase, a membrane-associated lysosomal hydrolase, have been investigated in cultured human skin fibroblasts. Glucocerebrosidase is synthesised as a 62.5-kDa precursor with high-mannose-type oligosaccharide chains and an apparent native isoelectric point of 6.0-7.0. Subsequent processing of the oligosaccharide moieties to sialylated complex-type structures results in formation of 65-68-kDa forms of the enzyme with apparent native isoelectric points of 4.3-5.0. These forms are transported to lysosomes and subsequently modified by the sequential action of lysosomal exoglycosidases, finally resulting in a 59-kDa form with an isoelectric point near neutrality. The existence of oligosaccharide modification of the enzyme in the lysosomes is illustrated by the accumulation of different intermediate forms of glucocerebrosidase in mutant cell lines deficient in lysosomal exoglycosidases. The enzyme does not undergo proteolytic modification during maturation. The possible physiological relevance of the oligosaccharide modification of glucocerebrosidase in the lysosomes was investigated by studying the properties of the enzyme in fibroblasts deficient in lysosomal exoglycosidases, and also the properties of homogeneous pure glucocerebrosidase from placenta, modified in the oligosaccharide moieties by digestion in vitro with glycosidases. Modification of the oligosaccharide moieties of glucocerebrosidase had no significant effect on the catalytic activity of the enzyme as measured with either artificial or natural substrates in the presence of artificial or natural activators. There was also no effect of modification of the oligosaccharide chains on the intracellular stability of the enzyme or on its apparent hydrophobicity. We conclude that oligosaccharide modification of glucocerebrosidase in the lysosomes simply reflects further maturation of the enzyme in the lysosome and is of no importance to its function.  相似文献   

7.
The effect of carbohydrate removal on the viscosity of gastric mucin and its ability to impede the diffusion of hydrogen ion was investigated. The mucin, purified from dog gastric mucus, was subjected to partial or extensive deglycosylation with specific exoglycosidases and then used in the measurements. The obtained results revealed that removal of peripheral fucose or N-acetylglucosamine caused in each case only about 5% reduction of the glyco-protein viscosity. An 18% drop in the viscosity, however, occurred following removal of sialic acid, while extensive deglycosylation (removal of 86% carbohydrate) reduced the glycoprotein viscosity by 40%. The ability of mucin to retard the diffusion of hydrogen ion increased by 7% following removal of fucose or N-acetylgalactosamine, a 28% increase was obtained following removal of sialic acid, while the permeability to hydrogen ion of the extensively deglycosylated glycoprotein decreased by 42%. The results suggest that carbohydrates contribute significantly to the viscoelastic and permselective properties of gastric mucin.  相似文献   

8.
The structure of a glycopeptide purified from porcine thyroglobulin   总被引:1,自引:0,他引:1       下载免费PDF全文
1. The structure of a purified glycopeptide isolated from porcine thyroglobulin was studied by sequential hydrolysis with specific glycosidases, by periodate oxidation and by treatment with galactose oxidase. 2. Sequential hydrolysis with several combinations of neuraminidase, alpha-l-fucosidase, beta-d-galactosidase, beta-N-acetyl-d-glucosaminidase and alpha-d-mannosidase presented the evidence for the following structure. 3. The monosaccharide sequence of the peripheral moiety of the heteropolysaccharide chain was sialic acid-->galactose-->N-acetylglucosamine. Some of the galactose residues were non-reducing end-groups with the sequence galactose-->N-acetylglucosamine. 4. After removal of the peripheral moiety composed of sialic acid, fucose, galactose and N-acetylglucosamine, alpha-mannosidase released 1.4mol of mannose/mol of glycopeptide, indicating that two of the three mannose residues were located between peripheral N-acetylglucosamine and internal N-acetylglucosamine or mannose. 5. Periodate oxidation and sodium borohydride reduction confirmed the results obtained by enzymic degradation and gave information concerning the position of substitution. 6. Based on the results obtained by enzymic hydrolysis and periodate oxidation together with the treatment with galactose oxidase, a structure is proposed for the glycopeptide.  相似文献   

9.
Arylsulfatase A (arylsulfate sulfohydrolase, EC 3.1.6.1), a mammalian lysosomal enzyme, is initially synthesized as a 69, 67 and 64 kDa precursor polypeptide in a prostate carcinoma cell line PC-3SF12, in HeLa cells and in a normal human embryonic lung cell line WI-38, respectively. These precursor polypeptides are secreted into the medium or processed to mature enzymes of apparent molecular mass 66, 64 or 62 kDa in PC-3SF12, HeLa or WI-38 cells, respectively. The precursor and mature polypeptides in WI-38 cells are phosphorylated, and the phosphate is lost upon treatment with endo-beta-hexosaminidase H. Arylsulfatase A is also shown to be sulfated in WI-38 cells. The presence of castanospermine, an inhibitor of sulfation of the second N-acetylglucosamine residue of the chitobiose core, does not reduce the extent of sulfation of arylsulfatase A, suggesting that either terminal sugars or the protein is sulfated. Sulfation may have a protective function similar to that of terminal sialic acid residues in glycoproteins. Although the subcellular location of arylsulfatase A is identical in PC-3SF12 and in WI-38 cells, pulse-chase experiments indicate that arylsulfatase A protein has a slower turnover in the prostate carcinoma cell line than it does in the normal human lung cell line. The differences in the apparent molecular weights of arylsulfatase A in the normal and carcinoma cell lines are shown to be due to variations in the carbohydrate content of the enzyme. The apparent molecular mass of the polypeptide chain obtained after endo-beta-hexosaminidase H treatment is 59 kDa, a value which is identical for all three cell lines studied here. These results suggest the possibility of an enhanced activity of terminal glucosyltransferase enzymes in carcinoma cell lines and in tumor tissues. Arylsulfatase A may be a useful marker for studying transformation-related processes in human cell lines.  相似文献   

10.
Cytosolic thymidine kinase (EC 2.7.1.21) has been purified 5200-fold to apparent homogeneity from normal human placenta. The purification includes sequential affinity chromatography on blue-Sepharose and a thymidine column. The molecular weight of the enzyme determined by gel filtration and sucrose density ultracentrifugation is 92,000. The subunit molecular weight is 44,000, suggesting that the enzyme is a dimer in its native state. With isoelectric focusing, placental thymidine kinase demonstrated a single form with an isoelectric point of 9.1. The final purified enzyme preparation exhibits no immunological cross-reactivity with human mitochondrial thymidine kinase.  相似文献   

11.
1. A heat-stable alkaline phosphatase was purified from Penaeus japonicus, with a final specific activity of 21,280 U/mg of protein. 2. In polyacrylamide-gel electrophoresis under non-denaturing conditions, the purified shrimp alkaline phosphatase was found to have an identical molecular size and surface charge as the human placental enzyme. 3. By using SDS-PAGE, the monomers of shrimp alkaline phosphatase were discovered to have a Mr 55,000 but those of human placental enzyme with a Mr 70,000. Deglycosylation decreases the Mr values of the subunits to 33,000 for shrimp alkaline phosphatase. 4. The purified alkaline phosphatase from shrimp was recovered with both the attachment sites for sialic acids and phosphatidylinositol. 5. The shrimp alkaline phosphatase has an isoelectric point (pI) of 7.6 and the human placental enzyme has a pI of 4.8.  相似文献   

12.
A major glycoprotein of the plasma membranes of AH-66 hepatoma ascites cells was isolated in essentially pure form and in milligram amounts. The plasma membranes were solubilized with a solution containing both 0.3 M lithium diiodosalycylate and 0.2% cetylpyridinium chloride, and further extracted with 50% phenol, followed by gel filtration on Sepharose 6B in the presence of 0.1% Ammonyx-LO at pH 8.0. The apparent molecular weight of the purified glycoprotein was estimated to be 165 000 in 5.6% polyacrylamide gels, of which 54% was carbohydrate and 46% was protein. The chemical composition of the glycoprotein resembles glycophorin A from human erythrocyte membranes in that it has a high content of N-acetylgalactosamine, N-acetylglucosamine, galactose and sialic acid and a particularly large proportion of serine, threonine, aspartic acid and glutamic acid.  相似文献   

13.
Quality assurance of recombinant protein drugs concerning identity and purity represents a difficult task, in particular, when post-translational modifications lead to a heterogeneous mixture of biomolecules. We chose Neorecormon (rh-EPO, Roche) for our studies to demonstrate the efficiency of two-dimensional electrophoresis (2-DE) to analyse post-translationally modified recombinant drugs. More than 40 protein spots in the range from isoelectric point (pI) 3.5-4.5 and 32-45 kDa could be separated. Enzymatic deglycosylation revealed that the heterogeneity of the protein pattern is mainly caused by variations in glycosylation. In comparison to the separately performed isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as requested by the European Pharmacopoeia, we see a great synergy to use 2-DE for the analysis of rh-EPO. A by far higher resolution can be achieved, allowing an improved differentiation of the various rh-EPO glycoforms. Sequential deglycosylation of sialic acids, N-glycosides and the O-glycoside lead to significant shifts both in apparent relative molecular mass and pI. Comparing the 2-DE patterns of rh-EPO before and after deglycosylation allows on the one hand valuable information to be gained on the glycosylation of the recombinant protein and shows on the other hand how significantly the 2-DE protein pattern can be influenced by the glycosylation. As the equipment for the performance of 2-DE has improved significantly over the last decade, we see 2-DE as a reliable method, which should be approved for the routine quality assurance of recombinant drugs and also recommended for the European Pharmacopoeia.  相似文献   

14.
W A Emerson  S Kornfeld 《Biochemistry》1976,15(8):1697-1703
The major glycoprotein of the bovine erythrocyte membrane was purified by extraction of the ghosts with lithium 3,5-diiodosalicylate followed by phenol-water extraction and acidification. The glycoprotein contains 20% protein and 80% carbohydrate by weight and gives a single band on sodium dodecyl sulfate-polyacrylamide gels with an estimated molecular weight of 230000 daltons. The carbohydrate composition of the glycoprotein was determined to be (in residues relative to sialic acid): sialic acid, 1.0; fucose, less than 0.01; mannose, 0.1; galactose, 3.3; N-acetylgalactosamine, 0.9; and N-acetylglucosamine, 2.4. Pronase digestion of the isolated glycoprotein followed by Sephadex G-75 gel filtration resulted in the separation of a small pool of glycopeptides (pool III), which included all of the mannose-containing glycopeptides, from the bulk of the glycopeptide material which was in the void fractions of the column (pool I). Alkaline borohydride treatment released over 95% of the oligosaccharide units in pool I and approximately 30% of the oligosaccharide units in pool III. These oligosaccharides were isolated by gel filtration and ion-exchange chromatography. The oligosaccharides released from pool I had molecular weights of 1100-1400 daltons and contained sialic acid, galactose, and N-acetylglucosamine in molar ratios of 0.5-1:3:2 as well as a partial residue of N-acetylgalactosaminitol. The oligosaccharides released from pool III by alkali had molecular weights of 1300-1600 daltons and contained sialic acid, galactose, N-acetylglucosamine, N-acetylgalactosamine and N-ACETYLgalactosaminitol in molar ratios of 1-2:2:1:1:1. These data indicate that the majority of the oligosaccharide units of the bovine erythrocyte glycoprotein are linked O-glycosidically to the peptide backbone of the molecule.  相似文献   

15.
C P Zimmerman  A M Gold 《Biochemistry》1983,22(14):3387-3392
Glycogen branching enzyme was isolated from rabbit liver. The highly purified enzyme shows a monomer molecular weight of 71 000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and apparent molecular weights of 93 000 by sucrose density gradient sedimentation and 52 000 by gel-exclusion chromatography on Sephacryl S-300. No glucosamine, mannosamine, galactosamine, or sialic acid was detected in the protein. An amino acid analysis is reported. The spectrum of branching enzyme is that of a simple polypeptide, with A1%280nm = 24.6. Highly purified branching enzyme consists of several closely related active enzyme forms that can be resolved by isoelectric focusing in polyacrylamide gel. The major species of pI 5.7 is flanked by less abundant forms of pI 5.6 and 5.8. Seemingly identical enzyme forms are observed in crude extracts of rabbit liver, skeletal muscle, brain, and heart, although the absolute and relative concentrations vary among the tissues. Branching enzyme apparently does not exhibit tissue-specific isoenzymes.  相似文献   

16.
Purification and characterization of the human brain insulin receptor   总被引:2,自引:0,他引:2  
The insulin receptor from human brain cortex was purified by a combination monoclonal antibody affinity column and a wheat germ agglutinin column. This purified receptor preparation exhibited major protein bands of apparent Mr = 135,000 and 95,000, molecular weights comparable to those for the alpha and beta subunits of the purified human placental and rat liver receptors. A minor protein band of apparent Mr = 120,000 was also observed in the brain receptor preparation. Crosslinking of 125I-insulin to all three receptor preparations was found to preferentially label a protein of apparent Mr = 135,000. In contrast, cross-linking of 125I-labeled insulin-like growth factor I to the brain preparation preferentially labeled the protein of apparent Mr = 120,000. The purified brain insulin receptor was found to be identical with the placental insulin receptor in the amount of neuraminidase-sensitive sialic acid and reaction with three monoclonal antibodies to the beta subunit of the placental receptor. In contrast, a monoclonal antibody to the insulin binding site recognized the placental receptor approximately 300 times better than the brain receptor. These results indicate that the brain insulin receptor differs from the receptor in other tissues and suggests that this difference is not simply due to the amount of sialic acid on the receptor.  相似文献   

17.
Extracts of human spleen contain two immunologically distinguishable forms of glucocerebrosidase: form I is precipitable by polyclonal or monoclonal anti-(placental glucocerebrosidase) antibodies, whereas form II is not [Aerts, J. M. F. G., Donker-Koopman, W. E., Van der Vliet, M. F. K., Jonsson, L. M. V., Ginns, E. I., Murray, G. J., Barranger, J. A., Tager, J. M. & Schram, A. W. (1985) Eur. J. Biochem. 150, 565-574]. The proportion of form II glucocerebrosidase was high in extracts of spleen, liver and kidney and low in extracts of brain, placenta and fibroblasts. Furthermore, the proportion of form II enzyme was higher in a detergent-free aqueous extract of spleen than in a Triton X-100 extract of total spleen or splenic membranes. When form II glucocerebrosidase in a splenic extract was separated from form I enzyme by immunoaffinity chromatography and stored at 4 degrees C, a gradual conversion to form I enzyme occurred. The conversion was almost immediate if 30% (v/v) ethylene glycol was present. In the denatured state both forms of glucocerebrosidase reacted with anti-(placental glucocerebrosidase) antibodies. Form I glucocerebrosidase was stimulated by sodium taurocholate or sphingolipid-activator protein 2 (SAP-2), whereas form II enzyme exhibited maximal activity in the absence of the effectors. The pH activity profile of form II glucocerebrosidase was almost identical to that of form I enzyme in the presence of SAP-2. In the native state, form I glucocerebrosidase had a molecular mass of 60 kDa whereas that of form II glucocerebrosidase was about 200 kDa. After gel-permeation high-performance liquid chromatography of splenic extracts, the fractions with form II glucocerebrosidase contained material cross-reacting with both anti-(placental glucocerebrosidase) and anti-(SAP-2) antibodies. Preincubation of form I glucocerebrosidase with SAP-2 at pH 4.5 led to masking of the epitope on glucocerebrosidase reacting with monoclonal anti-(placental glucocerebrosidase) antibody 2C7. Furthermore, preincubation of form I glucocerebrosidase with monoclonal antibody 2C7 prevented activation of the enzyme by SAP-2. We propose that form I glucocerebrosidase is a monomeric form of the enzyme, whereas form II glucocerebrosidase is a high-Mr complex of the enzyme in association with sphingolipid-activator protein 2.  相似文献   

18.
Rabbit anti-hapten antibodies were purified by affinity chromatography and characterized immunochemical for in vivo studies of their blood clearance rate and organ distribution after treatment with various glycosidases. Following sequential removal of sialic acid, galactose, and N-acetylglucosamine with the appropriate cellulose-immobilized exoglycosidases, the antibody populations were recharacterized, radiolabeled, and introduced intravenously into the original animals. Using double radioiodine lables it was possible to demonstrate alterations in purified antibody survival times in the circulation and altered organ distribution after glycolytic cleavage. Removal of terminal sialic acid resulted in rapid blood clearance and enhanced localization of asialoantibody in the liver. Subsequent removal of penultimate galactose residues returned both antibody survival time in the circulation and organ distribution to near normal. Removal of subpenultimate N-acetylglucosamine moieties resulted in aglycosylantibody survival values which were intermediate between asialo- and asialoagalactoantibodies. Removal of the three saccharide also increased kidney localization. The results are evaluated based on current concepts of the biological roles of protein-linked carbohydrate and plasma glycoprotein survival time in the circulation.  相似文献   

19.
One neutral and two acidic glycoasparagines were isolated from the urine of patients with aspartylglycosylaminuria (AGU). The neutral one was identified as beta-Gal-(1 leads to 4)-beta-GlcNAc-Asn. The acidic ones were composed of 1 mole of sialic acid and 2 moles each of galactose and N-acetylglucosamine, attached to asparagine, and were isomeric with respect to the position of sialic acid attachment since they produced the same glycoasparagine on incubation with the neuraminidase [EC 3.2.1.18] from Clostridium perfringens. The structure of the resulting sialic acid-free glycoasparagine was determined to be beta-Gal-beta-GlcNAc-beta-Gal-(1 leads to 4)-beta-GlcNAc-Asn based mainly on the results of sequential enzymatic degradations.  相似文献   

20.
In Gaucher disease (glucosylceramide lipidosis), deficiency of glucocerebrosidase causes pathological storage of glucosylceramide, particularly in the spleen. A comparative biochemical and immunological analysis has therefore been made of glucocerebrosidase in spleens from normal subjects (n = 4) and from Gaucher disease patients with non-neuronopathic (n = 5) and neuronopathic (n = 5) phenotypes. The spleens from all Gaucher disease patients showed markedly decreased glucocerebrosidase activity. Discrimination of different phenotypes of Gaucher disease was not possible on the basis of the level of residual enzyme activity, or by measurements, using the immunopurified enzyme, of kinetic constants, pI or molecular mass forms. A severe decrease was found in the specific activity of glucocerebrosidase purified to homogeneity from the spleen of a patient with the non-neuronopathic phenotype of Gaucher disease, as compared with that of the enzyme purified from the spleen of a normal subject. This finding was confirmed by an immunological method developed for accurate assessment of the relative enzyme activity per molecule of glucocerebrosidase protein. The method revealed that the residual enzyme in the spleens of all investigated patients with a non-neuronopathic course of Gaucher disease had a more than 7-fold decreased activity of glucocerebrosidase (measured in the presence of taurocholate) per molecule of enzyme, and that the concentration of glucocerebrosidase molecules in the spleens of these patients was near normal. Observations made with immunoblotting experiments were consistent with these findings. In contrast, in the spleens of patients with neuronopathic phenotypes of Gaucher disease, the concentration of glucocerebrosidase molecules was severely decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号