首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The effect of swimming stress on pineal N-acetyltransferase activity, hydroxyindole-O-methyltransferase (HIOMT) activity, and melatonin content was studied during the day and night in adult male rats. At night, elevated pineal activity was suppressed by light exposure before the animals swam. During the day, swimming for 2 hr did not stimulate NAT activity unless the animals were pretreated with desmethylimipramine (DMI), a norepinephrine uptake blocker. Pineal melatonin content after daytime swimming exhibited a weak rise, unless DMI was injected, in which case melatonin levels showed a highly significant increase. Swimming at night caused a greater (compared to daytime levels) increase in NAT activity in both noninjected and DMI-injected rats. Melatonin levels at night were highly significantly stimulated (compared to daytime values) even without pretreatment of the rats with DMI. The greater response of the rat pineal to swimming stress at night may relate either to an increase in the number of beta-adrenergic receptors in the pinealocyte membrane at night or to a reduced capacity of the sympathetic neurons in the pineal to take up excess circulating catecholamines. Pineal HIOMT activity was not influenced by swimming (with or without DMI) either during the day or at night.  相似文献   

2.
Isoproterenol (1 mg/kg) was subcutaneously injected into adult male rats during the day to stimulate pineal N-acetyltransferase (NAT) activity and pineal and serum melatonin levels. Two hours after isoproterenol administration when levels of each of these variables had increased significantly, the experimental animals swam for 10 min in 22 degrees C water. At 15 min after swimming onset, pineal and serum melatonin levels were highly significantly depressed compared to those in control animals that did not swim. The high NAT level was not influenced by swimming. In a second study, isoproterenol injected rats swam for either 1, 3, 6 or 10 min and were sampled 15 min after the onset of swimming. The reduction in the elevated pineal melatonin in these animals was correlated with the length of the swim, i.e., as the duration of swim increased the percent reduction in pineal melatonin also increased. Neither pineal NAT nor hydroxyindole-O-methyltransferase (HIOMT) activities were influenced by swimming. The results suggest that elevated pineal and serum melatonin induced by isoproterenol can be depressed with no effect on the activity of the enzymes which convert serotonin to melatonin.  相似文献   

3.
The effect of organochlorine insecticides lindane (1,2,3,4,5,6-hexachlorocyclohexane) and DDT (1,1,1-trichloro-2,2-bis (p-chlorophenyl)ethane) were studied in terms of their effects on the rat pineal N-acetyltransferase (NAT) activity, hydroxyindole-O-methyltransferase (HIOMT) activity and pineal and serum melatonin levels during the day (2000h) and at night (2300 and 0100h). Additionally, pineal levels of 5-hydroxytryptophan (5-HTP), serotonin (5-HT), and 5-hydroxyindole acetic acid (5-HIAA) were estimated. Nocturnal NAT activity was increased after lindane administration; likewise, lindane augmented pineal and serum melatonin levels at 2300h. Conversely, DDT was without a statistically significant effect on either NAT activity or on pineal or serum melatonin levels. Neither lindane nor DDT significantly influenced pineal HIOMT values either during the day or at night. Likewise, neither insecticide consistently influenced pineal levels of either 5-HTP, 5-HT or 5-HIAA. The results indicate that the organochlorine insecticide, lindane, modifies pineal melatonin synthesis in vivo.  相似文献   

4.
In light of recent studies demonstrating stress-induced changes in pineal indoleamine metabolism, we tested the effect of acute cold stress on pineal biosynthetic function. Adult male rats were subjected to 30, 60, or 120 min of cold exposure (Ta = 2 degrees C) during either the light or dark phase of the daily photoperiodic cycle. Controls were kept at room temperature (22 +/- 2 degrees C). Animals were killed by decapitation and pineals were analyzed by radioimmunoassay for melatonin content and by radioenzymeassay for the activity of N-acetyltransferase (NAT). Cold exposure during the day elicited no significant changes in pineal indoleamine metabolism. Exposure to cold for 1 hr during the second hour after lights off slightly increased pineal melatonin content, without a concomitant change in NAT activity. Rats exposed to 2 hr of cold beginning 2 hr after lights off, however, displayed a 50% reduction in NAT activity, whereas pineal melatonin content remained unchanged. The paradoxical response of pineal NAT activity and melatonin content are not uncommon when rats are exposed to adverse stimuli.  相似文献   

5.
Wild-captured cotton rats (Sigmodon hispidus) trapped and tested in September and October exhibited a rapid reduction in pineal N-acetyltransferase (NAT) activity and melatonin levels after exposure to a light irradiance of 300 ωW/cm2 during the dark period. The half-time for the depression of both NAT and melatonin was on the order of 2 min. The exposure of cotton rats during darkness to much lower irradiances of light, i.e., 5.0, 0.04, 0.03 or 0.01 W/cm2, for 32 min also greatly diminished pineal NAT activity and radioimmunoassayable melatonin levels; however, a light irradiance of 0.005 ωW/cm2 failed to significantly depress either the acetylating enzyme or the melatonin content of the pineal gland. The results show that the pineal gland of the wild-captured cotton rat, as judged by NAT activity and melatonin levels, is inhibited even by very low irradiances of light.  相似文献   

6.
Melatonin synthesis in the pineal gland, which is primarily regulated by the environmental lighting regime, can also be influenced by other factors that elicit modifications in sympathetic tone. The objectives of this study were to determine if forced swimming alters the normal pattern of melatonin production in the pineal gland of the Richardson's ground squirrel (Spermophilus richardsonii). In early June, the squirrels were forced to swim for 10 min during the photophase or during the scotophase. In mid-July squirrels swam only during the scotophase. Animals were sacrificed 15, 30, or 60 min after the onset of swimming. Activities of pineal N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) were assessed by radioenzyme assay, and pineal melatonin content was measured by radioimmunoassay. Daytime swimming elicited no major changes in enzyme activity or pineal melatonin. In June, swimming at night prevented the normal rises in NAT activity and pineal melatonin seen in nonswimming controls. In contrast, the pineals of squirrels that were tested 6 weeks later in mid-July did not appear to be as sensitive to nighttime swimming, as there were only minor differences in both NAT activity and melatonin content compared to controls. These results demonstrate that forced nighttime swimming, unlike several other aversive stimuli, can evoke changes in the normal pattern of pineal melatonin production in this species. Furthermore, the pineal's response to such stimuli may not be stable over the course of the active season.  相似文献   

7.
N-acetyltransferase (NAT) is believed to be the rate-limiting enzyme in the synthesis of melatonin from serotonin in the pineal gland. Norepinephrine released from sympathetic nerve endings within the pineal gland stimulates NAT activity and, therefore, melatonin synthesis. When an animal is subjected to a stressful stimulus, it would be expected that the increase in plasma stimulus, it would be expected that the increase in plasma catecholamines originating from the adrenal medulla and/or the sympathetic nervous system would result in a stimulation of pineal NAT activity. Adult male rats were given a 1.5cc injection of physiological saline subcutaneously into the back leg. Compared to non-injected controls, animals stressed in this manner were shown to have significantly lower pineal melatonin content 10 min after the saline injection late in the light phase of the light/dark cycle (at 18.30 h-lights on at 07.00 h). To test this more thoroughly, a time course study was conducted during the dark phase (at 02.00 h-5 hours after lights out) when pineal NAT activity and melatonin levels are either increasing or elevated. NAT activity and melatonin levels in the pineal were significantly depressed in stressed animals as compared to controls by 10 min after the saline injection, and remained so until 60 min after injection. By 90 min they had returned to control values. In the next study the nighttime response of the pineal to stress was compared in intact and adrenalectomized rats. Adrenalectomy prevented the changes in NAT activity and melatonin content associated with the saline injection. Some factor, such as a catecholamine or corticosterone from the adrenal, seems to be eliciting the response in the pineal to the saline injection. It is not known if the factor is acting centrally or directly on the pineal gland.  相似文献   

8.
Locally synthesized angiotensin modulates pineal melatonin generation   总被引:1,自引:0,他引:1  
We aimed to study the mechanisms and the significance of the influence exerted by the renin-angiotensin system (RAS) on the pineal melatonin production. Pineal melatonin and other indoles were determined by HPLC with electrochemical detection after angiotensin AT1-receptor blockade with Losartan in vivo or in cultured glands. N-acetyltransferase (NAT) activity was radiometricaly measured. To test the in vivo relevance of the local RAS, pineal melatonin and its indole precursors were determined in transgenic rats with inhibited production of angiotensinogen exclusively in astrocytes, TGR(ASrAOGEN). Tryptophan hydroxylase (TPH) and NAT mRNA levels were determined by real-time RT-PCR. Pineal melatonin content was significantly decreased by AT1-receptor blockade in vivo, in cultured glands and in TGR(ASrAOGEN) (35%, 32.4% and 17.5% from control, respectively). Losartan produced a significant decrease of pineal 5-hydroxytryptophan, serotonin, 5-hydroxyindole acetic acid and N-acetylserotonin in pineal cultures. Also, the pineal content of the precursor indoles in TGR(ASrAOGEN) rats was significantly lowered. The reduction of 5-hydroxytryptophan levels by 33-75% in both in vivo and in vitro studies suggests a decreased activity of TPH. Moreover, the TPH mRNA levels in TGR(ASrAOGEN) rats were significantly lower than control rats. On the other hand, NAT activity was unaffected by Losartan in pineal culture and its expression was not significantly different from control in TGR(ASrAOGEN) rats. Our results demonstrate that a local pineal RAS exerts a tonic modulation of indole synthesis by influencing the activity of TPH via AT1-receptors.  相似文献   

9.
L Vollrath  H A Welker 《Life sciences》1988,42(22):2223-2229
Previous studies involving physical-immobilization stress in laboratory rats have yielded inconsistent results with respect to melatonin synthesis in the pineal gland. As melatonin formation undergoes circadian and infradian rhythms, the aim of the present study was to examine whether stress experiments exhibit day-to-day variation. Toward this end, groups of male Sprague-Dawley rats were stressed by physical immobilization on eight consecutive days, respectively, or left relatively undisturbed, and killed. The pineal gland was rapidly dissected out and serotonin N-acetyltransferase (NAT) activity and melatonin levels were measured. NAT activity was significantly depressed on experimental days 1, 3 and 5, and slightly depressed on day 7. In addition, both in control and experimental animals NAT activity exhibited statistically significant differences between experimental days. Pineal melatonin levels were less variable. On experimental days 3 and 6 immobilization led to a significant increase of pineal melatonin levels. These results show that day-to-day variation is an important factor that influences the outcome of stress experiments and represent another example that NAT activity and pineal melatonin levels do not always show corresponding changes.  相似文献   

10.
1. Interferon-gamma (IFN-gamma) has been shown to suppress N-acetyltransferase (NAT) activity in cultured rat pineal glands when stimulated with isoproterenol (ISO). 2. Conversely, IFN-gamma has also been shown to increase the melatonin content of the rat pineal gland in organ culture. 3. Circumstantial evidence leads to a hypothesis that the NAT suppressive effect may be due to the action of IFN-gamma on the sympathetic nerve terminals. 4. To test this hypothesis, pineal glands from intact (INT) and superior cervical ganglionectomized (SCGX) rats, which had been operated 5 days earlier, were cultured with either ISO or ISO + IFN-gamma. 5. The concentration of ISO was 10(-8) M and that of IFN-gamma was 300 antiviral units/ml. 6. The pineals were incubated for a total period of 5.5 hr, after which the activities of NAT and hydroxyindole-O-methyltransferase (HIOMT) and the levels of melatonin and cAMP were estimated. 7. Suppression of NAT by IFN-gamma was observed in the pineals from INT rats, but not in those from SCGX animals. 8. IFN-gamma significantly enhanced melatonin levels over those in ISO-stimulated pineals and culture media from the SCGX animals, but not from the INT animals. 9. IFN-gamma treatment had no effect on either the HIOMT activity or cAMP levels. 10. The results indicate that the IFN-gamma-induced NAT suppression requires the integrity of the sympathetic nerve terminals and the IFN-gamma-induced enhancement of melatonin production is accomplished through its direct action on pinealocytes.  相似文献   

11.
The purpose of these experiments was to determine whether the exposure of rats at night to pulsed DC magnetic fields (MF) would influence the nocturnal production and secretion of melatonin, as indicated by pineal N-acetyltransferase (NAT) activity (the rate limiting enzyme in melatonin production) and pineal and serum melatonin levels. By using a computer-driven exposure system, 15 experiments were conducted. MF exposure onset was always during the night, with the duration of exposure varying from 15 to 120 min. A variety of field strengths, ranging from 50 to 500 μT (0.5 to 5.0 G) were used with the bulk of the studies being conducted using a 100 μT (1.0 G) field. During the interval of DC MF exposure, the field was turned on and off at 1-s intervals with a rise/fall time constant of 5 ms. Because the studies were performed during the night, all procedures were carried out under weak red light (intensity of <5 μW/cm2). At the conclusion of each study, a blood sample and the pineal gland were collected for analysis of serum melatonin titers and pineal NAT and melatonin levels. The outcome of individual studies varied. Of the 23 cases in which pineal NAT activity, pineal melatonin, and serum melatonin levels were measured, the following results were obtained; in 5 cases (21.7%) pineal NAT activity was depressed, in 2 cases (8.7%) studies pineal melatonin levels were lowered, and in 10 cases (43.5%) serum melatonin concentrations were reduced. Never was there a measured rise in any of the end points that were considered in this study. The magnitudes of the reductions were not correlated with field strength (i.e., no dose-response relationships were apparent), and likewise the reductions could not be correlated with the season of the year (experiments conducted at 12-month intervals under identical exposure conditions yielded different results). Duration of exposure also seemed not to be a factor in the degree of melatonin suppression. The inconsistency of the results does not permit the conclusion that pineal melatonin production or release are routinely influenced by pulsed DC MF exposure. In the current series of studies, a suppression of serum melatonin sometimes occurred in the absence of any apparent change in the synthesis of this indoleamine within the pineal gland (no alteration in either pineal NAT activity or pineal melatonin levels). Because melatonin is a direct free radical scavenger, the drop in serum melatonin could theoretically be explained by an increased uptake of melatonin by tissues that were experiencing augmented levels of free radicals as a consequence of MF exposure. This hypothetical possibly requires additional experimental documentation. Bioelectromagnetics 19:318–329, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
B Selmaoui  Y Touitou 《Life sciences》1999,64(24):2291-2297
In a previous study we have shown that exposure to a 50-Hz sinusoidal magnetic field decreased serum melatonin concentration and pineal enzyme activities in young rats (9 weeks). In the present study we looked for the effect of a magnetic field of 100 microT on serum melatonin and pineal NAT activity in aged rats and compared them to young rats. We hypothesized that aging may change sensitivity of rats to a magnetic field. Two groups of Wistar male rats [aged rats (23 months) and young rats (9 weeks)] were exposed to 50-Hz magnetic fields of 100 microT for one week (18h/day). The animals were kept under a standard 12:12 light: dark cycle with a temperature of 25 degrees C and a relative humidity of 45 to 50%. Control (sham-exposed) animals were kept in a similar environment but without exposure to a magnetic field. The animals were sacrificed under red dim light. Serum melatonin concentration and pineal N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) activities were studied. Our results showed that sinusoidal magnetic fields altered the production of melatonin (28% decrease; P <0.05) through an inhibition of pineal NAT activity (52% decrease; P <0.05) in the young rats whereas no effect was observed in aged ones. On the other hand, when comparing data from control animals between young and aged rats, we observed that serum melatonin level and NAT activity, but not HIOMT activity, decreased in aged rats (decrease by about 38% and 36% respectively). Our data strongly suggest that old rats are insensitive to the magnetic field.  相似文献   

13.
Abstract: The 27 amino acid peptide, pituitary adenylate cyclase-activating polypeptide (PACAP-27), and its 38 amino acid analogue, PACAP-38, stimulate serotonin- N -acetyltransferase (NAT) activity and N -acetylserotonin (NAS) and melatonin content of pineal glands from adult rats. Maximal stimulation of rat pineal NAT by PACAP-38 is not increased further significantly by concurrent stimulation with the two related peptides, vasoactive intestinal polypeptide (VIP) and/or peptide N-terminal histidine C-terminal isoleucine (PHI). Isoproterenol was a more potent inducer of NAT activity than any of these peptides alone or in combination. PACAP-38 also stimulates melatonin production by chicken pineal cells in culture as does VIP. Stimulation by both was not greater than after either alone. Prior stimulation of rat pineal NAT activity with VIP, PHI, or PACAP-38 reduces the magnitude of subsequent stimulation with PACAP-38 or forskolin. Concurrent stimulation of α-receptors or treatment with active phorbol ester augments rat pineal response to PACAP-38 stimulation just as it increases the response to VIP, PHI, and β-receptor stimulation. Pineals from newborn rats respond to PACAP-38 with an increase in NAT activity and the increase is augmented by concomitant α1-adrenergic stimulation. The putative PACAP inhibitor PACAP (6–38) and the putative VIP inhibitor (Ac-Tyr, d -Phe)-GRF 1–29 amide, in 100–1,000-fold excess, did not affect the stimulatory activity of any of the peptides. Pineal melatonin concentration parallels changes in pineal NAT activity.  相似文献   

14.
D C Herbert  R J Reiter 《Life sciences》1985,37(26):2515-2522
Weanling, male rats were fed a vitamin A deficient (VAD) diet from 20 to 77 days of age. The circadian rhythms of the precursors and metabolites of pineal melatonin were measured along with the activity of N-acetyltransferase (NAT). Significant decreases in peak melatonin levels (0100 hours) and in nightime NAT activity (0100 and 0300 hours) were found in the pineals of the VAD rats. In contrast, the contents of serotonin, 5-hydroxytryptophan and 5-hydroxyindole acetic acid were only moderately affected by the deficiency. Daily administration of 25 micrograms melatonin from 20 to 74 days of age markedly reduced NAT activity in control and VAD rats. These data suggest that NAT activity is more sensitive to chronic VAD than any other parameters of melatonin metabolism.  相似文献   

15.
1. In order to investigate the possible involvement of arginine-vasopressin (AVP) in the inhibition of nocturnal pineal melatonin synthesis following electrical stimulation of the hypothalamic paraventricular nuclei, adult male rats received injections of 5 micrograms/100 g body weight of the peptide during either day- or night-time. Following survival times of 30 or 120 min, animals were killed and the activity of the melatonin synthesis enzyme N-acetyltransferase (NAT) was determined. 2. At night, NAT activity was significantly decreased 30 and 120 min following AVP injection. 3. During the daytime, NAT activity was unchanged following AVP administration. 4. It is suggested that pineal melatonin synthesis may be affected by PVN stimulation not only via neural pathways but possibly also by PVN-released blood-borne AVP.  相似文献   

16.
Djeridane Y  Touitou Y 《Steroids》2004,69(5):343-349
This study investigates the effects of acute and chronic injections of the neurosteroid dehydroepiandrosterone (DHEA) and its sulfate DHEA-S on pineal gland melatonin synthesis. Pineal melatonin production and plasma melatonin levels were investigated in young (9-week-old) and old (27-month-old) male Wistar rats. DHEA or DHEA-S have been administered acutely in a single intraperitoneal injection at a dosage of 50, 250, or 500 microg per animal, or on a long-term basis, i.e., for 8 days at a dosage of 100 microg per animal, 1 h before the onset of darkness. DHEA, at a dose of 50, 250, or 500 microg per animal, administered acutely to rats had no significant effects on pineal melatonin production whatever the age of the animals. In contrast, 500 microg DHEA-S induced a significant increase in the pineal melatonin content (15% in young animals and 35% in old animals) and the activity of N-acetyltransferase, the rate-limiting enzyme for melatonin synthesis in the pineal gland, (40% in young animals and 20% in old animals), without altering the activity of hydroxyindole-O-methyltransferase whatever the age of the animals. At lower concentrations (50 or 250 microg) DHEA-S had no effect on pineal melatonin production regardless of the age of the rats. Chronic injection of DHEA or DHEA-S at a dose of 100 microg had no effect on pineal melatonin or NAT and HIOMT activities in the two age groups. This work shows that DHEA-S (and not DHEA) is able, at pharmacological concentrations, to stimulate melatonin production by rat pineal glands regardless of the age of the animals.  相似文献   

17.
In retinas and pineal glands of rat, rabbit and hen, activities of the penultimate (and key regulatory) enzyme in melatonin biosynthesis, serotonin N-acetyltransferase (NAT), display distinct diurnal variations, with high and low values during dark and light phase of a 12-h dark: 12-h light illumination cycle. Two-hour incubation (during daytime hours in light) of isolated pineal glands of the studied vertebrates, or the retinas, with 50 microM forskolin (plus 100 microM 3-isobutyl-1-methylxanthine, IBMX-a phosphodiesterase inhibitor), and 1 mM dibutyryl-cAMP, markedly increased the tissue NAT activity. The same procedures significantly enhanced the enzyme activity of rat retina in light, however, only during nighttime hours. The forskolin (+ IBMX)-induced increase of NAT activity in rat retina was significantly lower in a calcium-free medium, and substantially enhanced when calcium concentration was raised from 1.3 mM to 3.9 mM. Treatment of rats with IBMX or aminophylline, and rabbits with aminophylline, increased NAT activity in their pineal glands irrespective of the time of the day, whereas both phosphodiesterase inhibitors significantly increased the enzyme activity of rat retina only when injected during the subjective dark hours. It is concluded that, by analogy to vertebrate pineal gland, in vertebrate retina an increase of NAT activity (and consequently melatonin formation), stimulated both physiologically (i. e. at night), or pharmacologically, involves a cAMP- and calcium dependent process of the enzyme induction.  相似文献   

18.
The pineal hormone melatonin (N-acetyl-5-methoxytryptamine) exerts antigonadotropic effects in some mammalian species. To evaluate the effect of luteinizing hormone (LH) on melatonin release and its synthesizing enzyme activities in pineal glands, pineals of adult female rats undergoing diestrus were organ-cultured in a medium containing 10(-12), 10(-10) or 10(-8) M LH for 6 h. Melatonin release increased significantly in pineals cultured with 10(-12) and 10(-10) M LH, as compared to control values. Similarly, the activity of arylalkylamine N-acetyltransferase (NAT), the key regulatory enzyme in melatonin biosynthesis, was significantly higher in pineals cultured with 10(-12) and 10(-10) M LH for 6 h, while LH at 10(-8) M had no effect. Although LH at 10(-10) M increased pineal hydroxyindole-O-methyltransferase (HIOMT) activity, which catalyzes the final step of melatonin biosynthesis, LH at 10(-12) and 10(-8) M had no effect. These results demonstrate that at relatively low physiological levels, LH stimulates pineal melatonin synthesis and release, mainly by increasing NAT activity.  相似文献   

19.
Sprague-Dawley male rats, maintained in a 14:10 h light:dark cycl were exposed for 30 days (starting at 56 days of age) to a 65 kV/m, 60 Hz electric field or to a sham field for 20 h/day beginning at dark onset. Pineal N-acetyltransferase (NAT), hydroxy-indole-o-methyl transferase (HIOMT), and melatonin as well as serum melatonin were assayed. Preliminary data on unexposed animals indicated that samples obtained 4 h into the dark period would reveal either a phase delay or depression in circadian melatonin synthesis and secretion. Exposure to electric fields for 30 days did not alter the expected nighttime increase in pineal NAT, HIOMT, or melatonin. Serum melatonin levels were also increased at night, but the electric field-exposed animals had lower levels than the sham-exposed animals. Concurrent exposure to red light and the electric field or exposure to the electric field at a different time of the day-night period did not reduce melatonin synthesis. These data do not support the hypothesis that chronic electric field exposure reduces pineal melatonin synthesis in young adult male rats. However, serum melatonin levels were reduced by electric field exposure, suggesting the possibility that degradation or tissue uptake of melatonin is stimulated by exposure to electric fields. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Abstract: The effects of prostaglandins (PGs) on the activity of the rate-limiting enzyme of melatonin biosynthesis, aryl-alkylamine- N -acetyltransferase (NAT) were investigated on primary cultures of dispersed chick pineal cells. In indomethacin-treated cells, PGs caused a four-fold increase in NAT activity. This response was associated with an eightfold increase in cyclic AMP (cAMP) levels. The potency order of PGs was the same for NAT and for cAMP responses (PGE1 > PGE2 > PGF≫ cloprostenol). However, each PG tested was 30- to 200-fold more potent to increase NAT activity than to stimulate cAMP accumulation. As a result, half-maximal stimulation of NAT by PGs was not associated with an increase in cAMP levels. Half-maximal stimulation of NAT by PGE1 was highly sensitive to inhibition by a calcium/calmodulin antagonist (W-7). In contrast, maximal stimulation of NAT by PGE1 as well as stimulations evoked by either forskolin or 8-bromo-cAMP were poorly sensitive to inhibition by W-7. These results indicate that an increase in cAMP levels may be responsible for the maximal stimulation of NAT evoked by PGs, whereas half-maximal stimulation of NAT by PGs would rely principally on a calcium/calmodulin-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号