首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Action of spermine on phosphate transport in liver mitochondria   总被引:1,自引:0,他引:1  
Spermine, at concentrations similar to those normally present in the cytosol of liver cells, facilitates the transport of phosphate into mitochondria and thus its accumulation within the matrix space. Both mersalyl and N-ethylmaleimide (NEM) inhibit phosphate influx either in the absence or in the presence of spermine. These inhibitors also inhibit, but only partially, the efflux from mitochondria of phosphate generated within the matrix space by the hydrolysis of ATP induced by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or the valinomycin-K+ system. The inhibition of phosphate efflux by both mersalyl and NEM is almost completely removed, unlike that of phosphate influx, by spermine. The possibility that spermine may induce phosphate efflux by damaging mitochondrial membranes and consequently inducing an unspecific permeability to phosphate is excluded by the full restoration of transmembrane potential once FCCP has been removed by albumin. Since spermine does not react with either thiol groups or thiol group reagents, the simplest explanation of the reported results is that the pathway of phosphate efflux is distinct from that of phosphate influx.  相似文献   

2.
1. The organic mercurial sodium mersalyl, formaldehyde, dicyclohexylcarbodiimide and tributyltin each blocked respiratory-chain-linked ATP synthesis in rat liver mitochondria. 2. Mersalyl and formaldehyde also blocked a number of other processes dependent on the entry of inorganic phosphate into mitochondria, including mitochondrial respiration and swelling stimulated by cations and phosphate, the substrate-level phosphorylation reaction of the citric acid cycle, and swelling in ammonium phosphate. 3. Dicyclohexylcarbodi-imide and tributyltin did not inhibit the entry of phosphate into mitochondria. 4. Mersalyl and formaldehyde had a relatively slight effect on succinate oxidation and swelling stimulated by cations when phosphate was replaced by acetate, on succinate oxidation stimulated by uncoupling agents, and on swelling in solutions of ammonium salts other than phosphate or arsenate. 5. Formaldehyde blocked the oxidation of NAD-linked substrates in mitochondria treated with 2,4-dinitrophenol and the ATP-dependent reduction of NAD by succinate catalysed by ox heart submitochondrial particles. Both these effects appear to be due to an inhibition by formaldehyde of the NAD-flavin region of the respiratory chain. 6. Concentrations of dicyclohexylcarbodiimide or tributyltin sufficient to abolish ADP-stimulated respiration blocked the dinitrophenol-stimulated adenosine triphosphatase activity, whereas mersalyl and formaldehyde caused only partial inhibition of ATP hydrolysis. 7. When mitochondria were incubated with dinitrophenol and ATP, less than 10% of the total inorganic phosphate liberated was recovered in the mitochondria and no swelling occurred. In the presence of mersalyl or formaldehyde at least 80% of the total inorganic phosphate liberated was retained in the mitochondria and extensive swelling was observed. This swelling was inhibited by oligomycin but not by antimycin or rotenone. 8. The addition of mersalyl to mitochondria swollen by treatment with valinomycin, K(+) and phosphate blocked the contraction induced by dinitrophenol and caused an increase in the phosphate content of the mitochondria, but had no effect on the contraction of mitochondria when phosphate was replaced by acetate. 9. It is concluded that mitochondria contain a phosphate-transporter system, which catalyses the movement of phosphate in either direction across the mitochondrial membrane, and that this system is inactivated by organic mercurials and by formaldehyde. Evidence is presented that the phosphate-transporter system is situated in the inner membrane of rat liver mitochondria and is also present in other types of mammalian mitochondria.  相似文献   

3.
The transport of sulphate and sulphite in rat liver mitochondria   总被引:6,自引:2,他引:4       下载免费PDF全文
1. The mechanism of sulphite and sulphate permeation into rat liver mitochondria was investigated. 2. Extramitochondrial sulphite and sulphate elicit efflux of intramitochondrial phosphate, malate, succinate and malonate. The sulphate-dependent effluxes and the sulphite-dependent efflux of dicarboxylate anions are inhibited by butylmalonate, phenylsuccinate and mersalyl. Inhibition of the phosphate efflux produced by sulphite is caused by mersalyl alone and by N-ethylmaleimide and butylmalonate when present together. 3. External sulphite and sulphate cause efflux of intramitochondrial sulphate, and this is inhibited by butylmalonate, phenylsuccinate and mersalyl. 4. External sulphite and sulphate do not cause efflux of oxoglutarate or citrate. 5. Mitochondria swell when suspended in an iso-osmotic solution of ammonium sulphite; this is not inhibited by N-ethylmaleimide or mersalyl. 6. Low concentrations of sulphite, but not sulphate, produce mitochondrial swelling in iso-osmotic solutions of ammonium malate, succinate, malonate, sulphate, or phosphate in the presence of N-ethylmaleimide. 7. It is concluded that both sulphite and sulphate may be transported by the dicarboxylate carrier of rat liver mitochondria and also that sulphite may permeate by an additional mechanism; the latter may involve the permeation of sulphurous acid or SO(2) or an exchange of the sulphite anion for hydroxyl ion(s).  相似文献   

4.
1. It was previously shown [Passarella, Marra, Doonan & Quagliariello (1980) Biochem. J. 192, 649-658] that, when mitochondrial malate dehydrogenase from rat liver is incubated with sulphite-loaded mitochondria from the same source, uptake of the enzyme occurs, as judged by a fluorimetric assay of intramitochondrial enzyme activity. Confirmation of sequestration of the enzyme inside the organelles is provided by its proteinase-resistance after uptake. 2. Enzyme uptake into mitochondria is inhibited by enzyme treatment with mersalyl at concentrations that do not affect its catalytic activity. 3. Enzyme uptake is energy-dependent, as shown by inhibition of the process by carbonyl cyanide p-trifluoromethoxyphenylhydrazone and by antimycin. ATP and oligomycin, on the other hand, both stimulate the process, but stimulation by ATP is inhibited by oligomycin. These results suggest that uptake depends on maintenance of transmembrane ion gradient rather than direct ATP involvement. 4. Measurements of delta psi by means of the 'redistribution signal' probe safranine suggest no dependence of malate dehydrogenase uptake on membrane potential. 5. Comparison of the effects of the ionophores valinomycin, nonactin, gramicidin and nigericin shows that uptake depends on maintenance of a transmembrane pH gradient.  相似文献   

5.
Mitochondria in plant cells undergo fusion and fission frequently. Although the mechanisms and proteins of mitochondrial fusion are well known in yeast and mammalian cells, they remain poorly understood in plant cells. To clarify the physiological requirements for plant mitochondrial fusion, we investigated the fusion frequency of mitochondria in tobacco cultured cells using the photoconvertible fluorescent protein Kaede and some physiological inhibitors. The latter included two uncouplers, 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), an inhibitor of mitochondrial ATP synthase, oligomycin, and an actin polymerization inhibitor, latrunculin B (Lat B). The frequency of mitochondrial fusion was clearly reduced by DNP, CCCP and oligomycin, but not by Lat B, although Lat B severely inhibited mitochondrial movement. Moreover, DNP, CCCP and oligomycin evidently lowered the cellular ATP levels. These results indicate that plant mitochondrial fusion depends on the cellular ATP level, but not on actin polymerization.  相似文献   

6.
In the presence of cyanide and various respiratory substrates (succinate or pyruvate + malate) addition of high concentrations of lucigenin (400 microM; Luc2+) to rat liver mitochondria can induce a short-term flash of high amplitude lucigenin-dependent chemiluminescence (LDCL). Under conditions of cytochrome oxidase inhibition by cyanide the lucigenin-induced cyanide-resistant respiration (with succinate as substrate) was not inhibited by uncouplers (FCCP) and oligomycin. Increase in transmembrane potential (Deltaphi) value by stimulating F0F1-ATPase functioning (induced by addition of MgATP to the incubation medium) caused potent stimulation of the rate of cyanide-resistant respiration. At high Deltaphi values (in the presence of MgATP) cyanide resistant respiration of mitochondria in the presence of succinate or malate with pyruvate was insensitive to tenoyltrifluoroacetone (TTFA) or rotenone, respectively. However, in both cases respiration was effectively inhibited by myxothiazol or antimycin A. Mechanisms responsible for induction of LDCL and cyanide resistant mitochondrial respiration differ. In contrast to cyanide-resistant respiration, generation of LDCL signal, that was suppressed only by combined addition of Complex III inhibitors, antimycin A and myxothiazol, is a strictly potential-dependent process. It is observed only under conditions of high Deltaphi value generated by F0F1-ATPase functioning. The data suggest lucigenin-induced intensive generation of superoxide anion in mitochondria. Based on results of inhibitor analysis of cyanide-resistant respiration and LDCL, a two-stage mechanism of autooxidizable lucigenin cation-radical (Luc*+) formation in the respiratory chain is proposed. The first stage involves two-electron Luc2+ reduction by Complexes I and II. The second stage includes one-electron oxidation of reduced lucigenin (Luc(2e)). Reactions of Luc(2e) oxidation involve coenzyme Q-binding sites of Complex III. This results in formation of autooxidizable Luc*+ and superoxide anion generation. A new scheme for lucigenin-dependent electron pathways is proposed. It includes formation of fully reduced form of lucigenin and two-electron-transferring shunts of the respiratory chain. Lucigenin-induced activation of superoxide anion formation in mitochondria is accompanied by increase in ion permeability of the inner mitochondrial membrane.  相似文献   

7.
1. The effects of various inhibitors of electron transport and of oxidative phosphorylation and the effects of ionophores on the uptake of native aspartate aminotransferase into mitochondria were investigated. 2. Both antimycin and cyanide completely inhibited the uptake of the enzyme. On the other hand, uptake was stimulated to ATP and by oligomycin; however, the stimulation by ATP is inhibited by oligomycin. 3. The effects of ionophores of the valinomycin type in media containing K+ ions depended on the conditions used. Valinomycin alone stimulated the uptake of the enzyme, but in the presence of phosphate ions uptake was abolished. Nonactin was without effect at a low K+ concentration, but was stimulatory at 100 mM-KCl. Gramicidin also stimulated the uptake process. 4. Nigericin completely abolished uptake of aspartate aminotransferase into mitochondria. 5. The uptake of te enzyme was decreased by 18% in the absence of inhibitors or ionophores when the external pH was increased from 6.9 to 7.6. 6. These results indicate that ATP is not directly involved in the uptake of aspartate aminotransferase into mitochondria, neither is there a requirement for a cation gradient. Rather the uptake depends on the maintenance of a pH gradient across the mitochondrial inner membrane.  相似文献   

8.
The malate-aspartate, fatty acid, and α-glycerophosphate shuttles for the transport of reducing equivalents into mitochondria were reconstituted, using isolated hepatic mitochondria and the extramitochondrial components of the shuttles. Clofibrate and thyroxin increased, while propylthiouracil treatment decreased, the activity of mitochondrial α-glycerophosphate dehydrogenase. Despite these changes, the activity of the reconstituted α-glycerophosphate shuttle was similar in mitochondria from control rats and those from rats treated with clofibrate and propylthiouracil. There was an increase in the activity of the shuttle using mitochondria from thyroxin-treated rats. Rotenone caused 60–90% inhibition of this shuttle, suggesting that rotenone-sensitive NADH dehydrogenase participates in the pathway of oxidation of extramitochondrial hydrogen. Palmitate, oleate, and octanoate were equally effective in reconstituting a cyclic fatty acid shuttle. The shuttle was inhibited by various compounds affecting mitochondrial metabolism, including oligomycin, dinitrophenol, cyanide, rotenone, atractyloside, and α-bromopalmitate. Carnitine and several dicarboxylic and tricarboxylic acids which stimulate fatty acid elongation, augmented fatty acid shuttle activity. The malate-aspartate shuttle was inhibited by cycloserine, amino-oxyacetic acid, and hydrazine, and stimulated by pyridoxal phosphate, at the same concentrations which affected the activities of cytoplasmic and mitochondrial glutamic oxalacetic transaminase. This shuttle was inhibited by uncouplers, antimycin, azide, cyanide, rotenone, amobarbital, oligomycin, and several inhibitors of anion transport including iodobenzylmalonate and avenaciolide. The reconstituted shuttle is sufficiently active to provide about 70–80% of the oxalacetate required for maximal rates of gluconeogenesis. Extrapolations based on the rates of mitochondrial oxidation of acetaldehyde and the activity of the microsomal ethanol oxidizing system suggest that any one of the shuttles could account for the rate of ethanol metabolism in vitro by the alcohol dehydrogenase pathway.  相似文献   

9.
  1. The mechanism of transport of Krebs cycle intermediates, phosphateand sulfurcontaining compounds across the membrane of purifiedbean mitochondria was investigated by directly measuring dieexchange between intramitochondrial labelled substrates andexternal anions and by testing die inhibitor sensitivity ofdiese transport processes.
  2. The exchange between intramitochondrialphosphate and externalphosphate or sulfite is insensitive toN-ediylmaleimide or butylmalonatewhen either is added alone,but is completely inhibited by N-ethylmaleimideplus butylmalonateor by mersalyl. Internal phosphate is exchangedwith malate,succinate, oxaloacetate, sulfate and thiosulfate;these reactionsare inhibited by butylmalonate but not affectedby N-ethylmaleimide.
  3. Internal sulfate is exchanged with malate, malonate, succinate,phosphate and sulfite in a butylmalonate- and mersalyl-sensitivereaction. Also the exchanges of malonate with phosphate, sulfateand sulfite are inhibited by butylmalonate and mersalyl. Onthe other hand, the exchange between intra- and extramitochondrialmalonate is completely inhibited only by the combination ofbutylmalonate and 1,2,3-benzenetricarboxylate.
  4. Citrate isexchanged with some di- and tricarboxylates and phosphoenolpyruvate(but not with phosphate, sulfate, oxoglutarate, trans-aconitateand benzenetricarboxylates). These exchanges are inhibited by1,2,3-benzenetricarboxylate, but not by 1,2,4-benzenetricarboxylateor 1,3,5-pentanetricarboxylate.
  5. Oxoglutarate is exchangedwith succinate, malate, malonate andoxaloacetate (but not withphosphate, citrate or phosphoenolpyruvate)in a mersalyl-insensitive,butylmalonate- and phenylsuccinate-sensitivereaction.
  6. Weconcluded that bean mitochondria contain the following transportsystems: a phosphate carrier inhibited by N-ethylmaleimide ormersalyl, a dicarboxylate carrier inhibited by butylmalonateor mersalyl, a citrate carrier inhibited by 1,2,3-benzenetricarboxylateand an oxoglutarate carrier inhibited by phenylsuccinate orbutylmalonate but insensitive to mersalyl.
(Received June 23, 1976; )  相似文献   

10.
Transport of dicarboxylic acids in castor bean mitochondria   总被引:1,自引:1,他引:0       下载免费PDF全文
Mitochondria from castor bean (Ricinus communis cv Hale) endosperm, purified on sucrose gradients, were used to investigate transport of dicarboxylic acids. The isolated mitochondria oxidized malate and succinate with respiratory control ratios greater than 2 and ADP/O ratios of 2.6 and 1.7, respectively. Net accumulation of 14C from [14C]malate or [14C]succinate into the mitochondrial matrix during substrate oxidation was examined by the silicone oil centrifugation technique. In the presence of ATP, there was an appreciable increase in the accumulation of 14C from [14C]malate or [14C]succinate accompanied by an increased oxidation rate of the respective dicarboxylate. The net accumulation of dicarboxylate in the presence of ATP was saturable with apparent Km values of 2 to 2.5 millimolar. The ATP-stimulated accumulation of dicarboxylate was unaffected by oligomycin but inhibited by uncouplers (2,4-dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone) and inhibitors of the electron transport chain (antimycin A, KCN). Dicarboxylate accumulation was also inhibited by butylmalonate, benzylmalonate, phenylsuccinate, mersalyl and N-ethylmaleimide. The optimal ATP concentration for stimulation of dicarboxylate accumulation was 1 millimolar. CTP was as effective as ATP in stimulating dicarboxylate accumulation, and other nucleotide triphosphates showed intermediate or no effect on dicarboxylate accumulation. Dicarboxylate accumulation was phosphate dependent but, inasmuch as ATP did not increase phosphate uptake, the ATP stimulation of dicarboxylate accumulation was apparently not due to increased availability of exchangeable phosphate.

The maximum rate of succinate accumulation (14.5 nanomoles per minute per milligram protein) was only a fraction of the measured rate of oxidation (100-200 nanomoles per minute per milligram protein). Efflux of malate from the mitochondria was shown to occur at high rates (150 nanomoles per minute per milligram protein) when succinate was provided, suggesting dicarboxylate exchange. The uptake of [14C]succinate into malate or malonate preloaded mitochondria was therefore determined. In the absence of phosphate, uptake of [14C]succinate into mitochondria preloaded with malate was rapid (27 nanomoles per 15 seconds per milligram protein at 4°C) and inhibited by butylmalonate, benzylmalonate, and phenylsuccinate. Uptake of [14C]succinate into mitochondria preloaded with malonate showed saturation kinetics with an apparent Km of 2.5 millimolar and Vmax of 250 nanomoles per minute per milligram protein at 4°C. The measured rates of dicarboxylate-dicarboxylate exchange in castor bean mitochondria are sufficient to account for the observed rates of substrate oxidation.

  相似文献   

11.
In eggs of the echiuroid Urechis unicinctus the respiration rate, which is not altered by fertilization, is inhibited by rotenone, antimycin A and cyanide. The respiration in echiuroid eggs is probably mediated by the mitochondrial respiratory chain. In fertilized eggs, the respiration was inhibited by oligomycin and stimulated by the uncouplers of oxidative phosphorylation 2,4-dinitrophenol and carbonylcyanide p-trifluoromethoxyphenylhydrazone, whereas respiration in unfertilized eggs was insensitive to these compounds. Insemination increased the respiratory rate in eggs in the presence of uncouplers and reduced it in the presence of oligomycin. These findings suggest that the capacity of electron transport in mitochondira is elevated by fertilization but becomes latent on fertilization-induced coupling of respiration with oxidative phosphorylation. Strong stimulation of the respiration in unfertilized eggs was induced by dichlorophenol indophenol, phenazine methosulfate and tetramethyl p-phenylenediamine, suggesting possible sites at which electron transport is regulated in unfertilized eggs. The resulting stimulation of respiration in unfertilized eggs was insensitive to uncouplers and oligomycin, but became sensitive to them after fertilization simultaneously with considerable decrease in its rate. Fertilization-induced coupling of the respiration seemed to reduce the respiratory rate enhanced artificially by these redox compounds.  相似文献   

12.
The influence of mitochondrial inhibitors, including oligomycin, antimycin and rotenone, on the iodide and oxygen uptake and the nucleotide content of incubated sheep thyroid slices was investigated. Each inhibitor strongly suppressed both iodide and oxygen uptake, and decreased the nucleoside triphosphate content of the slices. In most cases the addition of glucose or mitochondrial substrates restored iodide uptake in inhibitor-treated slices. Inhibitor concentrations sufficient to inhibit iodide uptake strongly had only slight effects on the thyroidal Na(+)+K(+)-activated adenosine triphosphatase. It is concluded that the inhibitors produce their effects by the inhibition in vivo of mitochondrial oxidative phosphorylation. ATP synthesis appears to be essential for iodide uptake to occur, and the high-energy intermediates (or energized state) of oxidative phosphorylation cannot be used to energize the uptake process. To a limited extent glycolytic ATP synthesis can support iodide uptake, which is therefore not exclusively dependent on aerobic metabolism. The mechanism of energy-linked iodide uptake is discussed.  相似文献   

13.
The isolated and liposome-reconstituted mitochondrial phosphate carrier exhibits a sigmoidal inhibition curve by mersalyl, similar to that found with intact mitochondria. In contrast a hyperbolic inhibition curve is found (a) by titration of the soluble carrier with mersalyl before reconstitution in liposomes and (b) by titration of the reconstituted carrier with mersalyl after successively pretreatment of the mitochondria with low, non-inhibitory concentrations of mersalyl, excess N-ethylmaleimide and dithiothreitol. The inhibition of the reconstituted, but not of the soluble, phosphate carrier by mersalyl can be reversed by dithiothreitol. Cupric di(1,10-phenanthroline) inhibits the soluble but not the reconstituted phosphate carrier. The inhibited phosphate carrier can be reactivated by dithiothreitol in the soluble state but not after reconstitution in liposomes. The data support the previously suggested model of the phosphate carrier, assuming a dimer of two identical subunits for the active unit.  相似文献   

14.
Per Lundberg 《BBA》1975,376(3):458-469
Light scattering was employed to monitor configurational changes of submitochondrial particles. Such changes were induced by ATP but not by analogues of this nucleotide. Mg2+ in an equimolar concentration to ATP enhanced the effect of the nucleotide. The ATP-induced changes were inhibited by oligomycin and uncouplers. Atractyloside was effective as an inhibitor only when loaded within the particles. The ATP-induced changes were decreased by phosphate. The effect of phosphate was partially inhibited by mersalyl. Sodium phosphate and ammonium phosphate were more effective than potassium phosphate.

The observed changes in light scattering were due to (a) events involved in energization and de-energization of the membrane, and (b) events concerning transport over the particulate membrane.

The changes were specific for adenine nucleotides and phosphate.  相似文献   


15.
Lin W  Hanson JB 《Plant physiology》1974,54(3):250-256
The correlations between ATP concentration in corn (Zea mays) root tissue and the rate of phosphate absorption by the tissue have been examined. Experimental variation was secured with 2,4-dinitrophenol, oligomycin, mersalyl, l-ethionine, 2-deoxyglucose, N2 gassing and inhibition of protein synthesis. It is concluded that ATP could be the energy source for potassium phosphate absorption, but only if the transport mechanism possesses certain properties: oligomycin-sensitivity; creation of a proton gradient susceptible to collapse by uncouplers; phosphate transport via a mersalyl-sensitive Pi-OH transporter; good activity at energy charge as low as 0.4; short enzymatic half-life for the ATPase or phosphate transporter; a linked mechanism for K+-H+ exchange transport, possibly electrogenic.  相似文献   

16.
Calcium uptake into bovine epididymal spermatozoa is enhanced by introducing phosphate in the suspending medium (Babcock et al. (1975) J. Biol. Chem. 250, 6488-6495). This effect of phosphate is found even at a low extracellular Ca2+ concentrations (i.e., 5 microM) suggesting that phosphate is involved in calcium transport via the plasma membrane. Bicarbonate (2 mM) cannot substitute for phosphate, and a relatively high bicarbonate concentration (20 mM) causes partial inhibition of calcium uptake in absence of Pi. In the presence of 1-2 mM phosphate, 20 mM bicarbonate enhances Ca2+ uptake. The data indicate that the plasma membrane of bovine spermatozoa contains two carriers for Ca2+ transport: a phosphate-independent Ca2+ carrier that is stimulated by bicarbonate and a phosphate-dependent Ca2+ carrier that is inhibited by bicarbonate. Higher phosphate concentrations (i.e., 10 mM) inhibit Ca2+ uptake into intact cells (compared to 1.0 mM phosphate) and this inhibition can be relieved partially by 20 mM bicarbonate. This effect of bicarbonate is inhibited by mersalyl. Calcium uptake into the cells is enhanced by adding exogenous substrates to the medium. There is no correlation between ATP levels in the cells and Ca2+ transport into the cell. ATP levels are high even without added exogenous substrate and this ATP level is almost completely reduced by oligomycin, suggesting that ATP can be synthesized in the mitochondria in the absence of exogenous substrate. Calcium transport into the sperm mitochondria (washed filipin-treated cells) is absolutely dependent upon the presence of phosphate and mitochondrial substrate. Bicarbonate cannot support Ca2+ transport into sperm mitochondria. There is good correlation between Ca2+ uptake into intact epididymal sperm and into sperm mitochondria with the various substrates used. This indicates that the rate of calcium transport into the cells is determined by the rate of mitochondrial Ca2+ uptake and respiration with the various substrates.  相似文献   

17.
Bax, a pro-apoptotic member of the Bcl-2 family, is a cytosolic protein that inserts into mitochondrial membranes upon induction of cell death. Using the green fluorescent protein fused to Bax (GFP-Bax) to quantitate mitochondrial binding in living cells we have investigated the cause of Bax association with mitochondria and the time course relative to endogenous and induced changes in mitochondrial membrane potential (DeltaPsi(m)). We have found that staurosporine (STS) induces a loss in DeltaPsi(m) before GFP-Bax translocation can be measured. The onset of the DeltaPsi(m) loss is followed by a rapid and complete collapse of DeltaPsi(m) which is followed by Bax association with mitochondria. The mitochondria uncoupler FCCP, in the presence of the F(1)-F(0) ATPase inhibitor oligomycin, can trigger Bax translocation to mitochondria suggesting that when ATP levels are maintained a collapse of DeltaPsi(m) induces Bax translocation. Neither FCCP nor oligomycin alone alters Bax location. Bax association with mitochondria is also triggered by inhibitors of the electron transport chain, antimycin and rotenone, compounds that collapse DeltaPsi(m) without inducing rapid ATP hydrolysis that typically occurs with uncouplers such as FCCP. Taken together, our results suggest that alterations in mitochondrial energization associated with apoptosis can initiate Bax docking to mitochondria.  相似文献   

18.
The particulate fraction of Rhodopseudomonas viridis when supplied with succinate catalyses the reduction of NAD+ by light; this reaction is inhibited by uncouplers of oxidative phosphorylation but not by oligomycin. Formation of NADH takes place in the dark when ATP or PPi is supplied. Both light and dark reactions are inhibited by valinomycin and nigericin, when added together, but not by either separately. NADH formation in R. viridis appears to take place by an energy-dependent reversal of electron flow and energy may be conserved in the form of a membrane potential. The addition of ATP caused the oxidation of both C553 and C558 in chromatophores; carbonylcyanide p-trifluoromethoxyphenylhydrazone and oligomycin abolished this oxidation.

The NAD+ and NADH concentrations at equilibrium in the light-dependent reaction were determined and the oxidation-reduction potential of this couple calculated. From this value it was calculated that under these experimental conditions the energy requirement to form NADH from the succinate/fumarate couple at Eh = o V was 9.4 kcal.

Particles of R. viridis contained an active transhydrogenase, driven by either light or ATP, that was sensitive to uncouplers of oxidative phosphorylation; the light-driven reaction was insensitive to oligomycin and was inhibited by antimycin A and 2-heptyl-4-hydroxyquinone-N-oxide.

R. viridis did not grow aerobically but particles contained NADH oxidase activity that was cyanide sensitive. There was no spectroscopic evidence for cytochromes of the b-type in reduced-minus-oxidised spectra of particles or in pyridine haemochrome spectra of whole cells.  相似文献   


19.
Several strains of Candida parapsilosis, isolated independently in our laboratory, had their resistance compared to a series of inhibitors which act either at the level of mitochondrial ribosomes (chloramphenicol, erythromycin, paromomycin) or at the level of mitochondrial respiration and oxidative phosphorylation (oligomycin, antimycin A, diuron, carbonylcyanide m-chlorophenylhydrazone). Cells were grown on glycerol media supplemented with one of these inhibitors, and it was demonstrated that the resistance of these yeasts to a large spectrum of antibiotics was due to several features: a resistance to oligomycin was found at the permeation level; the resistance to the other drugs was correlated to the relative insensitivity of cytochrome biosynthesis to the drugs; the cells developed, at the same time, two types of alternative pathways: the one branched at the ubiquinone level which drove electrons from Krebs cycle substrates to oxygen, and the other, antimycin A-insensitive but inhibited by amytal, salicylhydroxamic acid and high cyanide concentrations. This secondary mitochondrial pathway, driving reducing equivalents from cytoplasmic NADH to cytochrome c and then to cytochrome aa3 or to alternate oxidase, allowed the growth of Candida parapsilosis on a non fermentescible medium, supplemented with these drugs.  相似文献   

20.
B. Aupetit  R. Toury  J.C. Legrand 《Biochimie》1980,62(11-12):823-827
The purpose of this study was to see whether there was any link between conversion of 18 hydroxycorticosterone to aldosterone and mitochondrial energy metabolism. In vitro incubations of duck adrenal mitochondria with 18 OH B were used in this study. Results show that 18 oxidation is inhibited by compounds blocking electron transport (antimycin A, cyanide, rotenone, amytal). Inhibition induced by cyanide and antimycin A is reversed with ATP. 2,4 dinitrophenol, oligomycin and DCCD inhibit 18 oxidation but guanidine stimulate this reaction. Thus aldosterone synthesis from 18 OH B depends on energy metabolism in mitochondria. This is a very new aspect related to the last step of aldosterone synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号