首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
1. In the yeast Rhodotorula gracilis several amino sugars were actively transported. Glucosamine, which is largely protonated at physiological pH (pK 7.75) was used as a model substrate. At pH 6.75 its half-saturation constant was 1 mM and the maximal velocity was 50 nmol/min per mg dry wt. 2. Amino sugars were taken up via the monosaccharide carrier. The transport of glucosamine was strongly restricted by monosaccharides. D-Xylose inhibited competitively the uptake of glucosamine. The inhibition constant was 1 mM. Cells preloaded with D-xylose showed exchange transport on subsequent addition of glucosamine. 3. Transport of glucosamine was energized by the membrane potential. Uncoupling agents such as carbonyl cyanide m-chlorophenyl-hydrazone and the lipophilic cation TPP+ (tetraphenylphosphonium ion) at concentrations that depolarized the membrane potential inhibited the uptake of glucosamine. Conversely the transport of glucosamine partly dissipated the membrane potential, which was monitored by radioactively labelled lipophilic cations. 4. The translocated charges were electrically compensated by the extrusion of protons and K+ (1 glucosamine molecule/0.85 H+ + 0.15 K+). 5. An increase of the pH in the range 4.75-8.75 lead to a decrease of the half-saturation constant from 5 mM to 1 mM and to an optimum of the maximal velocity at pH 6.75. We suggest that this fair constancy is due to the carrier not distinguishing between the protonated form of glucosamine (pH less than 7.75) and the deprotonated form (pH greater than 7.75). The increase of V(T) (maximal transport velocity) between pH 4.75 and 6.75 is due to the increase of the membrane potential: the decrease between pH 6.75 and 8.75 is due to the deprotonization of the carrier.  相似文献   

2.
The effects of the Na+ gradient and pH on phosphate uptake were studied in brush-border membrane vesicles isolated from rat kidney cortex. The initial rates of Na(+)-dependent phosphate uptake were measured at pH 6.5, 7.5 and 8.5 in the presence of sodium gluconate. At a constant total phosphate concentration, the transport values at pH 7.5 and 8.5 were similar, but at pH 6.5 the influx was 31% of that at pH 7.5. However, when the concentration of bivalent phosphate was kept constant at all three pH values, the effect of pH was less pronounced; at pH 6.5, phosphate influx was 73% of that measured at pH 7.5. The Na(+)-dependent phosphate uptake was also influenced by a transmembrane pH difference; an outwardly directed H+ gradient stimulated the uptake by 48%, whereas an inwardly directed H+ gradient inhibited the uptake by 15%. Phosphate on the trans (intravesicular) side stimulated the Na(+)-gradient-dependent phosphate transport by 59%, 93% and 49%, and the Na(+)-gradient-independent phosphate transport by 240%, 280% and 244%, at pH 6.5, 7.5 and 8.5 respectively. However, in both cases, at pH 6.5 the maximal stimulation was seen only when the concentration of bivalent trans phosphate was the same as at pH 7.5. In the absence of a Na+ gradient, but in the presence of Na+, an outwardly directed H+ gradient provided the driving force for the transient hyperaccumulation of phosphate. The rate of uptake was dependent on the magnitude of the H+ gradient. These results indicate that: (1) the bivalent form of phosphate is the form of phosphate recognized by the carrier on both sides of the membrane; (2) protons are both activators and allosteric modulators of the phosphate carrier; (3) the combined action of both the Na+ (out/in) and H+ (in/out) gradients on the phosphate carrier contribute to regulate efficiently the re-absorption of phosphate.  相似文献   

3.
The kinetics of L-glucose transport by Rhodotorula glutinis were studied over a 720-fold range of sugar concentrations. Analysis of the saturation isotherm revealed the presence of a one-carrier system for L-glucose in the plasma membrane of Rhodotorula glutinis. This carrier exhibited a km of 3.7 +/- 0.3 mM. D-Ribose was found to be a competitive inhibitor with a Ki of 19 +/- 1 mM. The results suggest that L-glucose is transported by the high-Km, D-ribose carrier. L-Glucose was transported against a concentration gradient and the transport was inhibited by the proton conductor 2,4-dinitrophenol.  相似文献   

4.
The rate of uptake and the distribution ratio between intra- and extracellular compartments of L- and D-lactate were studied in hepatocyte preparations from fed rats. L- and D-lactate uptake apparently depended on both passive diffusion and carrier-mediated components. The apparent Km of the high-affinity carrier for L-lactate was in the range of 1.8 mM. The reciprocal competitive inhibitions between isomers of lactate suggest that L- and D-lactate might be transported by distinct carriers. Lactate transport was inhibited by various anions; pyruvate was the most potent anion, whereas only high concentrations of ketone bodies were effective. Acidic extracellular pH enhanced lactate uptake, this effect being more pronounced for L-lactate. At low pH, L-lactate was concentrated into hepatocytes, but its affinity for the carrier appeared unchanged, suggesting the existence of a process gaining energy from the pH gradient across the cell membrane. In the hypothesis of a lactate/H+ symport, the affinity for H+ was not dependent on lactate concentration and the apparent Km for H+ corresponded to a pH of 7.34. No trans-stimulation of lactate uptake after prior loading of the cells with pyruvate or lactate was observed. The present data suggest that, at physiological concentrations, lactate uptake by the liver might be largely carrier-mediated and the rate of transport across the liver cell membrane may be of a magnitude relatively comparable to the rate of metabolism.  相似文献   

5.
1. A method is described for establishing steady-state conditions of calcium transport across the inner membrane of rat liver mitochondria and for determining the current of Ca2+ flowing across the membrane, together with the Ca2+ electrochemical gradient across the native Ca2+ carrier. These parameters were used to quantify the apparent Ca2+ conductance of the native carrier. 2. At 23 degrees C and pH7.0, the apparent Ca2+ conductance of the carrier is close to 1 nmol of Ca2+-min-1-mg of protein-1 mV-1. Proton extrusion by the respiratory chain, rather than the Ca2+ carrier itself, may often be rate-limiting in studies of initial rates of Ca2+ uptake. 3. Under parallel conditions, the endogenous H+ conductance of the membrane is 0.3 nmol of H+-min-1-mg of protein-1-mV-1. 4. Ruthenium Red and La3+ both strongly inhibit the Ca2+ conductance of the carrier, but are without effect on the H+ conductance of the membrane. 5. The apparent Ca2+ conductance of the carrier shows a sigmoidal dependence on the activity of Ca2+ in the medium. At 23 degrees C and pH7.2, half-maximum conductance is obtained at a Ca2+ activity of 4.7 muM. 6. The apparent Ca2+ conductance and the H+ conductance of the inner membrane increase fourfold from 23 degrees to 38 degrees C. The apparent Arrhenius activation energy for Ca2+ transport is 69kJ/mol. The H+ electrochemical gradient maintained in the absence of Ca2+ transport does not vary significantly with temperature. 7. The apparent Ca2+ conductance increases fivefold on increasing the pH of the medium from 6.8 to 8.0. The H+ conductance of the membrane does not vary significantly with pH over this range. 8. Mg2+ has no effect on the apparent Ca2+ conductance when added at concentration up to 1 mM. 9. Results are compared with classical methods of studying Ca2+ transport across the mitochondrial inner membrane.  相似文献   

6.
Summary Evidence for a mobile membrane carrier mediating the uphill monosaccharide transport in the yeastRhodotorula gracilis is based on two types of observations: (1) Countertransport was found with14C-labelledd-xylose,l-xylose,l-rhamnose and withl-rhamnose in a cell suspension preincubated with unlabelledd-xylose. This finding indicates, moreover, that both the hexoses and the pentose share the same membrane carrier. (2) The mobility of occupied carrier molecules is higher than that of free carrier molecules. This conclusion has been drawn from: (a) comparison of the initial rates of uptake of a labelled sugar into cells preincubated in the absence and in the presence of unlabelled sugar; (b) comparison on the half-saturation constant of transport with the dissociation constant of the sugar-carrier complex; and (c) comparison of the initial rates of efflux of a labelled sugar into sugar-free and sugar-containing medium.  相似文献   

7.
Analysis of the temperature dependence of the monosaccharide transport system in the yeast Rhodotorula gracilis (ATCC 26194, CBS 6681), as tested with D-xylose, revealed that the apparent affinity of the transport system, measured as the reciprocal of the half-saturation constant KT, increased when transport velocity was stimulated by temperature (15--30 degrees C) and decreased when the rate of uptake was reduced at temperatures aboce 30 degrees C. Breaks in Arrhenius plots were accompanied by corresponding breaks in van't Hoff plots. Whereas untreated cells exhibited in the van't Hoff plot a discontinuity at 28--30 degrees C this was not observed in heat-treated cells (at either 37 or 45 degrees C). In heat-treated cells the maximum transport velocity was always lower and the apparent affinity higher than in untreated cells at the same temperature; the optimum temperature for both transport velocity and apparent affinity was shifted to higher values. The data are interpreted in terms of a reversible phase transition of membrane lipids effecting an irreversible alteration of membrane structure. The temperature-induced reversible alkalinization of unbuffered yeast suspensions supports this interpretation.  相似文献   

8.
The carnitine carrier from rat liver mitochondria was purified by chromatography on hydroxyapatite and celite and reconstituted in egg yolk phospholipid vesicles by adsorbing the detergent on polystyrene beads. In the reconstituted system, in addition to the carnitine/carnitine exchange, the purified protein catalyzed a uni-directional transport (uniport) of carnitine measured as uptake into unloaded proteoliposomes as well as efflux from prelabelled proteoliposomes. In both cases the reaction followed a first-order kinetics with a rate constant of 0.023-0.026 min-1. Besides carnitine, also acylcarnitines were transported in the uniport mode. N-Ethylmaleimide inhibited the uni-directional transport of carnitine completely. The uniport of carnitine is not influenced by the delta pH and the electric gradient across the membrane. The activation energy for uniport was 115 kJ/mol and the half-saturation constant on the external side of the proteoliposomes was 0.53 mM. The maximal rate of the uniport at 25 degrees C was 0.2 mumol/min per mg protein, i.e. about 10 times lower than that of the reconstituted carnitine transport in exchange mode.  相似文献   

9.
Chick skeletal muscle cells in culture have an amiloride-sensitive Na+-transporting system that has the following properties. Na+ uptake is dependent on the extracellular Na+ concentration. The Km value for Na+ is 25 mM and remains constant between pH 7.5 and 8.5. The maximal rate of Na+ transport is higher at alkaline pH. An ionizable group with a pK of 7.6 is essential for the system to be functional. The activity of the amiloride-sensitive Na+ uptake system is controlled by internal Na+ and H+ concentrations. Amiloride inhibition of Na+ uptake is competitively antagonized by increasing Na+ concentration. The dissociation constant for amiloride is 5 microM in Na+-free conditions and is constant between pH 7.5 and 8.5. The Km value for Na+ found from competition experiments is 13 mM. The amiloride-sensitive Na+ influx occurs in parallel with an amiloride-sensitive H+ efflux. This H+ efflux is stimulated by increasing external Na+ concentrations, the Km for Na+ being 15 mM. It is inhibited by amiloride with the same concentration dependence as Na+ influx.  相似文献   

10.
The calcium (Ca2+) uptake by brush border membrane vesicles isolated from fresh human placentas has been characterized. This process was saturable and time- and concentration-dependent. It exhibited a double Michaelis-Menten kinetics, with apparent Km values of 0.17 +/- 0.03 and 2.98 +/- 0.17 mM Ca2+, and Vmax values of 0.9 +/- 0.13 and 2.51 +/- 0.45 pmol.micrograms-1.5 s-1. It was not influenced by the presence of Na+ or Mg2+ in the incubation medium. It was not increased by K+ or anion diffusion potentials, inside negative. At a steady state of 1 mM Ca2+ uptake, a large proportion (approximately 94%) of the Ca2+ was bound to the internal surface of the membranes. Preincubation of these membrane vesicles with voltage-dependent Ca2+ channel blockers (nifedipine and verapamil) had no influence on Ca2+ uptake. However, this uptake was very sensitive to pH. In the absence of a pH gradient, the Ca2+ uptake increased with alkalinity. When the intravesicular pH was kept constant while the pH of the incubation medium was increased, Ca2+ uptake was also stimulated by alkaline pH. In contrast, when the pH of the incubation medium was kept constant and the intravesicular pH was progressively increased, Ca2+ uptake was diminished with alkaline pH. Therefore, H+ gradient (H+ in trans-position greater than H+ in cis-position) favored Ca2+ transport, suggesting a H+/Ca2+ exchange mechanism. Finally, in contrast to the basal plasma membrane, the brush border membrane did not show any ATP-dependent Ca2+ transport activity.  相似文献   

11.
Ionic dependence of glycylsarcosine uptake by isolated chicken enterocytes   总被引:1,自引:0,他引:1  
Dipeptide transport was studied in chicken enterocytes and its properties compared with those of Na+-dependent sugar transport. Results showed that 1) isolated cells were capable of accumulating glycylsarcosine (Gly-Sar) against a concentration gradient (2.5- to 3.0-fold accumulation). This uptake was maximal at pH 6.0, and it was inhibited by Na+-free medium and by ouabain; 2) uptake of Gly-Sar was not affected by methionine and was competitively inhibited by carnosine, with a Ki of 12 mM; 3) the protonophore FCCP inhibited both Gly-Sar and 3-oxy-methyl-D-glucose (3-OMG) uptake by the cells; 4) amiloride, a well-known inhibitor of the Na+/H+ exchanger system stimulated 3-OMG uptake and inhibited Gly-Sar uptake, its effects being greater at pH 7.4; 5) and monensin prevents the effects of amiloride on both sugar and dipeptide uptake. In summary, Gly-Sar uptake depends on extracellular Na+ in an indirect manner via its effect on H+ efflux, and it appears to be dependent on an inward H+ gradient.  相似文献   

12.
J S Jung  Y K Kim    S H Lee 《The Biochemical journal》1989,259(2):377-383
Transport of [14C]tetraethylammonium (TEA), an organic cation, was studied in brush-border (BBMV) and basolateral (BLMV) membrane vesicles isolated from rabbit kidney cortex. In BBMV, the presence of an outwardly directed H+ gradient induced a marked stimulation of TEA uptake against its concentration gradient (overshoot phenomenon), whereas a valinomycin-induced inside-negative potential had no effect on TEA uptake. In BLMV, TEA uptake was significantly stimulated by the presence of an outwardly directed H+ gradient and by an inside-negative potential, but the effect of H+ gradient was absent when the vesicles were chemically 'voltage clamped'. In BBMV, internal H+ stimulated TEA uptake in a non-competitive manner by binding at a site with apparent pKa of 6.87. External H+ inhibited TEA uptake through a direct interaction with the putative H+/organic-cation exchanger at a site with apparent pKa of 6.78. Changing external pH while maintaining the pH gradient constant produced a result similar to that obtained by changing external pH alone. Increasing external H+ showed a mixed-type inhibition of TEA uptake. These results suggest that in the rabbit TEA transport across the basolateral membranes is driven by an inside-negative potential and that transport across the brush-border membrane is driven by a H+ gradient via an electroneutral H+/TEA antiport system.  相似文献   

13.
Summary A membrane potential (inside negative) across the plasma membrane of the obligatory aerobic yeastRhodotorula gracilis is indicated by the intracellular accumulation of the lipid-soluble cations tetraphenylphosphonium and triphenylmethylphosphonium. The uptake of these ions is inhibited by anaerobic conditions, by uncouplers, by addition of diffusible ions, or by increase of the leakiness of the membrane caused by the polyene antibiotic nystatin. The membrane potential is strongly pH-dependent, its value increasing with decreasing extracellular proton concentration. Addition of transportable monosaccharides causes a depolarization of the electrical potential difference, indicating that the H+-sugar cotransport is electrogenic. The effect on the membrane potential is enhanced by increasing the sugar concentration. The half-saturation constants of depolarization ford-xylose andd-galactose were comparable to those of the corresponding transport system for the two sugars. All agents that depressed the membrane potential inhibited monosaccharide transport; hence the membrane potential provides energy for active sugar transport in this strain of yeast.  相似文献   

14.
The secondary transport systems of the yeast vacuolar membrane have been investigated by the method of radioactive isotopes [( 14C]arginine); activation of H+-ATPase by cations (Cat+), when the enzyme is under H+ control and measurement of changes in the proton gradient (delta pH) and membrane potential (Em) due to the supposed substrates of the transporters. The main mechanism of cation transport across the yeast tonoplast is probably H+/Cat+ antiport. The apparent Km of antiporters for Ca2+, Mg2+, Mn2+, Zn2+ and Pi are 0.06, 0.3, 0.8, 0.055-0.17 and 1.5 mM, respectively.  相似文献   

15.
The present study was designed to investigate Cl- transport across rat ileal basolateral membranes. Basolateral membrane vesicles were prepared by a well-validated technique. The purity of the basolateral membrane vesicles was verified by marker enzyme studies and by studies of d-glucose and calcium uptake. Cl- uptake was studied by a rapid filtration technique. Neither an outwardly directed pH gradient, nor a HCO3- gradient, or their combination could elicit any stimulation of Cl- transport when compared with no gradient. 4,4-Diisothiocyanostilbene-2,2-disulfonic acid at 5 mM concentration did not inhibit Cl- uptake under gradient condition. Similarly, the presence of the combination of outwardly directed Na+ and HCO3- gradients did not stimulate Cl- uptake compared with the combination of K+ and HCO3- gradients or no HCO3- gradient. This is in contrast to our results in the brush border membranes, where an outwardly directed pH gradient caused an increase in Cl- uptake. Cl- uptake was stimulated in the presence of combined Na+ and K+ gradient. Bumetanide at 0.1 mM concentration inhibited the initial rate of Cl- uptake in the presence of combined Na+ and K+ gradients. Kinetic studies of bumetanide-sensitive Cl- uptake showed a Vmax of 5.6 +/- 0.7 nmol/mg protein/5 sec and a Km of 30 +/- 8.7 mM. Cl- uptake was stimulated by an inside positive membrane potential induced by the ionophore valinomycin in the setting of inwardly directed K+ gradient compared with voltage clamp condition. These studies demonstrate two processes for Cl- transport across the rat ileal basolateral membrane: one is driven by an electrogenic diffusive process and the second is a bumetanide-sensitive Na+/K+/2 Cl- process. Cl- uptake is not enhanced by pH gradient, HCO3- gradient, their combination, or outwardly directed HCO3- and Na+ gradients.  相似文献   

16.
Two carrier-mediated systems transport sugars in the yeast Rhodotorula gracilis depending on the pH. One system, with higher affinity for sugars, catalyses a symport of protons with sugar, whereas the other system, having lower affinity, is independent of protons. This was shown in three different ways. (1) At low pH, where only the high-affinity system works, a H+/sugar stoicheiometry of 1 was found. An increase of the pH and of the sugar concentration, which allowed the low-affinity system to operate, brought about a drop of the stoicheiometry to values below 1. (2) During H+ symport the influx of positive charge was electrically compensated by an equivalent efflux of K+ from the cells. At high pH and high sugar concentrations this stoicheiometry of K+ and sugar decreased concomitant with the H+/sugar stoicheiometry. (3) At pH 7.5 both transport systems were operating, as shown by biphasic saturation kinetics. Under these conditions only the high-affinity transport was found to be electrogenic. These results agree with the theory of an electrogenic H+/sugar symport where changes in the affinity for substrate are brought about by reversible protonation and deprotonation of the carrier.  相似文献   

17.
The modulation of serotonin uptake kinetics by Na+, Cl-, H+, and K+ was investigated in brush-border membrane vesicles prepared from normal human term placentas. The presence of Na+ and Cl- in the external medium was mandatory for the function of the serotonin transporter. In both cases, the initial uptake rate of serotonin was a hyperbolic function of the ion concentration, indicating involvement of one Na+ and one Cl- per transport of one serotonin molecule. The apparent dissociation constant for Na+ and Cl- was 145 and 79 mM, respectively. The external Na+ increased the Vmax of the transporter and also increased the affinity of the transporter for serotonin. The external Cl- also showed similar effects on the Vmax and the Kt, but its effect on the Kt was small compared to that of Na+. The presence of an inside-acidic pH, with or without a transmembrane pH gradient, stimulated the NaCl-dependent serotonin uptake. The effect of internal [H+] on the transport function was to increase the Vmax and decrease the affinity of the transporter for serotonin. The presence of K+ inside the vesicles also greatly stimulated the initial rates of serotonin uptake, and the stimulation was greater at pH 7.5 than at pH 6.5. This stimulation was a hyperbolic function of the internal K+ concentration at both pH values, indicating involvement of one K+ per transport of one serotonin molecule. The apparent dissociation constant for K+ was 5.6 mM at pH 6.5 and 4.0 mM at pH 7.5. The effects of internal [K+] on the uptake kinetics were similar to those of internal [H+].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The kinetic parameters of noradrenaline uptake by chromaffin granule ghosts have been measured at external pH values between 6.5 and 8.5. The log of the Km for noradrenaline decreased linearly with pH with a slope of -1.0, indicating that the observed affinity increase of originated in deprotonation of a single chemical group. This result is interpreted as showing that the neutral form of monoamines is the true substrate for the amine carrier. The Km of the carrier for the neutral form of noradrenaline was calculated as 0.1 microM. The maximal velocity, V, of the uptake reaction was constant from pH 6.5 to 8.0 and decreased at more alkaline pH values. Since the proton electrochemical gradient delta muH+ generated by the membrane H+-pump was independent of the pH in the range 6.5-9.5, the pH dependence of the maximal velocity of uptake reflects the pH profile of the monoamine transporter.  相似文献   

19.
Hydrophobic protein (H protein) was isolated from membrane fractions of Bacillus subtilis and constituted into artificial membrane vesicles with lipid of B. substilis. Glutamate was accumulated into the vesicle when a Na+ gradient across the membrane was imposed. The maximum effect of Na+ on the transport was achieved at a concentration of about 40 mM, while the apparent Km for Na+ was approximately 8 mM. On the other hand, Km for glutamate in the presence of 50 mM Na+ was about 8 micro M. Increasing the concentration of Na+ resulted in a decrease in Km for glutamate, maximum velocity was not affected. The transport was sensitive to monensin (Na+ ionophore). Glutamate was also accumulated when pH gradient (interior alkaline) across the membrane was imposed or a membrane potential was induced with K+-diffusion potential. The pH gradient-driven glutamate transport was sensitive to carbonylcyanide m-chlorophenylhydrazone and the apparent Km for glutamate was approximately 25 microM. These results indicate that two kinds of glutamate transport system were present in H protein: one is Na+ dependent and the other is H+ dependent.  相似文献   

20.
A monosaccharide transport system in addition to the active Na+-dependent system characteristic of the brush border surface of vertebrate intestinal tissue has been identified in isolated chick intestinal epithelial cells. The newly described system differs in several characteristics from the Na+-dependent process, including function in the absence of Na+; a high sensitivity to phloretin, relative insensitivity to phlorizin; different substrate specificity; and a very high KT and Vmax. The system apparently functions only in a facilitated diffusion manner so that it serves to move monosaccharide across the cell membrane down its chemical gradient. An appreciable fraction of total sugar efflux occurs via the Na+-independent carrier from cells which have accumulated sugar to a steady state. Phloretin selectively blocks this efflux so that a normal steady-state sugar gradient of seven- to eightfold is transformed to a new steady-state gradient which is greater than 14-fold. Locus of the new system is tentatively ascribed to the serosal cell surface where it would serve for monosaccharide transfer between enterocyte and lamina propria of the villus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号