首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a series of experiments on regulated contractile systems (i.e., in vitro mobile systems with reconstructed thin filaments), the velocities of the movement of a thin filament on the surface covered by either rabbit skeletal or rat cardiac myosin at various concentrations of calcium ions in solution (in the pCa range from 4 to 8) were assessed. The corresponding "pCa-velocity" relationships were plotted, which proved to be of the sigmoid form. It was found that, at a saturating calcium concentration (pCa 4), the velocity of regulated thin filaments was 65% higher than for unregulated ones in the case of skeletal myosin and 87% higher than for unregulated thin filaments in the case of cardiac myosin. It was also found that the Hill coefficient was 1.95 and 2.5 for skeletal and cardiac myosins, respectively. The difference in the Hill coefficients for skeletal and cardiac myosins is discussed in terms of the difference in contribution of cooperativity mechanisms of contractile and regulatory proteins in the regulation of contraction in these types of muscles.  相似文献   

2.
The dependences of thin filament sliding velocity on the calcium concentration in solution (pCa 5 to 8) for rabbit cardiac myosin isoforms V1 and V3 were determined in a set of experiments using an in vitro motility assay with a reconstructed thin filament. The constructed pCa-versus-velocity curves had a sigmoid shape. It was demonstrated that the sliding velocity of regulated thin filament at the saturating calcium concentration (pCa 5) did not differ from the actin sliding velocity for each isoform. The determined values of Hill’s cooperativity coefficient for isomyosins V1 and V3 were 1.04 and 0.75, respectively. It was demonstrated that isomyosin V3 was more sensitive to calcium as compared with isomyosin V1. Using the same assay, the dependence of thin filament sliding velocity on the concentration of the actin-binding protein α-actinin (analog of a force-velocity dependence) was determined at the saturating calcium concentration for each myosin isoform (V1 and V3). The results suggest that the calcium regulation of V1 and V3 contractile activity follows different mechanisms.  相似文献   

3.
The ability of calcium to regulate thin filament sliding velocity was studied in an in vitro motility assay system using cardiac troponin and tropomyosin and rhodamine-phalloidin-labeled skeletal actin and skeletal heavy meromyosin to propel the filaments. Measurements showed that both the number of thin filaments sliding and their sliding speed (Sf) were dependent on the calcium concentration in the range of pCa 5 to 9. Thin filament motility was completely inhibited only if troponin and tropomyosin were added at a concentration of 100 nM to the motility assay solution and the pCa was more than 8. The filament sliding speed was dependent on the pCa in a noncooperative fashion (Hill coefficient = 1) and reached maximum at 5 microns/s at a pCa of 5. The number of filaments moving uniformly decreased from > 90% at pCa 5-6 to near zero in less than 1 pCa unit. This behavior may be explained by a hypothesis in which the regulatory proteins control the number of cross-bridge heads interacting with the thin filaments rather than the rate at which they individually hydrolyze ATP or translocate the thin filaments.  相似文献   

4.
The current study was undertaken to investigate the relative contribution of calcium and myosin binding to thin filament activation. Using the in vitro motility assay, myosin strong binding to the thin filament was controlled by three mechanisms: 1), varying the myosin concentration of the motility surface, and adding either 2), inorganic phosphate (Pi) or 3), adenosine diphosphate (ADP) to the motility solutions. At saturating myosin conditions, Pi had no effect on thin filament motility. However, at subsaturating myosin concentrations, velocity was reduced at maximal and submaximal calcium in the presence of Pi. Adding ADP to the motility buffers reduced thin filament sliding velocity but increased the pCa(50) of the thin filament. Thus by limiting or increasing myosin strong binding (with the addition of Pi and ADP, respectively), the calcium concentration at which half maximal activation of the thin filament is achieved can be modulated. In experiments without ADP or Pi, the myosin concentration on the motility surface required to reach maximal velocity inversely correlated with the level of calcium activation. Through this approach, we demonstrate that myosin strong binding is essential for thin filament activation at both maximal and submaximal calcium levels, with the relative contribution of myosin strong binding being greatest at submaximal calcium. Furthermore, under conditions in which myosin strong binding is not rate limiting (i.e., saturating myosin conditions), our data suggest that a modulation of myosin cross-bridge kinetics is likely responsible for the graded response to calcium observed in the in vitro motility assay.  相似文献   

5.
Contraction of skeletal muscle is regulated by calcium at the level of the thin filament via troponin and tropomyosin. Studies have indicated that strong cross-bridge binding is also involved in activation of the thin filament. To further test this, myofibrils were incubated with a wide range of fluorescent myosin subfragment 1(fS1) at pCa 9 or pCa 4 with or without ADP. Sarcomere fluorescence intensity and the fluorescence intensity ratio (non-overlap region/overlap region) were measured to determine the amount and location of bound fS1 in the myofibril. There was lower sarcomere fluorescence intensity with ADP compared to without ADP for both calcium levels. Similar data were obtained from biochemical measures of bound fS1, validating the fluorescence microscopy measurements. The intensity ratio, which is related to activation of the thin filament, increased with increasing [fS1] with or without ADP. At pCa 9, the fluorescence intensity ratio was constant until 80-160 nM fS1 without ADP conditions, then it went up dramatically and finally attained saturation. The dramatic shift of the ratio demonstrated the cooperative character of strong cross-bridge binding, and this was not observed at high calcium. A similar pattern was observed with ADP in that the ratio was right-shifted with respect to total [fS1]. Saturation was obtained with both the fluorescence intensity and ratio data. Plots of intensity ratio as a function of normalized sarcomere intensity (bound fS1) showed little difference between with and without ADP. This suggests that the amount of strongly bound fS1, not fS1 state (with or without ADP) is related to activation of the thin filament.  相似文献   

6.
The actin (thin) filaments in striated muscle are highly regulated and precisely specified in length to optimally overlap with the myosin (thick) filaments for efficient myofibril contraction. Here, we review and critically discuss recent evidence for how thin filament lengths are controlled in vertebrate skeletal, vertebrate cardiac, and invertebrate (arthropod) sarcomeres. Regulation of actin polymerization dynamics at the slow-growing (pointed) ends by the capping protein tropomodulin provides a unified explanation for how thin filament lengths are physiologically optimized in all three muscle types. Nebulin, a large protein thought to specify thin filament lengths in vertebrate skeletal muscle through a ruler mechanism, may not control pointed-end actin dynamics directly, but instead may stabilize a large core region of the thin filament. We suggest that this stabilizing function for nebulin modifies the lengths primarily specified by pointed-end actin dynamics to generate uniform filament lengths in vertebrate skeletal muscle. We suggest that nebulette, a small homolog of nebulin, may stabilize a correspondingly shorter core region and allow individual thin filament lengths to vary according to working sarcomere lengths in vertebrate cardiac muscle. We present a unified model for thin filament length regulation where these two mechanisms cooperate to tailor thin filament lengths for specific contractile environments in diverse muscles.  相似文献   

7.
Ca(2+) signaling in striated muscle cells is critically dependent upon thin filament proteins tropomyosin (Tm) and troponin (Tn) to regulate mechanical output. Using in vitro measurements of contractility, we demonstrate that even in the absence of actin and Tm, human cardiac Tn (cTn) enhances heavy meromyosin MgATPase activity by up to 2.5-fold in solution. In addition, cTn without Tm significantly increases, or superactivates sliding speed of filamentous actin (F-actin) in skeletal motility assays by at least 12%, depending upon [cTn]. cTn alone enhances skeletal heavy meromyosin's MgATPase in a concentration-dependent manner and with sub-micromolar affinity. cTn-mediated increases in myosin ATPase may be the cause of superactivation of maximum Ca(2+)-activated regulated thin filament sliding speed in motility assays relative to unregulated skeletal F-actin. To specifically relate this classical superactivation to cardiac muscle, we demonstrate the same response using motility assays where only cardiac proteins were used, where regulated cardiac thin filament sliding speeds with cardiac myosin are >50% faster than unregulated cardiac F-actin. We additionally demonstrate that the COOH-terminal mobile domain of cTnI is not required for this interaction or functional enhancement of myosin activity. Our results provide strong evidence that the interaction between cTn and myosin is responsible for enhancement of cross-bridge kinetics when myosin binds in the vicinity of Tn on thin filaments. These data imply a novel and functionally significant molecular interaction that may provide new insights into Ca(2+) activation in cardiac muscle cells.  相似文献   

8.
Activation of striated muscle contraction is a highly cooperative signal transduction process converting calcium binding by troponin C (TnC) into interactions between thin and thick filaments. Once calcium is bound, transduction involves changes in protein interactions along the thin filament. The process is thought to involve three different states of actin-tropomyosin (Tm) resulting from changes in troponin's (Tn) interaction with actin-Tm: a blocked (B) state preventing myosin interaction, a closed (C) state allowing weak myosin interactions and favored by calcium binding to Tn, and an open or M state allowing strong myosin interactions. This was tested by measuring the apparent rate of Tn dissociation from rigor skeletal myofibrils using labeled Tn exchange. The location and rate of exchange of Tn or its subunits were measured by high-resolution fluorescence microscopy and image analysis. Three different rates of Tn exchange were observed that were dependent on calcium concentration and strong cross-bridge binding that strongly support the three-state model. The rate of Tn dissociation in the non-overlap region was 200-fold faster at pCa 4 (C-state region) than at pCa 9 (B-state region). When Tn contained engineered TnC mutants with weakened regulatory TnI interactions, the apparent exchange rate at pCa 4 in the non-overlap region increased proportionately with TnI-TnC regulatory affinity. This suggests that the mechanism of calcium enhancement of the rate of Tn dissociation is by favoring a TnI-TnC interaction over a TnI-actin-Tm interaction. At pCa 9, the rate of Tn dissociation in the overlap region (M-state region) was 100-fold faster than the non-overlap region (B-state region) suggesting that strong cross-bridges increase the rate of Tn dissociation. At pCa 4, the rate of Tn dissociation was twofold faster in the non-overlap region (C-state region) than the overlap region (M-state region) that likely involved a strong cross-bridge influence on TnT's interaction with actin-Tm. At sub-maximal calcium (pCa 6.2-5.8), there was a long-range influence of the strong cross-bridge on Tn to enhance its dissociation rate, tens of nanometers from the strong cross-bridge. These observations suggest that the three different states of actin-Tm are associated with three different states of Tn. They also support a model in which strong cross-bridges shift the regulatory equilibrium from a TnI-actin-Tm interaction to a TnC-TnI interaction that likely enhances calcium binding by TnC.  相似文献   

9.
We have studied functional consequences of the mutations R145G, S22A, and S23A of human cardiac troponin I (cTnI) and of phosphorylation of two adjacent N-terminal serine residues in the wild-type cTnI and the mutated proteins. The mutation R145G has been linked to the development of familial hypertrophic cardiomyopathy. Cardiac troponin was reconstituted from recombinant human subunits including either wild-type or mutant cTnI and was used for reconstitution of thin filaments with skeletal muscle actin and tropomyosin. The Ca(2+)-dependent thin filament-activated myosin subfragment 1 ATPase (actoS1-ATPase) activity and the in vitro motility of these filaments driven by myosin were measured as a function of the cTnI phosphorylation state. Bisphosphorylation of wild-type cTnI decreases the Ca(2+) sensitivity of the actoS1-ATPase activity and the in vitro thin filament motility by about 0.15-0.21 pCa unit. The nonconservative replacement R145G in cTnI enhances the Ca(2+) sensitivity of the actoS1-ATPase activity by about 0.6 pCa unit independent of the phosphorylation state of cTnI. Furthermore, it mimics a strong suppressing effect on both the maximum actoS1-ATPase activity and the maximum in vitro filament sliding velocity which has been observed upon bisphosphorylation of wild-type cTnI. Bisphosphorylation of the mutant cTnI-R145G itself had no such suppressing effects anymore. Differential analysis of the effect of phosphorylation of each of the two serines, Ser23 in cTnI-S22A and Ser22 in cTnI-S23A, indicates that phosphorylation of Ser23 may already be sufficient for causing the reduction of maximum actoS1-ATPase activity and thin filament sliding velocity seen upon phosphorylation of both of these serines.  相似文献   

10.
Results of studies on the modulation of skeletal muscle contraction by phosphorylation of myosin regulatory light chains and by exchange of magnesium for calcium in myosin heads were reviewed. The polarized fluorescence method was used in these studies, and conformational changes of contractile proteins accompanying modulation of skeletal muscle contraction were investigated. It was found that both the exchange of bound magnesium for calcium on myosin heads and the phosphorylation of myosin regulatory light chains control the ability of myosin heads to induce, upon binding to actin, conformational changes of thin filament leading to decrease or increase of its flexibility. The changes in actin filament flexibility may be caused by alteration of both the inter- and the intramonomer structural organization.  相似文献   

11.
Lethocerus indirect flight muscle has two isoforms of troponin C, TnC-F1 and F2, which are unusual in having only a single C-terminal calcium binding site (site IV, isoform F1) or one C-terminal and one N-terminal site (sites IV and II, isoform F2). We show here that thin filaments assembled from rabbit actin and Lethocerus tropomyosin (Tm) and troponin (Tn) regulate the binding of rabbit myosin to rabbit actin in much the same way as the mammalian regulatory proteins. The removal of calcium reduces the rate constant for S1 binding to regulated actin about threefold, independent of which TmTn is used. This is consistent with calcium removal causing the TmTn to occupy the B or blocked state to about 70% of the total. The mid point pCa for the switch differed for TnC-F1 and F2 (pCa 6.9 and 6.0, respectively) consistent with the reported calcium affinities for the two TnCs. Equilibrium titration of S1 binding to regulated actin filaments confirms calcium regulated binding of S1 to actin and shows that in the absence of calcium the three actin filaments (TnC-F1, TnC-F2 and mammalian control) are almost indistinguishable in terms of occupancy of the B and C states of the filament. In the presence of calcium TnC-F2 is very similar to the control with approximately 80% of the filament in the C-state and 10-15% in the fully on M-State while TnC-F1 has almost 50% in each of the C and M states. This higher occupancy of the M-state for TnC-F1, which occurs above pCa 6.9, is consistent with this isoform being involved in the calcium activation of stretch activation. However, it leaves unanswered how a C-terminal calcium binding site of TnC can activate the thin filament.  相似文献   

12.
Modulatory role of whole cardiac myosin binding protein-C (сMyBP-C) in regulation of cardiac muscle contractility was studied in the in vitro motility assay with rabbit cardiac myosin as a motor protein. The effects of cMyBP-C on the interaction of cardiac myosin with regulated thin filament were tested in both in vitro motility and ATPase assays. We demonstrate that the addition of cMyBP-C increases calcium regulated Mg-ATPase activity of cardiac myosin at submaximal calcium. The Hill coefficient for ‘pCa-velocity’ relation in the in vitro motility assay decreased and the calcium sensitivity increased when сMyBP-C was added. Results of our experiments testifies in favor of the hypothesis that сMyBP-C slows down cross-bridge kinetics when binding to actin.  相似文献   

13.
The kinetic effects of the cardiac myosin point mutations R403Q and R453C, which underlie lethal forms of familial hypertrophic cardiomyopathy (FHC), were assessed using isolated myosin and skinned strips taken from heterozygous (R403Q/+ and R453C/+) male mouse hearts. Compared with wild-type (WT) mice, actin-activated ATPase was increased by 38% in R403Q/+ and reduced by 45% in R453C/+, maximal velocity of regulated thin filament (V(RTF)) in the in vitro motility assay was increased by 8% in R403Q/+ and was not different in R453C/+, myosin concentration at half-maximal V(RTF) was reduced by 30% in R403Q/+ and not different in R453C/+, and the characteristic frequency for oscillatory work production (b frequency), determined by sinusoidal analysis in the skinned strip at maximal calcium activation, was 27% lower in R403Q/+ and 18% higher in R453C/+. The calcium sensitivity for isometric tension in the skinned strip was not different in R403Q/+ (pCa(50) 5.64 +/- 0.02) and significantly enhanced in R453C/+ (5.82 +/- 0.03) compared with WT (5.58 +/- 0.02). We conclude that isolated myosin and skinned strips of R403Q/+ and R453C/+ myocardium show marked differences in cross-bridge kinetic parameters and in calcium sensitivity of force production that indicate different functional roles associated with the location of each point mutation at the molecular level.  相似文献   

14.
L S Tobacman 《Biochemistry》1987,26(2):492-497
The magnesium adenosinetriphosphatase (MgATPase) rate of cardiac myosin subfragment 1 (S-1) was studied in the presence of regulated actin in order to investigate the mechanism by which Ca2+ cooperatively induces cardiac muscle contraction. The MgATPase rate increased cooperatively with Ca2+, exhibiting a Hill coefficient of 1.8 and 50% activation at pCa 5.75. This cooperative response occurred despite an experimental design excluding several potential sources of cooperativity. First, to exclude spurious cooperativity due to erroneous calculation of pCa at low ionic strength, the affinities of Ca2+ and Mg2+ for [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) were measured by a novel method using Quin 2. At pH 7.06, 25 degrees C, and mu = 30 mM, the KD was 140 nM for CaEGTA and 2.7 mM for MgEGTA. Second, the cooperativity was not produced by actin-myosin S-1 binding; myosin S-1 was bound to only 1 of every 300 actin promoters, and earlier work [Tobacman, L. S., & Adelstein, R. S. (1986) Biochemistry 25, 798-802] had shown that cardiac myosin S-1 binds with equal affinity to the thin filament at very low Ca2+ and at saturating Ca2+ concentrations. Furthermore, the adenosine 5'-triphosphate turnover rate of the myosin S-1 was independent of enzyme concentration at low, intermediate, and saturating Ca2+ concentrations. Finally, since cardiac troponin has only one regulatory Ca2+-specific site, cooperative interactions between such sites could not occur. These data suggest that part of the cooperativity conferred by interaction between adjacent troponin-tropomyosin complexes is intrinsic to the thin filament and independent of myosin.  相似文献   

15.
The Ca(2+)/Mg(2+) sites (III and IV) located in the C-terminal domain of cardiac troponin C (cTnC) have been generally considered to play a purely structural role in keeping the cTnC bound to the thin filament. However, several lines of evidence, including the discovery of cardiomyopathy-associated mutations in the C-domain, have raised the possibility that these sites may have a more complex role in contractile regulation. To explore this possibility, the ATPase activity of rat cardiac myofibrils was assayed under conditions in which no Ca(2+) was bound to the N-terminal regulatory Ca(2+)-binding site (site II). Myosin-S1 was treated with N-ethylmaleimide to create strong-binding myosin heads (NEM-S1), which could activate the cardiac thin filament in the absence of Ca(2+). NEM-S1 activation was assayed at pCa 8.0 to 6.5 and in the presence of either 1mM or 30 μM free Mg(2+). ATPase activity was maximal when sites III and IV were occupied by Mg(2+) and it steadily declined as Ca(2+) displaced Mg(2+). The data suggest that in the absence of Ca(2+) at site II strong-binding myosin crossbridges cause the opening of more active sites on the thin filament if the C-domain is occupied by Mg(2+) rather than Ca(2+). This finding could be relevant to the contraction-relaxation kinetics of cardiac muscle. As Ca(2+) dissociates from site II of cTnC during the early relaxing phase of the cardiac cycle, residual Ca(2+) bound at sites III and IV might facilitate the switching off of the thin filament and the detachment of crossbridges from actin.  相似文献   

16.
Strongly bound, force-generating myosin cross-bridges play an important role as allosteric activators of cardiac thin filaments. Sodium vanadate (Vi) is a phosphate analog that inhibits force by preventing cross-bridge transition into force-producing states. This study characterizes the mechanical state of cross-bridges with bound Vi as a tool to examine the contribution of cross-bridges to cardiac contractile activation. The K(i) of force inhibition by Vi was approximately 40 microM. Sinusoidal stiffness was inhibited with Vi, although to a lesser extent than force. We used chord stiffness measurements to monitor Vi-induced changes in cross-bridge attachment/detachment kinetics at saturating [Ca(2+)]. Vi decreased chord stiffness at the fastest rates of stretch, whereas at slow rates chord stiffness actually increased. This suggests a shift in cross-bridge population toward low force states with very slow attachment/detachment kinetics. Low angle x-ray diffraction measurements indicate that with Vi cross-bridge mass shifted away from thin filaments, implying decreased cross-bridge/thin filament interaction. The combined x-ray and mechanical data suggest at least two cross-bridge populations with Vi; one characteristic of normal cycling cross-bridges, and a population of weak-binding cross-bridges with bound Vi and slow attachment/detachment kinetics. The Ca(2+) sensitivity of force (pCa(50)) and force redevelopment kinetics (k(TR)) were measured to study the effects of Vi on contractile activation. When maximal force was inhibited by 40% with Vi pCa(50) decreased, but greater force inhibition at higher [Vi] did not further alter pCa(50). In contrast, the Ca(2+) sensitivity of k(TR) was unaffected by Vi. Interestingly, when force was inhibited by Vi k(TR) increased at submaximal levels of Ca(2+)-activated force. Additionally, k(TR) is faster at saturating Ca(2+) at [Vi] that inhibit force by > approximately 70%. The effects of Vi on k(TR) imply that k(TR) is determined not only by the intrinsic properties of the cross-bridge cycle, but also by cross-bridge contribution to thin filament activation.  相似文献   

17.
Calcium controls the level of muscle activation via interactions with the troponin complex. Replacement of the native, skeletal calcium-binding subunit of troponin, troponin C, with mixtures of functional cardiac and mutant cardiac troponin C insensitive to calcium and permanently inactive provides a novel method to alter the number of myosin cross-bridges capable of binding to the actin filament. Extraction of skeletal troponin C and replacement with functional and mutant cardiac troponin C were used to evaluate the relationship between the extent of thin filament activation (fractional calcium binding), isometric force, and the rate of force generation in muscle fibers independent of the calcium concentration. The experiments showed a direct, linear relationship between force and the number of cross-bridges attaching to the thin filament. Further, above 35% maximal isometric activation, following partial replacement with mixtures of cardiac and mutant troponin C, the rate of force generation was independent of the number of actin sites available for cross-bridge interaction at saturating calcium concentrations. This contrasts with the marked decrease in the rate of force generation when force was reduced by decreasing the calcium concentration. The results are consistent with hypotheses proposing that calcium controls the transition between weakly and strongly bound cross-bridge states.  相似文献   

18.
Troponin (Tn) is the calcium-sensing protein of the thin filament. Although cardiac troponin (cTn) and skeletal troponin (sTn) accomplish the same function, their subunit interactions within Tn and with actin-tropomyosin are different. To further characterize these differences, myofibril ATPase activity as a function of pCa and labeled Tn exchange in rigor myofibrils was used to estimate Tn dissociation rates from the nonoverlap and overlap region as a function of pCa. Measurement of ATPase activity showed that skeletal myofibrils containing >96% cTn had a higher pCa 9 ATPase activity than, but similar pCa 4 activity to, sTn-containing myofibrils. Analysis of the pCa-ATPase activity relation showed that cTn myofibrils were more calcium sensitive but less cooperative (pCa50 = 6.14, nH = 1.46) than sTn myofibrils (pCa50 = 5.90, nH = 3.36). The time course of labeled Tn exchange at pCa 9 and 4 were quite different between cTn and sTn. The apparent cTn dissociation rates were ∼2-10-fold faster than sTn under all the conditions studied. The apparent dissociation rates for cTn were 5 × 10−3 min−1, 150 × 10−3 min−1, and 260 × 10−3 min−1, whereas for sTn they were 0.6 × 10−3 min−1, 88 × 10−3 min−1, and 68 × 10−3 min−1 for the nonoverlap region at pCa 9, nonoverlap region at pCa 4, and overlap region at pCa 4, respectively. Normalization of the apparent dissociation rates gives 1:30:50 for cTn compared with 1:150:110 for sTn (nonoverlap at pCa 9:nonoverlap at pCa 4:overlap at pCa 4) suggesting that calcium has a smaller influence, whereas strong cross-bridges have a larger influence on cTn dissociation compared with sTn. The higher cTn dissociation rate in the nonoverlap region and ATPase activity at pCa 9 suggest that it gives a less off or inactive thin filament. Analysis of the intensity ratio (after a short time of exchange) as a function of pCa showed that cTn had greater calcium sensitivity but lower cooperativity than sTn. In addition, the magnitude of the change in intensity ratio going from pCa 9 to 4 was less for cTn than sTn. These data suggest that the influence of calcium on cTn exchange is less than sTn even though calcium can activate ATPase activity to a similar extent in cTn compared with sTn myofibrils. This may be explained partially by cTn being less off or inactive at pCa 9. Modeling of the intensity profiles obtained after Tn exchange at pCa 5.8 suggest that the profiles are best explained by a model that includes a long-range cross-bridge effect that grades with distance from the rigor cross-bridge for both cTn and sTn.  相似文献   

19.
Ethanol consumption is known to affect cardiac and skeletal muscle. In vivo experiments on cardiac muscle showed that ethanol affects cardiac contractility and Vmax, suggesting that contractile proteins of the myocardium were affected by ethanol. Therefore, experiments were carried out to examine the effects of ethanol on the cardiac contractile protein ATPase activities. Cardiac myofibrils isolated from ethanol-fed hamsters showed a significant decrease in myofibrillar ATPase activities between pCa 6 and 4. On the other hand, addition of ethanol (0.1%) in vitro to cardiac myofibrils from control hamster had no significant effect on the ATPase activities, suggesting that hamsters need to be exposed for longer periods of time to induce demonstratable changes in the contractile protein ATPase activity. Actin-activated myosin ATPase activities were significantly lower in myofibrils from ethanol-fed hamsters at 1:1 and 1:2 ratios of myosin to actin. These investigations revealed that chronic (4 weeks) exposure of hamsters to ethanol reduced cardiac contractile protein ATPase activity, which may help explain impaired cardiac function in chronic alcoholics.  相似文献   

20.
We previously reported setting up an in vitro system for the observation of actin filament sliding along myosin filaments. The system involved a minute amount of fluorescently labelled F-actin, and its movement was monitored by fluorescence microscopy. Here, we report observations of the Ca2+-dependent movement of F-actin complex with tropomyosin plus troponin (regulated actin) added to the movement system in place of pure F-actin. In a wide range of pCa (-log10[Ca2+]) between 3 and 5.5 at 30 degrees C, regulated actin filaments moved rapidly, and the average velocity depended little on the Ca2+ concentration (about 7.5 microns/s). However, when the Ca2+ concentration was decreased to pCa = 5.8 or lower, the filaments suddenly stopped moving. In striking contrast to these observations, unregulated actin moved rapidly within the whole pCa range examined, the average velocity (about 7.5 microns/s) being essentially Ca2+-independent. These observations indicate that (1) tropomyosin-troponin actually gave Ca2+-sensitivity to F-actin, and (2) the movement system was regulated by Ca2+ in an on-off fashion within a narrow range of Ca2+ concentration. In a pCa range between 5.8 and 6.0, regulated actin filaments did not exhibit thermal motion; instead, they had fixed positions in the specimen, possibly because they remained associated with myosin filaments in the background, without sliding past each other. Although regulated actin moved fast in the presence of 1 mM-CaCl2 (pCa = 3) at 30 degrees C, it became entirely non-motile as the temperature was decreased to 25 degrees C or lower. Such a sharp movement/temperature relation was never found for unregulated actin. We assayed regulated actin-activated myosin ATPase in the same conditions as used for microscopy, and found that the ATPase activity depended both on pCa and on the temperature considerably less than the movement of regulated actin. The results suggest that the sliding velocity in the in vitro system would not be proportional to the rate of actin-activated ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号