共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoecious flowering plants produce both microgametophytes (pollen) and megagametophytes (embryo sacs) containing the male and female gametes, respectively, which participate in double fertilization. Much is known about cellular and developmental processes giving rise to these reproductive structures and the formation of gametes. However, little is known about the role played by changes in the epigenome in dynamically shaping these defining events during plant sexual reproduction. This has in part been hampered by the inaccessibility of these structures-especially the female gametes, which are embedded within the female reproductive tissues of the plant sporophyte. However, with the recent development of new cellular isolation technologies that can be coupled to next-generation sequencing, a new wave of epigenomic studies indicate that an intricate epigenetic regulation takes place during the formation of male and female reproductive lineages. In this mini review, we assess the fast growing body of evidence for the epigenetic regulation of the developmental fate and function of plant gametes. We describe how small interfereing RNAs and DNA methylation machinery play a part in setting up unique epigenetic landscapes in different gametes, which may be responsible for their different fates and functions during fertilization. Collectively these studies will shed light on the dynamic epigenomic landscape of plant gametes or 'epigametes' and help to answer important unresolved questions on the sexual reproduction of flowering plants, especially those underpinning the formation of two products of fertilization, the embryo and the endosperm. 相似文献
2.
Epigenetic control of gene regulation is fundamental to the maintenance of cellular identities during all stages of metazoan life. Tissue regeneration involves cellular reprogramming processes, like dedifferentiation, re-differentiation, and trans-differentiation. Hence, in these processes epigenetic maintenance of gene expression programs requires a resetting through mechanisms that we are only beginning to understand. Here we summarize the current status of these studies, in particular regarding the role of epigenetic mechanisms of cellular reprogramming during tissue regeneration. 相似文献
3.
4.
The epigenetic profile of germ cells, which is defined by modifications of DNA and chromatin, changes dynamically during their development. Many of the changes are associated with the acquisition of the capacity to support post-fertilization development. Our knowledge of this aspect has greatly increased- for example, insights into how the re-establishment of parental imprints is regulated. In addition, an emerging theme from recent studies is that epigenetic modifiers have key roles in germ-cell development itself--for example, epigenetics contributes to the gene-expression programme that is required for germ-cell development, regulation of meiosis and genomic integrity. Understanding epigenetic regulation in germ cells has implications for reproductive engineering technologies and human health. 相似文献
5.
Epigenetic modifications are crucial for the identity and stability of cells, and, when aberrant, can lead to disease. During mouse development, the genome-wide epigenetic states of pre-implantation embryos and primordial germ cells (PGCs) undergo extensive reprogramming. An improved understanding of the epigenetic reprogramming mechanisms that occur in these cells should provide important new information about the regulation of the epigenetic state of a cell and the mechanisms of induced pluripotency. Here, we discuss recent findings about the potential mechanisms of epigenetic reprogramming, particularly genome-wide DNA demethylation, in pre-implantation mouse embryos and PGCs. 相似文献
6.
Seed development in flowering plants is initiated by the fusion of two male gametes with two female gametes--the egg cell and the central cell--which leads to the formation of an embryo and an endosperm, respectively. Fertilization-independent seed formation is actively repressed by the FERTILIZATION-INDEPENDENT SEED (FIS) Polycomb group (PcG) proteins, an evolutionarily conserved class of proteins that ensures the stable transmission of developmental decisions. The FIS proteins act together in a complex and modify their target genes by applying repressive methylation on histone H3 lysine 27. In addition to its function before fertilization, the FIS complex restricts endosperm proliferation. This function is likely to be achieved by imprinting the maternal alleles of FIS target genes. However, imprinting in the endosperm is controlled not only by the FIS complex but also by DNA methylation, and the interconnections between these two processes are now being investigated. 相似文献
7.
成体细胞可以通过核移植、细胞融合或者特定因子导入的方式实现重编程回到多能性状态。在重编程的过程中,表观遗传水平的调控机制起到了非常关键的作用。通过回顾重编程的研究进展来探讨表观遗传学在重编程中的调控机制。 相似文献
8.
9.
This paper considers molecular mechanisms of DNA methylation and histone modifications in plants. The role of these epigenetic processes in plant development is discussed. 相似文献
10.
Epigenetic reprogramming provides valuable resources for customized pluripotent stem cells generation, which are thought to be important bases of future regenerative medicine. Here we review the commonly used methods for epigenetic reprogramming: somatic cell nuclear transfer, cell fusion, cell extract treatment, inducing pluripotency by defined molecules, and briefly discuss their advantages and limitations. Finally we propose that mechanisms underlying epigenetic reprogramming and safety evaluation platform will be future research directions. 相似文献
11.
Epigenetic reprogramming in mammalian nuclear transfer 总被引:6,自引:0,他引:6
With the exception of lymphocytes, the various cell types in a higher multicellular organism have basically an identical genotype but are functionally and morphologically different. This is due to tissue-specific, temporal, and spatial gene expression patterns which are controlled by genetic and epigenetic mechanisms. Successful cloning of mammals by transfer of nuclei from differentiated tissues into enucleated oocytes demonstrates that these genetic and epigenetic programs can be largely reversed and that cellular totipotency can be restored. Although these experiments indicate an enormous plasticity of nuclei from differentiated tissues, somatic cloning is a rather inefficient and unpredictable process, and a plethora of anomalies have been described in cloned embryos, fetuses, and offspring. Accumulating evidence indicates that incomplete or inappropriate epigenetic reprogramming of donor nuclei is likely to be the primary cause of failures in nuclear transfer. In this review, we discuss the roles of various epigenetic mechanisms, including DNA methylation, chromatin remodeling, imprinting, X chromosome inactivation, telomere maintenance, and epigenetic inheritance in normal embryonic development and in the observed abnormalities in clones from different species. Nuclear transfer represents an invaluable tool to experimentally address fundamental questions related to epigenetic reprogramming. Understanding the dynamics and mechanisms underlying epigenetic control will help us solve problems inherent in nuclear transfer technology and enable many applications, including the modulation of cellular plasticity for human cell therapies. 相似文献
12.
13.
Epigenetic reprogramming in mouse primordial germ cells 总被引:29,自引:0,他引:29
Hajkova P Erhardt S Lane N Haaf T El-Maarri O Reik W Walter J Surani MA 《Mechanisms of development》2002,117(1-2):15-23
Genome-wide epigenetic reprogramming in mammalian germ cells, zygote and early embryos, plays a crucial role in regulating genome functions at critical stages of development. We show here that mouse primordial germ cells (PGCs) exhibit dynamic changes in epigenetic modifications between days 10.5 and 12.5 post coitum (dpc). First, contrary to previous suggestions, we show that PGCs do indeed acquire genome-wide de novo methylation during early development and migration into the genital ridge. However, following their entry into the genital ridge, there is rapid erasure of DNA methylation of regions within imprinted and non-imprinted loci. For most genes, the erasure commences simultaneously in PGCs in both male and female embryos, which is completed within 1 day of development. Based on the kinetics of this process, we suggest that this is an active demethylation process initiated upon the entry of PGCs into the gonadal anlagen. The timing of reprogramming in PGCs is crucial since it ensures that germ cells of both sexes acquire an equivalent epigenetic state prior to the differentiation of the definitive male and female germ cells in which new parental imprints are established subsequently. Some repetitive elements, however, show incomplete erasure, which may be essential for chromosome stability and for preventing activation of transposons to reduce the risk of germline mutations. Aberrant epigenetic reprogramming in the germ line would cause the inheritance of epimutations that may have consequences for human diseases as suggested by studies on mouse models. 相似文献
14.
15.
Sara MW Hyldig Nicola Croxall David A Contreras Preben D Thomsen Ramiro Alberio 《BMC developmental biology》2011,11(1):11-1
Background
Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next generation. In addition to DNA demethylation, PGC are subject to a major reprogramming of histone marks, and many of these changes are concurrent with a cell cycle arrest in the G2 phase. There is limited information on how well conserved these events are in mammals. Here we report on the dynamic reprogramming of DNA methylation at CpGs of imprinted loci and DNA repeats, and the global changes in H3K27me3 and H3K9me2 in the developing germ line of the domestic pig. 相似文献16.
17.
Recent genetic studies indicate that the plant Polycomb-group genes play much broader roles in development than was initially apparent from their single mutant phenotypes. At the mechanistic level, evidence is accumulating that their protein products act together in complexes that direct changes in histone methylation patterns. We discuss recent studies that give clues as to how these epigenetic changes are propagated through mitosis, how they are interpreted, and how they might be reset. 相似文献
18.
Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen‐induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis. 相似文献
19.
20.
Geijsen N 《The EMBO journal》2012,31(10):2247-2248
Cell Stem Cell
10
4, 425–439 (2012); published online April062012The release of epigenetic boundaries during epigenetic reprogramming is poorly understood. In the recent issue of Cell Stem Cell Journal, Gillich and colleagues identify a unique role for Prdm14 in the acceleration of this process (Gillich et al, 2012).Pluripotent stem cells can be established from pre-implantation blastocyst embryos (embryonic stem cells, ESCs) as well as from the post-implantation epiblast stem cells (EpiSCs; Chenoweth et al, 2010). Murine ESCs and EpiSCs both express central pluripotency factors such as Oct4, Nanog and Sox2, yet the different developmental origins of these two cell types is clearly reflected in their molecular, epigenetic and functional properties. Murine ESCs appear to exist in a unique ‘naive'' state reminiscent of the pre-implantation epiblast. They are characterized by the expression of germ cell–related genes, a remarkably open chromatin structure with two active X chromosomes, and the functional ability to contribute to chimera formation upon blastocyst complementation (Nichols and Smith, 2011). In contrast, EpiSCs reflect the properties of the post-implantation epiblast, characterized by low-level expression of early determinants of somatic differentiation, a near-absence of germ cell gene expression, inactivation of one of the X chromosomes and negligible ability to support the development of chimeric mice. The conversion of primed to naive pluripotent state requires the release of epigenetic restrictions that are established in the post-implantation epiblast. It is thus a reprogramming process akin to the derivation of induced pluripotent stem cells (iPSCs) from somatic cells. The results on Prdm14 from Gillich and colleagues offer new insights into the underlying molecular mechanisms governing epigenetic reprogramming. 相似文献