首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro DNA:DNA hybridizations and hydroxyapatite thermal-elution chromatography were employed to identify the diploid Triticum species ancestral to the B genome of T. turgidum. Unique and repeated sequences from the various Triticum species were separated by hybridization and thermal elution on hydroxyapatite. Unique- and repeated-sequence fractions of labeled T. turgidum var. durum DNA were hybridized to the corresponding fractions of unlabeled DNAs of T. searsii, T. speltoides, T. longissimum, T. sharonensis, and T. bicorne. Thermal stability profiles were constructed to evaluate base-sequence complementarity between T. turgidum var. durum and the diploid Triticum species. The heteroduplex thermal stabilities indicated that, of the five species examined, T. searsii was the most closely related to the B genome of T. turgidum var. durum. The thermal stability profiles further indicated that the repeated DNA fractions from the Triticum species are more similar than the unique-sequence fractions. This indicates that all of the Triticum species are very closely related and, in all probability, have diverged from a single progenitor species.Published with the approval of the Director of the West Virginia Agricultural and Forestry Experiment Station as Scientific Paper No. 1931.  相似文献   

2.
A low-copy, non-coding chromosome-specific DNA sequence, isolated from common wheat, was physically mapped to the distal 19% region of the long arm of chromosome 3B (3BL) of common wheat. This sequence, designated WPG118, was then characterized by Southern hybridization, PCR amplification and sequence comparison using a large collection of polyploid wheats and diploid Triticum and Aegilops species. The data show that the sequence exists in all polyploid wheats containing the B genome and absent from those containing the G genome. At the diploid level, it exists only in Ae. searsii, a diploid species of section Sitopsis, and not in other diploids including Ae. speltoides, the closest extant relative to the donor of the B genome of polyploid wheat. This finding may support the hypothesis that the B-genome of polyploid wheat is of a polyphyletic origin, i.e. it is a recombined genome derived from two or more diploid Aegilops species.  相似文献   

3.
In vitro DNA:DNA hybridizations and hydroxyapatite thermal chromatography were employed to help identify the species ancestral to the B genome of the polyploid wheats. We hybridized 3H-Triticum aestivum DNA to the unlabeled DNAs of T. urartu, T. speltoides, T. sharonensis, T. bicorne, T. longissimum, and T. searsii, 3H-Labeled DNA of T. urartu was hybridized with the DNA of a synthetic tetraploid. AADD. The heteroduplex thermal stabilities indicated that T. searsii was most closely related to T. aestivum (ABD) and that the genome of T. urartu was more closely related to the A genome than the B genome. The degree of reassociation which may have occurred between the six diploid species and the D genome of T. aestivum was evaluated by hybridizing 3H-T. tauschii DNA with the DNAs of the diploids. The results indicated that T. urartu had the least sequence homology to T. tauschii, the D-genome donor lending additional support to the conclusion that T. urartu is related to the A genome. Thus, it is highly probable that T. searsii is the B-genome donor to the polyploid wheats or a major chromosome donor if the B genome is, in fact, polyphyletic in origin.  相似文献   

4.
Three new 18S·26S rRNA gene loci were identified in common wheat by sequential N-banding and in situ hybridization (ISH) analysis. Locus Nor-A7 is located at the terminal area of the long arm of 5A in both diploid and polyploid wheats. Locus Nor-B6 is located in N-band 1BL2.5 of the long arm of chromosome 1B in Triticum turgidum and Triticum aestivum. ISH sites, similar to Nor-B6, were also detected on the long arms of chromosomes 1G in Triticum timopheevii and 1S in Aegilops speltoides, but their locations on the chromosomes were different from that of Nor-B6, indicating possible chromosome rearrangements in 1GL and 1BL during evolution. The third new locus, Nor-D8, was only found on the short arm of chromosome 3D in the common wheat Wichita. The loss of rRNA gene locus Nor-A3 and gain of repetitive DNA sequence pSc119 on the terminal part of 5AS suggest a structural modification of 5AS. Comparative studies of the location of the 18S·26S rRNA gene loci in polyploid wheats and putative A and B (G) genome progenitor species support the idea that: (1) Triticum monococcum subsp. urartu is the donor of both the A and At genome of polyploid wheats. (2) Ae. speltoides is closer to the B and G genome of polyploid wheats than Aegilops longissima and is the most probable progenitor of these two genomes.  相似文献   

5.
Nath  J.  Thompson  James P.  Gulati  S. C. 《Biochemical genetics》1985,23(1-2):125-137
In vitro DNA:DNA hybridizations and hydroxyapatite thermal-elution chromatography were employed to identify the diploid Triticum species ancestral to the G genome of Triticum timopheevii. Total genomic, unique-sequence, and repeated-sequence fractions of 3H-T. timopheevii DNA were hybridized to the corresponding fractions of unlabeled DNAs of T. searsii, T. speltoides, T. sharonensis, T. longissimum, and T. bicorne. The heteroduplex thermal stabilities indicated that, of the five species examined, T. speltoides was the most closely related to the G genome of T. timopheevii. Thus, T. spelotides appears to be the G-genome donor to T. timopheevii. The thermal stability profiles further indicated that the repeated DNA fractions from the five diploid species and the tetraploid T. timopheevii are more similar than the unique DNA fractions. This indicates that all of these species are closely related and that the sequences which comprise the current repeated fractions in the various species have not undergone any significant change since the formation of various species.Published with the approval of the Director of the West Virginia Agriculture and Forestry Experiment Station as Scientific Paper No. 1850.  相似文献   

6.
C-banding polymorphism was analyzed in 14 accessions of Triticum searsii from Israel, and a generalized idiogram of the species was established. One accession was homozygous for whole arm translocations T1SsS·4SsS and T1SsL·4SsL. C-banding analysis was also used to identify 7 T. aestivum cv Chinese Spring-T. searsii disomic chromosome addition lines, 14 ditelosomic chromosome addition lines, 21 disomic whole chromosome, and 31 ditelosomic chromosome substitution lines. The identity of these lines was further confirmed by meiotic pairing analysis. Sporophytic and gametophytic compensation tests were used to determine the homoeologous relationships of the T. searsii chromosomes. The results show that the T. searsii chromosomes do not compensate well for their wheat homoeologues. The C-banding patterns of T. searsii chromosomes are distinct from those of other S-genome species and from the B-genome chromosomes of wheat, indicating that T. searsii is not a direct B-genome donor species of T. turgidum and T. aestivum.Contribution No. 95-72-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, Kansas, USA  相似文献   

7.
Summary The three major isoenzymes of the NADP-dependent aromatic alcohol dehydrogenase (ADH-B), distinguished in polyploid wheats by means of polyacrylamide gel electrophoresis, are shown to be coded by homoeoalleles of the locus Adh-2 on short arms of chromosomes of the fifth homoeologous group. Essentially codominant expression of the Adh-2 homoeolleles of composite genomes was observed in young seedlings of hexaploid wheats (T. aestivum s.l.) and tetraploid wheats of the emmer group (T. turgidum s.l.), whereas only the isoenzyme characteristic of the A genome is present in the seedlings of the timopheevii-group tetraploids (T. timopheevii s.str. and T. araraticum).The slowest-moving B3 isoenzyme of polyploid wheats, coded by the homoeoallele of the B genome, is characteristic of the diploid species Aegilops speltoides S.l., including both its awned and awnless forms, but was not encountered in Ae. bicornis, Ae. sharonensis and Ae. longissima. The last two diploids, as well as Ae. tauschii, Ae. caudata, Triticum monococcum s.str., T. boeoticum s.l. (incl. T. thaoudar) and T. urartu all shared a common isoenzyme coinciding electrophoretically with the band B2 controlled by the A and D genome homoeoalleles in polyploid wheats. Ae. bicomis is characterized by the slowest isoenzyme, B4, not found in wheats and in the other diploid Aegilops species studied.Two electrophoretic variants of ADH-B, B1 and B2, considered to be alloenzymes of the A genome homoeoallele, were observed in T. dicoccoides, T. dicoccon, T. turgidum. s.str. and T. spelta, whereas B2 was characteristic of T. timopheevii s.l. and only B1 was found in the remaining taxa of polyploid wheats. The isoenzyme B1, not encountered among diploid species, is considered to be a mutational derivative which arose on the tetraploid level from its more ancestral form B2 characteristic of diploid wheats.The implication of the ADH-B isoenzyme data to the problems of wheat phylogeny and gene evolution is discussed.  相似文献   

8.
RFLP variation revealed by protein disulfide isomerase (PDI) coding gene sequences was assessed in 170 accessions belonging to 23 species of Triticum and Aegilops. PDI restriction fragments were highly conserved within each species and confirmed that plant PDI is encoded either by single-copy sequences or by small gene families. The wheat PDI probe hybridized to single EcoRI or HindIII fragments in different diploid species and to one or two fragments per genome in polyploids. Four Aegilops species in the Sitopsis section showed complex patterns and high levels of intraspecific variation, whereas Ae. searsii possessed single monomorphic fragments. T. urartu and Ae. squarrosa showed fragments with the same mobility as those in the A and D genomes of Triticum polyploid species, respectively, whereas differences were observed between the hybridization patterns of T. monococcum and T. boeoticum and that of the A genome. The single fragment detected in Ae. squarrosa was also conserved in most accessions of polyploid Aegilops species carrying the D genome. The five species of the Sitopsis section showed variation for the PDI hybridization fragments and differed from those of the B and G genomes of emmer and timopheevi groups of wheat, although one of the Ae. speltoides EcoRI fragments was similar to those located on the 4B and 4G chromosomes. The similarity between the EcoRI fragment located on the 1B chromosome of common and emmer wheats and one with a lower hybridization intensity in Ae. longissima, Ae. bicornis and Ae. sharonensis support the hypothesis of a polyphyletic origin of the B genome. Received: 25 June 1999 / Accepted: 14 September 1999  相似文献   

9.
The polyploid nature of hexaploid wheat (T. aestivum, AABBDD) often represents a great challenge in various aspects of research including genetic mapping, map-based cloning of important genes, and sequencing and accurately assembly of its genome. To explore the utility of ancestral diploid species of polyploid wheat, sequence variation of T. urartu (AuAu) was analyzed by comparing its 277-kb large genomic region carrying the important Glu-1 locus with the homologous regions from the A genomes of the diploid T. monococcum (AmAm), tetraploid T. turgidum (AABB), and hexaploid T. aestivum (AABBDD). Our results revealed that in addition to a high degree of the gene collinearity, nested retroelement structures were also considerably conserved among the Au genome and the A genomes in polyploid wheats, suggesting that the majority of the repetitive sequences in the A genomes of polyploid wheats originated from the diploid Au genome. The difference in the compared region between Au and A is mainly caused by four differential TE insertion and two deletion events between these genomes. The estimated divergence time of A genomes calculated on nucleotide substitution rate in both shared TEs and collinear genes further supports the closer evolutionary relationship of A to Au than to Am. The structure conservation in the repetitive regions promoted us to develop repeat junction markers based on the Au sequence for mapping the A genome in hexaploid wheat. Eighty percent of these repeat junction markers were successfully mapped to the corresponding region in hexaploid wheat, suggesting that T. urartu could serve as a useful resource for developing molecular markers for genetic and breeding studies in hexaploid wheat.  相似文献   

10.
Summary Evolutionary and ontogenetic variation of six seedling esterases of independent genetic control is studied in polyploid wheats and their diploid relatives by means of polyacrylamide gel electrophoresis. Four of them are shown to be controlled by homoeoallelic genes in chromosomes of third, sixth and seventh homoeologous groups.The isoesterase electrophoretic data are considered supporting a monophyletic origin of both the primitive tetraploid and the primitive hexaploid wheat from which contemporary taxa of polyploid wheats have emerged polyphyletically and polytopically through recurrent introgressive hybridization and accumulation of mutations. Ancestral diploids belonging or closely related to Triticum boeoticum, T. urartu, Aegilops speltoides and Ae. tauschii ssp. strangulata are genetically the most suitable genome donors of polyploid wheats. Diploids of the Emarginata subsection of the section Sitopsis, Aegilops longissima s.str., Ae. sharonensis, Ae. searsii and Ae. bicornis, are unsuitable for the role of the wheat B genome donors, being all fixed for the esterase B and D electromorphs different from those of tetraploid wheats.  相似文献   

11.
A reassessment of the origin of the polyploid wheats   总被引:1,自引:0,他引:1       下载免费PDF全文
Kimber G 《Genetics》1974,78(1):487-492
The diploid species that donated the A and D genomes to the polyploid wheats have been recognized for some time. New evidence indicates that Triticum speltoides cannot be the B genome donor to T. turgidum or T. aestivum. T. speltoides is probably homologous to the G genome of T. timopheevii. The donor of the B genome to T. turgidum and T. aestivum is currently unrecognized.  相似文献   

12.
Summary Total proteins were extracted from degermed seeds of various species of Triticum and Aegilops with solutions containing sodium dodecyl sulfate (SDS) and mercaptoethanol. The reduced, dissociated proteins were fractionated according to molecular weight (MW) by high-resolution polyacrylamide gel electrophoresis in buffers containing SDS (SDS-PAGE). Stained SDS-PAGE patterns were measured by densitometric scanning over a suitable range of optical density. The data were normalized to equivalent total areas for each of the densitometric scans by means of a computer program that also permitted the construction of patterns of hypothetical amphiploids by averaging patterns of two or three diploid species. The grain proteins of most species examined had distinctive qualitative and quantitative aspects that were characteristic of the species even though nearly every accession or cultivar of a species exhibited at least minor differences in pattern from other accessions or cultivars. The main protein components (probably prolamins) of Triticum monococcum ssp. monococcum, T. monococcum ssp. boeoticum, T. urartu, and Aegilops squarrosa had MW's in the range 29–36 X 103 whereas the most important components of Ae. speltoides, Ae. longissima, and Ae. searsii had MW's in the range 37–55 × 103. Changes in the quantitative expression of particular genes, especially those coding for storage protein components, may have been associated with speciation. The strong predominance of proteins with MW's in the range 29–36 × 103 in some accessions of AB genome tetraploids, such as T. turgidum ssp. dicoccoides, may indicate contributions to the B genome of these tetraploids by T. monococcum ssp. boeoticum, T. urartu, or Ae. squarrosa.  相似文献   

13.

Background  

Variability of the VRN1 promoter region of the unique collection of spring polyploid and wild diploid wheat species together with diploid goatgrasses (donor of B and D genomes of polyploid wheats) were investigated. Accessions of wild diploid (T. boeoticum, T. urartu) and tetraploid (T. araraticum, T. timopheevii) species were studied for the first time.  相似文献   

14.
Diploid species of the genus Triticum L. are its most ancient representatives and have the A genome, which was more recently inherited by all polyploid species. Studies of the phylogenetic relationships among diploid and polyploid wheat species help to identify the donors of elementary genomes and to examine the species specificity of genomes. In this study, molecular analysis of the variable sequences of three nuclear genes (Acc-1, Pgk-1, and Vrn-1) was performed for wild and cultivated wheat species, including both diploids and polyploids. Based on the sequence variations found in the genes, clear differences were observed among elementary genomes, but almost no polymorphism was detected within each genome in polyploids. At the same time, the regions of the three genes proved to be rather heterogeneous in the diploid species Triticum boeoticum Boiss., T. urartu Thum. ex Gandil., and T. monococcum L., thus representing mixed populations. A genome variant identical to the A genome of polyploid species was observed only in T. urartu. Species-specific molecular markers discriminating the diploid species were not found. Analysis of the inheritance of morphological characters also failed to identify a species-specific character for the three diploid wheat species apart from the hairy leaf blade type, described previously.  相似文献   

15.
Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defence. Wheat pgip genes have been isolated from the B (Tapgip1) and D (Tapgip2) genomes, and now we report the identification of pgip genes from the A genomes of wild and cultivated wheats. By Southern blots and sequence analysis of BAC clones we demonstrated that wheat contains a single copy pgip gene per genome and the one from the A genome, pgip3, is inactivated by the insertion of a long terminal repeat copia retrotranspon within the fourth LRR. We demonstrated also that this retrotransposon insertion is present in Triticum urartu and all the polyploidy wheats assayed, but is absent in T. monococcum (Tmpgip3), suggesting that this insertion took place after the divergence between T. monococcum and T. urartu, but before the formation of the polyploid wheats. We identified also two independent insertion events of new Class II transposable elements, Vacuna, belonging to the Mutator superfamily, that interrupted the Tdipgip1 gene of T. turgidum ssp. dicoccoides. The occurrence of these transposons within the coding region of Tdipgip1 facilitated the mapping of the Pgip locus in the pericentric region of the short arm of chromosome group 7. We speculate that the inactivation of pgip genes are tolerated because of redundancy of PGIP activities in the wheat genome. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Copy numbers of four photosynthesis-related genes, PhyA, Ppc, RbcS and Lhcb1 *1, in wheat genomes were estimated by slot-blot analysis, and these genes were assigned to the chromosome arms of common wheat by Southern hybridization of DNA from an aneuploid series of the cultivar Chinese Spring. The copy number of PhyA was estimated to be one locus per haploid genome, and this gene was assigned to chromosomes 4AL, 4BS and 4DS. The Ppc gene showed a low copy number of small multigenes, and was located on the short arm of homoeologous group 3 chromosomes and the long arm of chromosomes of homoeologous group 7. RbcS consisted of a multigene family, with approximately 100 copies in the common wheat genome, and was located on the short arm of group 2 chromosomes and the long arm of group 5 chromosomes. Lhcb1 *1 also consisted of a multigene family with about 50 copies in common wheat. Only a limited number of restriction fragments (approximately 15%) were used to determine the locations of members of this family on the long arm of group 1 chromosomes owing to the multiplicity of DNA bands. The variability of hybridized bands with the four genes was less in polyploids, but was more in the case of multigene families. RFLP analysis of polyploid wheats and their presumed ancestors was carried out with probes of the oat PhyA gene, the maize Ppc gene, the wheat RbcS gene and the wheat Lhcb1 *1 gene. The RFLP patterns of common wheat most closely resembled those of T. Dicoccum (Emmer wheat), T. urartu (A genome), Ae. speltoides (S genome) and Ae. squarrosa (D genome). Diversification of genes in the wheat complex appear to have occurred mainly at the diploid level. Based on RFLP patterns, B and S genomes were clustered into two major groups. The fragment numbers per genome were reduced in proportion to the increase of ploidy level for all four genes, suggesting that some mechanism(s) might operate to restrict, and so keep to a minimum, the gene numbers in the polyploid genomes. However, the RbcS genes, located on 2BS, were more conserved (double dosage), indicating that the above mechanism(s) does not operate equally on individual genes.  相似文献   

17.
Thewaxy proteins encoded by the genomes A, B, and D in polyploid wheats and related diploid species were isolated by SDS-PAGE. The N-terminal amino acid sequences of mature proteins and V8 protease-induced fragments were determined. A total of five amino acid substitutions was detected in these sequences, which represent about 10% of the whole sequences of thewaxy proteins. A comparison of these sequences in polyploid wheats with those in related diploid species revealed the following: (i)waxy proteins encoded by the A genome of polyploid wheats were identical to that ofTriticum monococcum, (ii) thewaxy protein encoded by the B genome ofT. turgidum was identical to that ofT. searsii, but differed from those ofT. speltoides andT. longissimum by one amino acid substitution, (iii) thewaxy protein encoded by the B genome ofT. aestivum differed from that encoded by the B genome ofT. turgidum by one amino acid substitution, and (iv) thewaxy protein encoded by the D genome ofT. aestivum was identical to that ofT. tauschii.  相似文献   

18.
The wild diploid wheat (Triticum urartu Thum. ex Gandil.) is a potential gene source for wheat breeding, as this species has been identified as the A-genome donor in polyploid wheats. One important wheat breeding trait is bread-making quality, which is associated in bread wheat (T. aestivum ssp. aestivum L. em. Thell.) with the high-molecular-weight glutenin subunits. In T. urartu, these proteins are encoded by the Glu-A1x and Glu-A1Ay genes at the Glu-A u 1 locus. The Glu-A1x genes of 12 Glu-A u 1 allelic variants previously detected in this species were analysed using PCR amplification and sequencing. Data showed wide diversity for the Glu-A1x alleles in T. urartu, which also showed clear differences to the bread wheat alleles. This variation could enlarge the high-quality genetic pool of modern wheat and be used to diversify the bread-making quality in durum (T. turgidum ssp. durum Desf. em. Husn.) and common wheat.  相似文献   

19.
The genetic similarity between 150 accessions, representing 14 diploidand polyploid species of the Triticeae tribe, was investigated following the UPGMA clustering method. Seventy-three common wheat EST-derived SSR markers (EST-SSRs) that were demonstrated to be transferable across several wheat-related species were used. When diploid species only are concerned, all the accessions bearing the same genome were clustered together without ambiguity while the separation between the different sub-species of tetraploid as well as hexaploid wheats was less clear. Dendrograms reconstructed based on data of 16 EST-SSRs mapped on the A genome confirmed that Triticum aestivum and Triticum durum had closer relationships with Triticum urartu than with Triticum monococcum and Triticum boeoticum, supporting the evidence that T. urartu is the A-genome ancestor of polyploid wheats. Similarly, another tree reconstructed based on data of ten EST-SSRs mapped on the B genome showed that Aegilops speltoides had the closest relationship with T. aestivum and T. durum, suggesting that it was the main contributor of the B genome of polyploid wheats. All these results were expected and demonstrate thus that EST-SSR markers are powerful enough for phylogenetic analysis among the Triticeae tribe.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

20.
Durum wheat (Triticum turgidum ssp. durum, 2n = 4x = 28, genomes AB) is an economically important cereal used as the raw material to make pasta and semolina. In this paper we present the construction and characterization of a bacterial artificial chromosome (BAC) library of tetraploid durum wheat cv. Langdon. This variety was selected because of the availability of substitution lines that facilitate the assignment of BACs to the A and B genome. The selected Langdon line has a 30-cM segment of chromosome 6BS from T. turgidum ssp. dicoccoides carrying a gene for high grain protein content, the target of a positional cloning effort in our laboratory. A total of 516,096 clones were organized in 1,344 384-well plates and blotted on 28 high-density filters. Ninety-eight percent of these clones had wheat DNA inserts (0.3% chloroplast DNA, 1.4% empty clones and 0.3% empty wells). The average insert size of 500 randomly selected BAC clones was 131 kb, resulting in a coverage of 5.1-fold genome equivalents for each of the two genomes, and a 99.4% probability of recovering any gene from each of the two genomes of durum wheat. Six known copy-number probes were used to validate this theoretical coverage and gave an estimated coverage of 5.8-fold genome equivalents. Screening of the library with 11 probes related to grain storage proteins and starch biosynthesis showed that the library contains several clones for each of these genes, confirming the value of the library in characterizing the organization of these important gene families. In addition, characterization of fingerprints from colinear BACs from the A and B genomes showed a large differentiation between the A and B genomes. This library will be a useful tool for evolutionary studies in one of the best characterized polyploid systems and a source of valuable genes for wheat. Clones and high-density filters can be requested at Communicated by P. LangridgeThe first two authors contributed equally to the investigation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号