首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 912 毫秒
1.
Protoplasts from a lignolytic fungus Fomes annosus were prepared through enzymatic hydrolysis of mycelium utilizing Novozym, a wall lytic enzyme preparation. Isolated protoplasts and living mycelium were compared in their ability to degrade 14C-labelled lignin related phenols and dehydropolymers of labelled coniferyl alcohol (synthetic lignin). The amounts of 14CO2 released from O14CH3-groups, 14C-2-side chains and 14C-rings by protoplasts was in the same range as those for intact mycelium. The methoxyl groups of synthetic lignin were more rapidly metabolized by protoplasts than by mycelium. When calculated in dpm of released 14CO2 per mg protein the decomposition of 14C-labelled synthetic lignin and lignin-related monomers in a hyphae-free system of protoplasts was considerable higher than that obtained by the intact mycelium. The presence of intact hyphae is thus not necessary for lignin degradation to occur.Non-common-abbreviations used DHP Dehydropolymer of coniferyl alcohol - LS lignosulfonates prepared from DHP  相似文献   

2.
Several Nocardia and Pseudomonas spp., as well as some unidentified bacteria, isolated from lake water containing high loads of waste lignin, were tested for their capacity to release 14CO2 from specifically 14C-labelled dehydropolymer of coniferyl alcohol (DHP) or corn stalk lignins. The bacteria were selected according to their ability to degrade phenolic compounds. However, only some of them could release significant amounts of 14CO2 from the labelled lignin. The tested Nocardia spp. were more active than the Pseudomonas spp. and the unidentified bacteria. The most active strains belonged to N. autotrophica. These strains released CO2 significantly from the methoxyl group and transformed the other carbons from the phenylpropane skeleton of lignin also into CO2. Other less demethylating strains also released little CO2 from the other carbons of the lignin molecule. From corn stalk materials which were specifically labelled in the lignin part only small amounts of labelled CO2 were released.Non-Common-Abbreviation Used DHP dehydropolymers of coniferyl alcohol  相似文献   

3.
Summary A strain of Phanerochaete chrysosporium, designated strain K-3, was isolated from a monosporous conidiospore culture of Sporotrichum pulverulentum. This strain produces fruit bodies with only four sterigmata. From basidiospores of this culture, the homokaryotic strain 31 with high lignin degrading capacity was selected and subjected to ultraviolet irradiation to obtain cellulase deficient (Cel-) strains. By cross-breeding one of these Cel- variants with selected Cel+ homokaryotic strains from K-3 with high lignin degrading capacity, new Cel- mutants were isolated which exceeded K-3 in their capacity to degrade lignin.The Cel- strains were totally incapable of degrading cellulose but were able to degrade xylan. Evolution of 14CO2 from 14C-ring-labelled synthetic lignin a dehydrogenation polymerizate (DHP) was used to screen for strains with high lignin degrading capacity.Studies of weight loss on birch and spruce wood revealed that the weight losses caused by strain K-3 exceeded, in all cases, those caused by the Cel- strains. However, higher lignin losses in birch wood were obtained with several of the Cel- strains than with the K-3 strain. After 2 weeks, one strain caused a lignin loss in birch wood of 21% of the initial amount of lignin, while with another strain there was, after 3 weeks incubation, a 28.5% decrease in the lignin content.  相似文献   

4.
The lignin-degrading actinomycete Streptomyces viridosporus T7A readily degrades the lignin model compound dehydrodivanillin. Four mutants of this organism (produced by irradiation of spores with ultraviolet light) were shown to have lost the ability to catabolize dehydrodivanillin. These mutant strains retained an undiminished ability to degrade Douglas-fir lignin (14C-lignin 14CO2) as compared to the wild-type strain. None of the strains accumulated detectable quantities of dehydrodivanillin when grown on lignocellulose. Thus it appears that the enzymes involved in dehydrodivanillin catabolism are not a part of the streptomycete's system for degrading polymeric lignin. It is concluded that dehydrodivanillin is probably not a relevant model compound for study of lignin polymer degradation by Streptomyces viridosporus. Since many stable mutants completely lacking DHDV-degrading ability were readily obtained, it is suggested that the relevant catabolic enzymes may be encoded on a plasmid.Abbreviations DHDV dehydrodivanillin  相似文献   

5.
A Gram-positive bacterium which was isolated from a Finnish soil and identified as a Nocardia sp., was able to decompose lignin and to assimilate lignin degradation products as a carbon source. It could release 14CO2 from 14C-labelled methoxyl groups, side chains or ring carbons of coniferyl alcohol dehydropolymers (DHP) and from specifically 14C-labelled lignin of plant material. Furthermore, it could release 14CO2 from phenolcarboxylic and cinnamic acids and alcohols labelled in the OCH3, COOH groups, side chain or aromatic ring carbons.Non-Common Abbreviations Used DHP dehydropolymers of coniferyl alcohol  相似文献   

6.
A pleiotropic mutant of Phanerochaete chrysosporium 104-2 lacking phenol oxidase and unable to form fruit bodies and a revertant strain 424-2 were isolated after UV mutagenesis. Strains 104-2 and 424-2 had no apparent dysfunction in primary metabolism with glucose as a carbon source. Unlike the wild type strain and strain 424-2, strain 104-2 was unable to evolve 14CO2 from 14C ring, side chain and 3-O-14C-methoxy labeled lignin. In addition, strain 104-2 was unable to evolve 14CO2 from a variety of lignin model compounds including 14C-4-methoxy labeled veratrylglycerol--guaiacyl (V) ether, -14C-guaiacylglycerol--guaiacyl ether (VI), as well as 1-(14C-4-methoxy, 3-methoxyphenyl)1,2 propene (III) and 1-(14C-4-methoxy-3-methoxyphenyl) 1,2 dihydroxypropane (IV). The addition of peroxidase/H2O2 to cultures of strain 104-2 did not alter its capacity to degrade the labeled lignins. A variety of unlabeled lignin model compounds previously shown to be degraded by the wild type organism including -aryl ether dimers and diaryl propane dimers were also not degraded by the mutant 104-2. The revertant strain 424-2 regained the capacity to degrade these compounds. The substrates described are degraded by oxygen requiring system(s) expressed during the secondary phase of growth, suggesting this pleiotropic mutant is possibly defective in the onset of postprimary metabolism. The inability of the mutant to produce the secondary metabolite veratryl alcohol and to elaborate enzymes in the veratryl alcohol biosynthetic pathway supports this hypothesis.Abbreviations GLC gas liquid chromatography - TMSi trimethylsilyl - MS mass spectrometry - LDS lignin degrading system  相似文献   

7.
Modification of lignin by Geotrichum klebahnii   总被引:2,自引:0,他引:2  
13C-NMR spectroscopic analysis indicates that the yeast-like species Geotrichum klebahnii is an efficient microorganism for lignin biodegradation. This strain modified beechwood lignin even if it was the only carbon source by C-C side chain cleavage, C-oxidations, aromatic ring cleavage and reductive reactions. The obtained results outline prospective application of G. klebahnii for biotechnological pre-treatment of lignocellulosic materials.  相似文献   

8.
The isolation and characterization of glucose oxidase-negative (gox -) mutants of Phanerochaete chrysosporium, is described. These mutants are deficient not only in their ability to produce hydrogen peroxide (H2O2) but also in lignin degradation (2-14C-synthetic lignin14CO2), ligninase and peroxidase activities, decolorization of the dye poly-R 481, and production of ethylene from -oxo--methylthiobutyric acid (KTBA). The gox - mutants retained, albeit at a lower level, the capacity to produce veratryl alcohol, a typical secondary metabolite, and produced conidia at a level comparable to that of the wild type. The addition of ligninase and/or glucose oxidase to a gox - mutant (GOX-10) did not enhance its capacity to degrade lignin. The Gox+ revertant strains regained glucose oxidase activity, the ability to degrade lignin, as well as the other characteristics that were missing in the gox - mutants. The results suggest that the genetic lesion in these mutants affects the regulation of a set of secondary metabolic characteristics.Abbreviations Gox glucose oxidase - KTBA -oxo--methylthiobutyric acid Journal article no. 11740 from the Michigan Agricultural Experiment Station  相似文献   

9.
Cultural conditions affecting lignin degradation by Phanerochaete chrysosporium in various lignocellulosic materials were studied in comparison to an isolated lignin preparation. With shallow mycelial cultures, the degradation of lignin in wood proceeded more slowly in a 100% O2-atmosphere than in an air atmosphere, indicating that pure oxygen was toxic to the fungus. The organism was able to degrade lignin efficiently even under 30% CO2 and 10% O2 concentrations. Evolution of 14CO2 from labelled lignocellulosic materials was shown not to be representative of total lignin degradation. Addition of glucose to the culture did not affect lignin degradation measured by 14CO2 evolution, whereas lignin degradation measured by Klason lignin method stopped completely (poplar) or slowed considerably (straw). Due to partial depolymerization of lignin to soluble products, measuring only the evolution of 14CO2 results in an underestimation of the total amount of lignin bioaltered. The soluble products from all of the tested lignocellulosic materials and from the isolated lignin had an average molecular weight of about 1,000 and the products could be further fractionated by ion exchange chromatography. The relative amount of these products could be varied from 15 to 45% from the original lignin.  相似文献   

10.
The fungus Phoma herbarum isolated from soil showed growth on highly pure lignin extracted from spruce wood and on synthetic lignin (DHP). The lignin remaining after cultivation was shown to have a lower molecular weight. The reduction in the numbers of ether linkages of the extracted lignins was also observed by derivatization followed by reductive cleavage (DFRC) in combination with 31P NMR studies. The fungal strain showed an ability to degrade synthetic lignin by extracellular catalysts. GC–MS was applied to study the evolution of low molar mass adducts, e.g., monolignols and it was shown that a reduced coniferyl alcohol product was produced from DHP in a cell-free environment. The work has demonstrated the ability of soil microbes to grow on lignin as sole carbon source. The potential impact is in the production of low molar mass renewable phenols for material application.  相似文献   

11.
Two nitrogen-deregulated mutants of Phanerochaete chrysosporium, der8-2 and der8-5, were isolated by subjecting wild type conidia to gamma irradiation, plating on Poly-R medium containing high levels of nitrogen, and identifying colonies that are able to decolorize Poly-R. The mutants showed high levels of ligninolytic activity (14C-synthetic lignin 14CO2), and lignin peroxidase, manganese peroxidase and glucose oxidase activities in both low nitrogen (2.4 mM) and high nitrogen (24 mM) media. The wild type on the otherhand displayed these activities in low nitrogen medium but showed little or no activities in high nitrogen medium. Fast protein liquid chromatographic analyses showed that the wild type as well as the der mutants produce three major lignin peroxidase peaks (designated L1, L2 and L3) with lignin peroxidase activity in low nitrogen medium. Furthermore, in low nitrogen medium, mutant der8-5 produced up to fourfold greater lignin peroxidase activity than that produced by the wild type. In high nitrogen medium, the wild type produced no detectable lignin peroxidase peaks whereas the mutants produced peaks L1 and L2, but not L3, and a new lignin peroxidase protein peak designated LN. Mutants der8-2 and der8-5 also produced high levels of glucose oxidase, an enzyme known to be associated with secondary metabolism and an important source of H2O2 in ligninolytic cultures, both in low and high nitrogen media. In contrast, the wild type produced high levels of glucose oxidase in low nitrogen medium and only trace amounts of this enzyme in high nitrogen medium. The results of this study indicate that the der mutants are nitrogen-deregulated for the production of a set of secondary metabolic activities associated with lignin degradation such as lignin peroxidases, manganese peroxidases and glucose oxidase.  相似文献   

12.
Summary Two mutant strains of the lignin degrading bacterium Streptomyces viridosporus strain T7A with enhanced abilities to produce a soluble lignin degradation intermediate, acid-precipitable polymeric lignin (APPL) and several mutants derepressed for cellulase production were compared with the wild type to examine the roles of cellulase and selected other extracellular enzymes in lignin solubilization by S. viridosporus. The two APPL-overproducing mutants, T-81 and T-138, had higher cellulase activities than the wild type. Mutants specifically derepressed for cellulase were also isolated and were found to produce more APPL than the wild type. The results are indicative of some involvement of cellulase in the lignin solubilization process. The lignin solubilized from corn (Zea mays) lignocellulose by the mutants was slightly different chemically as compared to wild type solubilized lignin in that it had a higher coumaric acid ester content. The production of extracellular coumarate ester esterase, aromatic aldehyde oxidase, and xylanase was also examined in the mutants. Xylanase and aromatic aldehyde oxidase production did not differ significantly between the mutants and the wild type. Mutant T-81 was found to have a slightly lower activity for esterase as compared with the wild type. It was concluded that xylanase, oxidase and esterase are not the enzymes directly responsible for enhanced lignin solubilization. The results, however, do implicate cellulase in the process.Paper number 86 511 of the Idaho Agricultural Experiment Station  相似文献   

13.
The kinetic inactivation parameters of four wild strains and two enterotoxigenic strains ofEscherichia coli exposed to commercial calcium hypochlorite were determined. The four wild strains (1A, 3C, 4D and 8H) were isolated from lettuce bought in São Paulo (Brazil), and the two enterotoxigenic strains (TR69 and TR101) were originally isolated from human patients. Decimal reduction time D, for 10 mg L–1 available chlorine at pH 6.8, varied between 71.4 s for the wild strain 4D and 31.3 s for the toxigenic strain. The D values obtained for wild strain 1A exposed to 5.0 mg L–1 available chlorine at pH 6.8 varied between 111.1 s and 41.7 s. The D values obtained forE. coli strain TR69 exposed to 10 mg L–1 available chlorine varied from 15.2 s at pH 5.4 up to 83.3 s at pH 8.2. The use of the most resistant wild strain ofE. coli as a biological standard assures maximal effectiveness in controlling water contamination by chlorination.  相似文献   

14.
The lignin degradation abilities of wildtype, a phenol oxidase-less mutant and a phenol oxidase-positive revertant of Sporotrichum pulverulentum were compared to determine if phenol oxidase activity is necessary for lignin degradation by white-rot fungi. The phenol oxidase-less mutant was unable to degrade kraft lignin or wood. The phenol oxidase-positive revertant, however, regained the ability of the wildtype to degrade kraft lignin and all of the major components of wood. It was found that kraft lignin and lignin-related phenols decreased cellulase and xylanase production by the phenol oxidase-less mutant. Addition of highly purified laccase increased the production of endo-1,4--glucanase in the phenol oxidase-less mutant in the presence of vanillic acid and kraft lignin. After addition of laccase to kraft lignin agar plates, the phenol oxidase-less mutant could degrade kraft lignin.It is proposed that phenol oxidase function in regulating the production of both lignin-and polysaccharide-degrading enzymes by oxidation of lignin and lignin-related phenols when S. pulverulentum is growing on wood.Abbreviation WT wildtype Sporotrichum pulverulentum Research supported by a grant from Stiftelsen Nils and Dorthi Troëdssons forskningsfond  相似文献   

15.
Adaptation to nutrient-limited conditions by repeated culture on soil agar media was found to induce resistance to osmotic, oxidation, thermal and pH stress as well as carbon-limited culture conditions in Pseudomonas aeruginosa strain IE-6S+. Culture filtrate of the resistant strains obtained from 10% strength King's medium B (KMB) caused greater (32–54%) mortality of Meloidogyne javanica juveniles compared with their parental strain. When 10% strength KMB was amended with 1% (w/v) glucose, the ability to cause nematode mortality was substantially enhanced by adapted strains, while activity of the parental strain was repressed. Two of the four starved bacteria IE-6S+PBK1 and IE-6S+KUC2 grown in KMB liquid medium amended with glucose synthesized salicylic acid (5.1 and 5.8 g ml–1, respectively) and hydrogen cyanide (picrate paper turned yellow to brownish red for both strains) in greater quantities compared to wild type strain (SA = 4.4 g ml–1, picrate paper turned orange-yellow). Neither wild type strain IE-6S+ nor its adapted strains were capable of utilizing tomato root exudates as a sole carbon source. Strains adapted to carbon-limiting conditions exhibited enhanced colonization in the rhizosphere and inner root tissues of tomato compared to their exponentially growing counterpart. Pre-adapted bacterial inoculants applied in the soil also caused greater (15%) reduction in nematode penetration compared to the parental strain or controls.  相似文献   

16.
The influence of Zn2+ (6.0 × 10–3 –18.0 × 10–3 M) and Cu2+ (4 × 10–4 –1.2 × 10–4 M) in the basal medium on mycelial growth (dry weight), activities of lignin peroxidase (Lip), manganese peroxidase (Mnp), solubilization, and mineralization (14CO2 evolution) of lignin during a period of 3 weeks was studied in Phanerochaete chrysosporium strain MTCC-787. Highest mycelial growth was obtained at 0.6 M Zn2+ and 0.4 M Cu2+ levels. Enzyme activities were found to increase up to the highest levels of both the trace elements. However, Zn2+ had a relatively more stimulatory effect on Lip production and the reverse was true in case of Cu2+. [14C]Lignin solubilization was also promoted by higher levels of both trace elements. Mineralization of [14C]lignin was optimal at 6.0 M Zn2+ and 1.2 M Cu2+. The stimulatory effect of Zn2+ on Lip production was correlated with higher rates of [14C]lignin mineralization.  相似文献   

17.
Mineralization of polymeric wood lignin and its substructures is a result of complex reactions involving oxidizing and reducing enzymes and radicals. The degradation of methoxyl groups is an essential part of this process. The presence of wood greatly stimulates the demethoxylation of a non-phenolic lignin model compound (a [O14CH3]-labeled β-O-4 dimer) by the lignin-degrading white-rot fungi Phlebia radiata and Phanerochaete chrysosporium. When grown on wood, both fungi produced up to 47 and 40% 14CO2 of the applied 14C activity, respectively, under air and oxygen in 8 weeks. Without wood, the demethoxylation of the dimer by both fungi was lower, varying between 0.5 and 35%. Addition of nutrient nitrogen together with glucose decreased demethoxylation when the fungi were grown on spruce wood under air. Because the evolution of 14CO2 in the absence of wood was poor, the fungi may have preferably used wood as a carbon and nitrogen source. The amount of fungal mycelium, as determined by the ergosterol assay, did not show connection to demethoxylation. P. radiata also showed a high demethoxylation of [O14CH3]-labeled vanillic acid in the presence of birch wood. The degradation of lignin and lignin-related substances should be studied in the presence of wood, the natural substrate for white-rot fungi.  相似文献   

18.
Chemical imaging by confocal Raman microscopy has been used for the visualization of the cellulose and lignin distribution in wood cell walls. Lignin reduction in wood can be achieved by, for example, transgenic suppression of a monolignol biosynthesis gene encoding 4-coumarate-CoA ligase (4CL). Here, we use confocal Raman microscopy to compare lignification in wild type and lignin-reduced 4CL transgenic Populus trichocarpa stem wood with spatial resolution that is sub-μm. Analyzing the lignin Raman bands in the spectral region between 1,600 and 1,700 cm−1, differences in lignin signal intensity and localization are mapped in situ. Transgenic reduction of lignin is particularly pronounced in the S2 wall layer of fibers, suggesting that such transgenic approach may help overcome cell wall recalcitrance to wood saccharification. Spatial heterogeneity in the lignin composition, in particular with regard to ethylenic residues, is observed in both samples. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Eccentric is a newly-isolated mutant of Paramecium tetraurelia that fails to swim backwards in response to Mg2+. In the wild type, this backward swimming results from Mg2+ influx via a Mg2+-specific ion conductance (I Mg. Voltage-clamp analysis confirmed that, as suspected, step changes in membrane potential over a physiological range fail to elicit I Mg from eccentric. Further electrophysiological investigation revealed a number of additional ion-current defects in eccentric: (i) The Ca2+ current activated upon depolarization inactivates more slowly in eccentric than in the wild type, and it requires longer to recover from this inactivation. (ii) The Ca2+-dependent Na+ current deactivates significantly faster in the mutant, (iii) The two K+ currents observed upon hyperpolarization are reduced by >60% in eccentric. It is difficult to envision how these varied pleiotropic effects could result from loss of a single ion current. Rather, they suggest that the eccentric mutation affects a global regulatory system. Two plausible hypotheses are discussed.We are grateful to Dr. Yoshiro Saimi for his comments and suggestions on this work, and for the support of the Lucille P. Markey Charitable trust and the National Institutes of Health (GM22714 and GM38646).  相似文献   

20.
The proton translocation stoichiometry (H+/ATP ratio) was investigated in membrane vesicles from a Synechocystis 6803 mutant in which the serine at position 37 in the hydrophilic loop of the c-subunit from the wild type was replaced by a negatively charged glutamic acid residue (strain plc37). At this position the c-subunit of chloroplasts and the cyanobacterium Synechococcus 6716 already contains glutamic acid. H+/ATP ratios were determined with active ATP synthase in thermodynamic equilibrium between phosphate potential (G p ) and the proton gradient ( H +) induced by acid–base transition. The mutant displayed a significantly higher H+/ATP ratio than the control strain (wild type with kanamycin resistance) at pH 8 (4.3 vs. 3.3); the higher ratio also being observed in chloroplasts and Synechococcus 6716. Furthermore, the pH dependence of the H+/ATP of strain plc37 resembles that of Synechococcus 6716. When the pH was increased from 7.6 to 8.4, the H+/ATP of the mutant increased from 4.2 to 4.6 whereas in the control strain the ratio decreased from 3.8 to 2.8. Differences in H+/ATP between the mutant and the control strain were confirmed by measuring the light-induced phosphorylation efficiency (P/2e), which changed as expected, i.e., the P/2e ratio in the mutant was significantly less than that in the wild type. The need for more H+ ions used per ATP in the mutant was also reflected by the significantly lower growth rate of the mutant strain. The results are discussed against the background of the present structural and functional models of proton translocation coupled to catalytic activity of the ATP synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号