首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.

Background

During blood feeding, sand flies inject Leishmania parasites in the presence of saliva. The types and functions of cells present at the first host-parasite contact are critical to the outcome on infection and sand fly saliva has been shown to play an important role in this setting. Herein, we investigated the in vivo chemotactic effects of Lutzomyia intermedia saliva, the vector of Leishmania braziliensis, combined or not with the parasite.

Methods and Findings

We tested the initial response induced by Lutzomyia intermedia salivary gland sonicate (SGS) in BALB/c mice employing the air pouch model of inflammation. L. intermedia SGS induced a rapid influx of macrophages and neutrophils. In mice that were pre-sensitized with L. intermedia saliva, injection of SGS was associated with increased neutrophil recruitment and a significant up-regulation of CXCL1, CCL2, CCL4 and TNF-α expression. Surprisingly, in mice that were pre-exposed to SGS, a combination of SGS and L. braziliensis induced a significant migration of neutrophils and an important modulation in cytokine and chemokine expression as shown by decreased CXCL10 expression and increased IL-10 expression.

Conclusion

These results confirm that sand fly saliva modulates the initial host response. More importantly, pre-exposure to L. intermedia saliva significantly modifies the host''s response to L. braziliensis, in terms of cellular recruitment and expression of cytokines and chemokines. This particular immune modulation may, in turn, favor parasite multiplication.  相似文献   

2.

Background

Leishmania transmission occurs in the presence of insect saliva. Immunity to Phlebotomus papatasi or Lutzomyia longipalpis saliva or salivary components confers protection against an infection by Leishmania in the presence of the homologous saliva. However, immunization with Lutzomyia intermedia saliva did not protect mice against Leishmania braziliensis plus Lu. intermedia saliva. In the present study, we have studied whether the immunization with Lu. longipalpis saliva or a DNA plasmid coding for LJM19 salivary protein would be protective against L. braziliensis infection in the presence of Lu. intermedia saliva, the natural vector for L. braziliensis.

Methodology/Principal Findings

Immunization with Lu. longipalpis saliva or with LJM19 DNA plasmid induced a Delayed-Type Hypersensitivity (DTH) response against Lu. longipalpis as well as against a Lu. intermedia saliva challenge. Immunized and unimmunized control hamsters were then intradermally infected in the ears with L. braziliensis in the presence of Lu. longipalpis or Lu. intermedia saliva. Animals immunized with Lu. longipalpis saliva exhibited smaller lesion sizes as well as reduced disease burdens both at lesion site and in the draining lymph nodes. These alterations were associated with a significant decrease in the expression levels of IL-10 and TGF-β. Animals immunized with LJM19 DNA plasmid presented similar findings in protection and immune response and additionally increased IFN-γ expression.

Conclusions/Significance

Immunization with Lu. longipalpis saliva or with a DNA plasmid coding LJM19 salivary protein induced protection in hamsters challenged with L. braziliensis plus Lu. intermedia saliva. These findings point out an important role of immune response against saliva components, suggesting the possibility to develop a vaccine using a single component of Lu. longipalpis saliva to generate protection against different species of Leishmania, even those transmitted by a different vector.  相似文献   

3.

Background

Novel vaccination approaches are needed to prevent leishmaniasis. Live attenuated vaccines are the gold standard for protection against intracellular pathogens such as Leishmania and there have been new developments in this field. The nonpathogenic to humans lizard protozoan parasite, Leishmania (L) tarentolae, has been used effectively as a vaccine platform against visceral leishmaniasis in experimental animal models. Correspondingly, pre-exposure to sand fly saliva or immunization with a salivary protein has been shown to protect mice against cutaneous leishmaniasis.

Methodology/Principal Findings

Here, we tested the efficacy of a novel combination of established protective parasite antigens expressed by L. tarentolae together with a sand fly salivary antigen as a vaccine strategy against L. major infection. The immunogenicity and protective efficacy of different DNA/Live and Live/Live prime-boost vaccination modalities with live recombinant L. tarentolae stably expressing cysteine proteinases (type I and II, CPA/CPB) and PpSP15, an immunogenic salivary protein from Phlebotomus papatasi, a natural vector of L. major, were tested both in susceptible BALB/c and resistant C57BL/6 mice. Both humoral and cellular immune responses were assessed before challenge and at 3 and 10 weeks after Leishmania infection. In both strains of mice, the strongest protective effect was observed when priming with PpSP15 DNA and boosting with PpSP15 DNA and live recombinant L. tarentolae stably expressing cysteine proteinase genes.

Conclusion/Significance

The present study is the first to use a combination of recombinant L. tarentolae with a sand fly salivary antigen (PpSP15) and represents a novel promising vaccination approach against leishmaniasis.  相似文献   

4.

Background

The saliva of sand flies strongly enhances the infectivity of Leishmania in mice. Additionally, pre-exposure to saliva can protect mice from disease progression probably through the induction of a cellular immune response.

Methodology/Principal Findings

We analysed the cellular immune response against the saliva of Phlebotomus papatasi in humans and defined the phenotypic characteristics and cytokine production pattern of specific lymphocytes by flow cytometry. Additionally, proliferation and IFN-γ production of activated cells were analysed in magnetically separated CD4+ and CD8+ T cells. A proliferative response of peripheral blood mononuclear cells against the saliva of Phlebotomus papatasi was demonstrated in nearly 30% of naturally exposed individuals. Salivary extracts did not induce any secretion of IFN-γ but triggered the production of IL-10 primarily by CD8+ lymphocytes. In magnetically separated lymphocytes, the saliva induced the proliferation of both CD4+ and CD8+ T cells which was further enhanced after IL-10 blockage. Interestingly, when activated CD4+ lymphocytes were separated from CD8+ cells, they produced high amounts of IFN-γ.

Conclusion

Herein, we demonstrated that the overall effect of Phlebotomus papatasi saliva was dominated by the activation of IL-10-producing CD8+ cells suggesting a possible detrimental effect of pre-exposure to saliva on human leishmaniasis outcome. However, the activation of Th1 lymphocytes by the saliva provides the rationale to better define the nature of the salivary antigens that could be used for vaccine development.  相似文献   

5.
During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate that repeated exposure to Lu. intermedia SGS induces the expression of potentially host-protective IFN-inducible genes.  相似文献   

6.

Background

Phlebotomine sand flies are blood-sucking insects that can transmit Leishmania parasites. Hosts bitten by sand flies develop an immune response against sand fly salivary antigens. Specific anti-saliva IgG indicate the exposure to the vector and may also help to estimate the risk of Leishmania spp. transmission. In this study, we examined the canine antibody response against the saliva of Phlebotomus perniciosus, the main vector of Leishmania infantum in the Mediterranean Basin, and characterized salivary antigens of this sand fly species.

Methodology/Principal Findings

Sera of dogs bitten by P. perniciosus under experimental conditions and dogs naturally exposed to sand flies in a L. infantum focus were tested by ELISA for the presence of anti-P. perniciosus antibodies. Antibody levels positively correlated with the number of blood-fed P. perniciosus females. In naturally exposed dogs the increase of specific IgG, IgG1 and IgG2 was observed during sand fly season. Importantly, Leishmania-positive dogs revealed significantly lower anti-P. perniciosus IgG2 compared to Leishmania-negative ones. Major P. perniciosus antigens were identified by western blot and mass spectrometry as yellow proteins, apyrases and antigen 5-related proteins.

Conclusions

Results suggest that monitoring canine antibody response to sand fly saliva in endemic foci could estimate the risk of L. infantum transmission. It may also help to control canine leishmaniasis by evaluating the effectiveness of anti-vector campaigns. Data from the field study where dogs from the Italian focus of L. infantum were naturally exposed to P. perniciosus bites indicates that the levels of anti-P. perniciosus saliva IgG2 negatively correlate with the risk of Leishmania transmission. Thus, specific IgG2 response is suggested as a risk marker of L. infantum transmission for dogs.  相似文献   

7.
8.

Background

Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects biologically active salivary components that favorably change the environment at the feeding site. Exposure to bites or to salivary proteins results in immunity specific to these components. Mice immunized with Phlebotomus papatasi salivary gland homogenate (SGH) or pre-exposed to uninfected bites were protected against Leishmania major infection delivered by needle inoculation with SGH or by infected sand fly bites. Immunization with individual salivary proteins of two sand fly species protected mice from L. major infection. Here, we analyze the immune response to distinct salivary proteins from P. papatasi that produced contrasting outcomes of L. major infection.

Methodology/Principal Findings

DNA immunization with distinct DTH-inducing salivary proteins from P. papatasi modulates L. major infection. PpSP15-immunized mice (PpSP15-mice) show lasting protection while PpSP44-immunized mice (PpSP44-mice) aggravate the infection, suggesting that immunization with these distinct molecules alters the course of anti-Leishmania immunity. Two weeks post-infection, 31.5% of CD4+ T cells produced IFN-γ in PpSP15-mice compared to 7.1% in PpSP44-mice. Moreover, IL-4-producing cells were 3-fold higher in PpSP44-mice. At an earlier time point of two hours after challenge with SGH and L. major, the expression profile of PpSP15-mice showed over 3-fold higher IFN-γ and IL-12-Rβ2 and 20-fold lower IL-4 expression relative to PpSP44-mice, suggesting that salivary proteins differentially prime anti-Leishmania immunity. This immune response is inducible by sand fly bites where PpSP15-mice showed a 3-fold higher IFN-γ and a 5-fold lower IL-4 expression compared with PpSP44-mice.

Conclusions/Significance

Immunization with two salivary proteins from P. papatasi, PpSP15 and PpSP44, produced distinct immune profiles that correlated with resistance or susceptibility to Leishmania infection. The demonstration for the first time that immunity to a defined salivary protein (PpSP44) results in disease enhancement stresses the importance of the proper selection of vector-based vaccine candidates.  相似文献   

9.

Background

Nucleosomal histones are intracellular proteins that are highly conserved among Leishmania species. After parasite destruction or spontaneous lysis, exposure to these proteins elicits a strong host immune response. In the present study, we analyzed the protective capability of Leishmania infantum chagasi nucleosomal histones against L. braziliensis infection using different immunization strategies.

Methodology/Principal Findings

BALB/c mice were immunized with either a plasmid DNA cocktail (DNA) containing four Leishmania nucleosomal histones or with the DNA cocktail followed by the corresponding recombinant proteins plus CpG (DNA/Protein). Mice were later challenged with L. braziliensis, in the presence of sand fly saliva. Lesion development, parasite load and the cellular immune response were analyzed five weeks after challenge. Immunization with either DNA alone or with DNA/Protein was able to inhibit lesion development. This finding was highlighted by the absence of infected macrophages in tissue sections. Further, parasite load at the infection site and in the draining lymph nodes was also significantly lower in vaccinated animals. This outcome was associated with increased expression of IFN-γ and down regulation of IL-4 at the infection site.

Conclusion

The data presented here demonstrate the potential use of L. infantum chagasi nucleosomal histones as targets for the development of vaccines against infection with L. braziliensis, as shown by the significant inhibition of disease development following a live challenge.  相似文献   

10.
11.
12.

Background

Leishmania is transmitted by female sand flies and deposited together with saliva, which contains a vast repertoire of pharmacologically active molecules that contribute to the establishment of the infection. The exposure to vector saliva induces an immune response against its components that can be used as a marker of exposure to the vector. Performing large-scale serological studies to detect vector exposure has been limited by the difficulty in obtaining sand fly saliva. Here, we validate the use of two sand fly salivary recombinant proteins as markers for vector exposure.

Methodology/principal findings

ELISA was used to screen human sera, collected in an area endemic for visceral leishmaniasis, against the salivary gland sonicate (SGS) or two recombinant proteins (rLJM11 and rLJM17) from Lutzomyia longipalpis saliva. Antibody levels before and after SGS seroconversion (n = 26) were compared using the Wilcoxon signed rank paired test. Human sera from an area endemic for VL which recognize Lu. longipalpis saliva in ELISA also recognize a combination of rLJM17 and rLJM11. We then extended the analysis to include 40 sera from individuals who were seropositive and 40 seronegative to Lu. longipalpis SGS. Each recombinant protein was able to detect anti-saliva seroconversion, whereas the two proteins combined increased the detection significantly. Additionally, we evaluated the specificity of the anti-Lu. longipalpis response by testing 40 sera positive to Lutzomyia intermedia SGS, and very limited (2/40) cross-reactivity was observed. Receiver-operator characteristics (ROC) curve analysis was used to identify the effectiveness of these proteins for the prediction of anti-SGS positivity. These ROC curves evidenced the superior performance of rLJM17+rLJM11. Predicted threshold levels were confirmed for rLJM17+rLJM11 using a large panel of 1,077 serum samples.

Conclusion

Our results show the possibility of substituting Lu. longipalpis SGS for two recombinant proteins, LJM17 and LJM11, in order to probe for vector exposure in individuals residing in endemic areas.  相似文献   

13.

Background

Phlebotomine sand flies are blood-sucking insects transmitting Leishmania parasites. In bitten hosts, sand fly saliva elicits specific immune response and the humoral immunity was shown to reflect the intensity of sand fly exposure. Thus, anti-saliva antibodies were suggested as the potential risk marker of Leishmania transmission. In this study, we examined the long-term kinetics and persistence of anti-Phlebotomus papatasi saliva antibody response in BALB/c and C57BL/6 mice. We also tested the reactivity of mice sera with P. papatasi salivary antigens and with the recombinant proteins.

Methodology/Principal Findings

Sera of BALB/c and C57BL/6 mice experimentally bitten by Phlebotomus papatasi were tested by ELISA for the presence of anti-saliva IgE, IgG and its subclasses. We detected a significant increase of specific IgG and IgG1 in both mice strains and IgG2b in BALB/c mice that positively correlated with the number of blood-fed P. papatasi females. Using western blot and mass spectrometry we identified the major P. papatasi antigens as Yellow-related proteins, D7-related proteins, antigen 5-related proteins and SP-15-like proteins. We therefore tested the reactivity of mice sera with four P. papatasi recombinant proteins coding for most of these potential antigens (PpSP44, PpSP42, PpSP30, and PpSP28). Each mouse serum reacted with at least one of the recombinant protein tested, although none of the recombinant proteins were recognized by all sera.

Conclusions

Our data confirmed the concept of using anti-sand fly saliva antibodies as a marker of sand fly exposure in Phlebotomus papatasi–mice model. As screening of specific antibodies is limited by the availability of salivary gland homogenate, utilization of recombinant proteins in such studies would be beneficial. Our present work demonstrates the feasibility of this implementation. A combination of recombinant salivary proteins is recommended for evaluation of intensity of sand fly exposure in endemic areas and for estimation of risk of Leishmania transmission.  相似文献   

14.

Background

Recombinant KSAC and L110f are promising Leishmania vaccine candidates. Both antigens formulated in stable emulsions (SE) with the natural TLR4 agonist MPL® and L110f with the synthetic TLR4 agonist GLA in SE protected BALB/c mice against L. major infection following needle challenge. Considering the virulence of vector-transmitted Leishmania infections, we vaccinated BALB/c mice with either KSAC+GLA-SE or L110f+GLA-SE to assess protection against L. major transmitted via its vector Phlebotomus duboscqi.

Methods

Mice receiving the KSAC or L110f vaccines were challenged by needle or L. major-infected sand flies. Weekly disease progression and terminal parasite loads were determined. Immunological responses to KSAC, L110f, or soluble Leishmania antigen (SLA) were assessed throughout vaccination, three and twelve weeks after immunization, and one week post-challenge.

Results

Following sand fly challenge, KSAC-vaccinated mice were protected while L110f-vaccinated animals showed partial protection. Protection correlated with the ability of SLA to induce IFN-γ-producing CD4+CD62LlowCCR7low effector memory T cells pre- and post-sand fly challenge.

Conclusions

This study demonstrates the protective efficacy of KSAC+GLA-SE against sand fly challenge; the importance of vector-transmitted challenge in evaluating vaccine candidates against Leishmania infection; and the necessity of a rapid potent Th1 response against Leishmania to attain true protection.  相似文献   

15.

Background

The early and correct diagnosis of human leishmaniasis is essential for disease treatment. Another important step in the control of visceral leishmaniasis is the identification of infected dogs, which are the main domestic reservoir of L. infantum. Recombinant proteins and synthetic peptides based on Leishmania genes have emerged as valuable targets for serodiagnosis due to their increased sensitivity, specificity and potential for standardization. Cathepsin L-like genes are surface antigens that are secreted by amastigotes and have little similarity to host proteins, factors that enable this protein as a good target for serodiagnosis of the leishmaniasis.

Methodology/Principal Findings

We mapped a linear B-cell epitope within the Cathepsin L-like protein from L. braziliensis. A synthetic peptide containing the epitope and the recombinant protein was evaluated for serodiagnosis of human tegumentary and visceral leishmaniasis, as well as canine visceral leishmaniasis.

Conclusions/Significance

The recombinant protein performed best for human tegumentary and canine visceral leishmaniasis, with 96.30% and 89.33% accuracy, respectively. The synthetic peptide was the best to discriminate human visceral leishmaniasis, with 97.14% specificity, 94.55% sensitivity and 96.00% accuracy. Comparison with T. cruzi-infected humans and dogs suggests that the identified epitope is specific to Leishmania parasites, which minimizes the likelihood of cross-reactions.  相似文献   

16.

Background

Visceral Leishmaniasis is a serious human disease transmitted, in the New World, by Lutzomyia longipalpis sand flies. Natural resistance to Leishmania transmission in residents of endemic areas has been attributed to the acquisition of immunity to sand fly salivary proteins. One theoretical way to accelerate the acquisition of this immunity is to increase the density of antigen-presenting cells at the sand fly bite site. Here we describe a novel tissue platform that can be used for this purpose.

Methodology/Principal Findings

BluePort is a well-vascularized and macrophage-rich compartment induced in the subcutaneous tissue of mice via injection of agarose beads covered with Cibacron blue. We describe the sequence of inflammatory events leading to its formation and how it can be used to study the dermal response to the bite of L. longipalpis sand flies. Results presented indicate that a shift in the inflammatory response, from neutrophilic to eosinophilic, is the main histopathological feature associated with the immunity acquired through repeated exposure to the bite of sand flies, and that the BluePort tissue compartment could be used to accelerate this process. In addition, changes observed inside the BluePort parenchyma indicate that it could be used to study complex immunobiological processes, and to develop ectopic secondary lymphoid structures.

Conclusions/Significance

Understanding the characteristics of the dermal response to the bite of sand flies is a critical element of strategies to control leishmaniasis using vaccines that target salivary proteins. Finding that dermal eosinophilia is such a prominent component of the anti-salivary immunity induced by repeated exposure to sand fly bites raises one important consideration: how to avoid the immunological conflict derived from a protective Th2-driven immunity directed to sand fly saliva with a protective Th1-driven immunity directed to the parasite. The BluePort platform is an ideal tool to address experimentally this conundrum.  相似文献   

17.

Background

Leishmania (Viannia) braziliensis is a parasite recognized as the most important etiologic agent of mucosal leishmaniasis (ML) in the New World. In Amazonia, seven different species of Leishmania, etiologic agents of human Cutaneous Leishmaniasis, have been described. Isolated cases of ML have been described for several different species of Leishmania: L. (V.) panamensis, L. (V.) guyanensis and L. (L.) amazonensis.

Methodology

Leishmania species were characterized by polymerase chain reaction (PCR) of tissues taken from mucosal biopsies of Amazonian patients who were diagnosed with ML and treated at the Tropical Medicine Foundation of Amazonas (FMTAM) in Manaus, Amazonas state, Brazil. Samples were obtained retrospectively from the pathology laboratory and prospectively from patients attending the aforementioned tertiary care unit.

Results

This study reports 46 cases of ML along with their geographical origin, 30 cases caused by L. (V.) braziliensis and 16 cases by L. (V.) guyanensis. This is the first record of ML cases in 16 different municipalities in the state of Amazonas and of simultaneous detection of both species in 4 municipalities of this state. It is also the first record of ML caused by L. (V.) guyanensis in the states of Pará, Acre, and Rondônia and cases of ML caused by L. (V.) braziliensis in the state of Rondônia.

Conclusions/Significance

L. (V.) braziliensis is the predominant species that causes ML in the Amazon region. However, contrary to previous studies, L. (V.) guyanensis is also a significant causative agent of ML within the region. The clinical and epidemiological expression of ML in the Manaus region is similar to the rest of the country, although the majority of ML cases are found south of the Amazon River.

Author Summary

Leishmaniasis is considered a neglected disease with 1.5 million new cases of cutaneous leishmaniasis (CL) occurring each year. In the Amazon region and in the Americas in general, ML is caused by Leishmania (Viannia) braziliensis, though in rare cases it has been related to other species. ML, which is associated with inadequate treatment of CL, normally manifests itself years after the occurrence of CL. Clinical features evolve slowly and most often affect the nasal cavity, in some cases causing perforation, or even destruction, of the septum. Diagnosis is made using the Montenegro skin test, serology and histopathology of the patients'' mucosal tissues, or by isolation of the parasites. PCR is the best way to identify the species of leishmaniasis and is therefore the diagnostic method of choice. This paper describes 46 cases of ML and their geographical origin, 30 cases associated with L. (V.) braziliensis and 16 with L. (V.) guyanensis. The species of leishmaniasis was identified using mucosal biopsies taken from Amazonian patients who were diagnosed and treated for ML in the tertiary care unit, in Manaus, Amazonas state, Brazil. This is the highest number of ML cases caused by L. (V.) guyanensis that has ever been reported.  相似文献   

18.

Background

The leishmaniases are a complex of neglected tropical diseases caused by more than 20 Leishmania parasite species, for which available therapeutic arsenal is scarce and unsatisfactory. Pentavalent antimonials (SbV) are currently the first-line pharmacologic therapy for leishmaniasis worldwide, but resistance to these compounds is increasingly reported. Alkyl-lysophospoholipid analogs (ALPs) constitute a family of compounds with antileishmanial activity, and one of its members, miltefosine, has been approved as the first oral treatment for visceral and cutaneous leishmaniasis. However, its clinical use can be challenged by less impressive efficiency in patients infected with some Leishmania species, including L. braziliensis and L. mexicana, and by proneness to develop drug resistance in vitro.

Methodology/Principal Findings

We found that ALPs ranked edelfosine>perifosine>miltefosine>erucylphosphocholine for their antileishmanial activity and capacity to promote apoptosis-like parasitic cell death in promastigote and amastigote forms of distinct Leishmania spp., as assessed by proliferation and flow cytometry assays. Effective antileishmanial ALP concentrations were dependent on both the parasite species and their development stage. Edelfosine accumulated in and killed intracellular Leishmania parasites within macrophages. In vivo antileishmanial activity was demonstrated following oral treatment with edelfosine of mice and hamsters infected with L. major, L. panamensis or L. braziliensis, without any significant side-effect. Edelfosine also killed SbV-resistant Leishmania parasites in in vitro and in vivo assays, and required longer incubation times than miltefosine to generate drug resistance.

Conclusions/Significance

Our data reveal that edelfosine is the most potent ALP in killing different Leishmania spp., and it is less prone to lead to drug resistance development than miltefosine. Edelfosine is effective in killing Leishmania in culture and within macrophages, as well as in animal models infected with different Leishmania spp. and SbV-resistant parasites. Our results indicate that edelfosine is a promising orally administered antileishmanial drug for clinical evaluation.  相似文献   

19.

Background

Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence.

Methodology/Principal Findings

This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice.

Conclusions/Significance

We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV-related risk of complications in cutaneous leishmaniasis.  相似文献   

20.

Background

Three major forms of human disease, cutaneous leishmaniasis, visceral leishmaniasis and mucocutaneous leishmaniasis, are caused by several leishmanial species whose geographic distribution frequently overlaps. These Leishmania species have diverse reservoir hosts, sand fly vectors and transmission patterns. In the Old World, the main parasite species responsible for leishmaniasis are Leishmania infantum, L. donovani, L. tropica, L. aethiopica and L. major. Accurate, rapid and sensitive diagnostic and identification procedures are crucial for the detection of infection and characterization of the causative leishmanial species, in order to provide accurate treatment, precise prognosis and appropriate public health control measures.

Methods/Principal Findings

High resolution melt analysis of a real time PCR product from the Internal Transcribed Spacer-1 rRNA region was used to identify and quantify Old World Leishmania in 300 samples from human patients, reservoir hosts and sand flies. Different characteristic high resolution melt analysis patterns were exhibited by L. major, L. tropica, L. aethiopica, and L. infantum. Genotyping by high resolution melt analysis was verified by DNA sequencing or restriction fragment length polymorphism. This new assay was able to detect as little as 2-4 ITS1 gene copies in a 5 µl DNA sample, i.e., less than a single parasite per reaction.

Conclusions/Significance

This new technique is useful for rapid diagnosis of leishmaniasis and simultaneous identification and quantification of the infecting Leishmania species. It can be used for diagnostic purposes directly from clinical samples, as well as epidemiological studies, reservoir host investigations and vector surveys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号