首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Chung TW  Kim SJ  Choi HJ  Kim KJ  Kim MJ  Kim SH  Lee HJ  Ko JH  Lee YC  Suzuki A  Kim CH 《Glycobiology》2009,19(3):229-239
Angiogenesis is associated with growth, invasion, and metastasis of human solid tumors. Aberrant activation of endothelial cells and induction of microvascular permeability by a vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) signaling pathway is observed in pathological angiogenesis including tumor, wound healing, arthritis, psoriasis, diabetic retinopathy, and others. Here, we show that GM3 regulated the activity of various downstream signaling pathways and biological events through the inhibition of VEGF-stimulated VEGFR-2 activation in vascular endothelial cells in vitro. Furthermore, GM3 strongly blocked VEGF-induced neovascularization in vivo, in models including the chick chorioallantoic membrane and Matrigel plug assay. Interestingly, GM3 suppressed VEGF-induced VEGFR-2 activation by blocking its dimerization and also blocked the binding of VEGF to VEGFR-2 through a GM3-specific interaction with the extracellular domain of VEGFR-2, but not with VEGF. Primary tumor growth in mice was inhibited by subcutaneous injection of GM3. Immunohistochemical analyses showed GM3 inhibition of angiogenesis and tumor cell proliferation. GM3 also resulted in the suppression of VEGF-stimulated microvessel permeability in mouse skin capillaries. These results suggest that GM3 inhibits VEGFR-2-mediated changes in vascular endothelial cell function and angiogenesis, and might be of value in anti-angiogenic therapy.  相似文献   

2.
《Cytotherapy》2021,23(9):810-819
Background aimsThe vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) signaling pathway plays an important role in angiogenesis and lymphangiogenesis, which are closely related to tumor cell growth, survival, tissue infiltration and metastasis. Blocking/interfering with the interaction between VEGF and VEGFR to inhibit angiogenesis/lymphangiogenesis has become an important means of tumor therapy.MethodsHere the authors designed a novel chimeric antigen receptor (CAR) lentiviral vector expressing the VEGF-C domain targeting both VEGFR-2 and VEGFR-3 (VEGFR-2/3 CAR) and then transduced CD3-positive T cells with VEGFR-2/3 CAR lentivirus.ResultsAfter co-culturing with target cells, VEGFR-2/3 CAR T cells showed potent cytotoxicity against both VEGFR-2- and VEGFR-3-positive breast cancer cells, with increased simultaneous secretion of interferon gamma, tumor necrosis factor alpha and interleukin-2 cytokines. Moreover, CAR T cells were able to destroy the tubular structures formed by human umbilical vein endothelial cells and significantly inhibit the growth, infiltration and metastasis of orthotopic mammary xenograft tumors in a female BALB/c nude mice model.ConclusionsThe authors’ results indicate that VEGFR-2/3 CAR T cells targeting both VEGFR-2 and VEGFR-3 have significant anti-tumor activity, which expands the application of conventional CAR T-cell therapy.  相似文献   

3.
Up-regulation of the dolichol pathway, a "hallmark" of asparagine-linked protein glycosylation, enhances angiogenesis in vitro. The dynamic relationship between these two processes is now evaluated with tunicamycin. Capillary endothelial cells treated with tunicamycin were growth inhibited and could not be reversed with exogenous VEGF(165). Inhibition of angiogenesis is supported by down-regulation of (i) phosphorylated VEGFR1 and VEGFR2 receptors; (ii) VEGF(165)-specific phosphotyrosine kinase activity; and (iii) Matrigel(TM) invasion and chemotaxis. In vivo, tunicamycin prevented the vessel development in Matrigel(TM) implants in athymic Balb/c (nu/nu) mice. Immunohistochemical analysis of CD34 (p < 0.001) and CD144 (p < 0.001) exhibited reduced vascularization. A 3.8-fold increased expression of TSP-1, an endogenous angiogenesis inhibitor in Matrigel(TM) implants correlated with that in tunicamycin (32 h)-treated capillary endothelial cells. Intravenous injection of tunicamycin (0.5 mg/kg to 1.0 mg/kg) per week slowed down a double negative (MDA-MB-435) grade III breast adenocarcinoma growth by ~50-60% in 3 weeks. Histopathological analysis of the paraffin sections indicated significant reduction in vessel size, the microvascular density and tumor mitotic index. Ki-67 and VEGF expression in tumor tissue were also reduced. A significant reduction of N-glycan expression in tumor microvessel was also observed. High expression of GRP-78 in CD144-positive cells supported unfolded protein response-mediated ER stress in tumor microvasculature. ~65% reduction of a triple negative (MDA-MB-231) breast tumor xenograft in 1 week with tunicamycin (0.25 mg/kg) given orally and the absence of systemic and/or organ failure strongly supported tunicamycin's potential for a powerful glycotherapeutic treatment of breast cancer in the clinic.  相似文献   

4.
Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR was structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival.  相似文献   

5.
Leptin increases vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), and Notch expression in cancer cells, and transphosphorylates VEGFR-2 in endothelial cells. However, the mechanisms involved in leptin’s actions in endothelial cells are not completely known. Here we investigated whether a leptin-VEGFR-Notch axis is involved in these leptin’s actions. To this end, human umbilical vein and porcine aortic endothelial cells (wild type and genetically modified to overexpress VEGFR-1 or -2) were cultured in the absence of VEGF and treated with leptin and inhibitors of Notch (gamma-secretase inhibitors: DAPT and S2188, and silencing RNA), VEGFR (kinase inhibitor: SU5416, and silencing RNA) and leptin receptor, OB-R (pegylated leptin peptide receptor antagonist 2: PEG-LPrA2). Interestingly, in the absence of VEGF, leptin induced the expression of several components of Notch signaling pathway in endothelial cells. Inhibition of VEGFR and Notch signaling significantly decreased leptin-induced S-phase progression, proliferation, and tube formation in endothelial cells. Moreover, leptin/OB-R induced transphosphorylation of VEGFR-1 and VEGFR-2 was essential for leptin’s effects. These results unveil for the first time a novel mechanism by which leptin could induce angiogenic features via upregulation/trans-activation of VEGFR and downstream expression/activation of Notch in endothelial cells. Thus, high levels of leptin found in overweight and obese patients might lead to increased angiogenesis by activating VEGFR-Notch signaling crosstalk in endothelial cells. These observations might be highly relevant for obese patients with cancer, where leptin/VEGFR/Notch crosstalk could play an important role in cancer growth, and could be a new target for the control of tumor angiogenesis.  相似文献   

6.
目的:探讨胃癌组织中VEGF、CD34、VEGF-C和VEGFR-3的表达情况及临床意义。方法:采用免疫组化方法测定81例胃癌组织VEGF、CD34、VEGF—C和VEGFR-3表达情况,并结合患者的临床病理资料进行分析。结果:81例胃癌组织中MVD平均值为(42.95±14.79)个/视野,范围为13.00-68.33个/视野,VEGF、VEGF—C、VEGFR-3阳性表达率分别为74.1%、64.2%、67.9%。VEGF的表达与肿瘤的TNM分期、浸润深度、淋巴结转移有关,CD34的表达与肿瘤的分化程度、TNM分期、浸润深度、淋巴结转移有关,VEGF—C的表达与肿瘤的分化程度、浸润深度、淋巴结转移有关,VEGFR-3的表达与肿瘤的浸润深度、淋巴结转移有关。结论:VEGF、CD34、VEGF—C和VEGFR-3的表达与胃癌的浸润转移密切相关。  相似文献   

7.
Angiogenesis, a hallmark step in tumor metastasis and ocular neovascularization, is driven primarily by the function of VEGF ligand on one of its receptors, VEGF receptor 2 (VEGFR-2). Central to the proliferation and ensuing angiogenesis of endothelial cells, the abundance of VEGFR-2 on the surface of endothelial cells is essential for VEGF to recognize and activate VEGFR-2. We have identified phosducin-like 3 (PDCL3, also known as PhLP2A), through a yeast two-hybrid system, as a novel protein involved in the stabilization of VEGFR-2 by serving as a chaperone. PDCL3 binds to the juxtamembrane domain of VEGFR-2 and controls the abundance of VEGFR-2 by inhibiting its ubiquitination and degradation. PDCL3 increases VEGF-induced tyrosine phosphorylation and is required for VEGFR-2-dependent endothelial capillary tube formation and proliferation. Taken together, our data provide strong evidence for the role of PDCL3 in angiogenesis and establishes the molecular mechanism by which it regulates VEGFR-2 expression and function.  相似文献   

8.
Interleukin-6 (IL-6) is a proinflammatory cytokine associated with the disease status of gastric carcinoma (GC). Vascular endothelial growth factor (VEGF) is a potent tumor angiogenic factor in GC. In this study, we attempted to clarify whether IL-6 can regulate VEGF and angiogenesis in GC. GC samples from 54 surgical specimens were subjected to immunohistochemical examination of IL-6, VEGF, and tumor microvessels, and results showed that IL-6 was positively correlated with VEGF expression and tumor vasculature. We determined VEGF expression in four GC cell lines by ELISA, revealing that GC cells can produce significant amount of VEGF with increasing dose and duration of IL-6 stimulation. Next, a luciferase reporter gene assay was employed to determine the signaling pathway driving the VEGF promoter by IL-6, which showed that the JAK/STAT pathway is involved in the stimulation of VEGF gene expression. The effects of IL-6 on angiogenesis in vitro and in vivo were evaluated by HUVEC studies and the Matrigel plug assay, respectively. Results showed that IL-6 effectively promoted HUVEC proliferation and tube formation in vitro and Matrigel plug vascularization in vivo, primarily by inducing VEGF in GC. This study provides evidence that the multifunctional cytokine, IL-6, may induce VEGF expression which increases angiogenesis in gastric carcinogenesis.  相似文献   

9.
Gangliosides are sialic acid-containing glycosphingolipids that have long been associated with tumor malignancy and metastasis. Mounting evidence suggests that gangliosides also modulate tumor angiogenesis. Tumor cells shed gangliosides into the microenvironment, which produces both autocrine and paracrine effects on tumor cells and tumor-associated host cells. In this study, we show that the simple monosialoganglioside GM3 counteracts the proangiogenic effects of vascular endothelial growth factor (VEGF) and of the complex disialoganglioside GD1a. GM3 suppressed the action of VEGF and GD1a on the proliferation of human umbilical vein endothelial cells (HUVECs) and inhibited the migration of HUVECs toward VEGF as a chemoattractant. Enrichment of added GM3 in the HUVEC membrane also reduced the phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR-2) and downstream Akt. Moreover, GM3 reduced the proangiogenic effects of GD1a and growth factors in the in vivo Matrigel plug assay. Inhibition of GM3 biosynthesis with the glucosyl transferase inhibitor, N-butyldeoxynojirimycin (NB-DNJ), increased HUVEC proliferation and the phosphorylation of VEGFR-2 and Akt. The effects of NB-DNJ on HUVECs were reversed with the addition of GM3. We conclude that GM3 has antiangiogenic action and may possess therapeutic potential for reducing tumor angiogenesis.  相似文献   

10.
Abnormal angiogenesis is associated with a broad range of medical conditions, including cancer. The formation of neovasculature with functionally defective blood vessels significantly impacts tumor progression, metastasis, and the efficacy of anticancer therapies. Vascular endothelial growth factor (VEGF) potently induces vascular permeability and vessel growth in the tumor microenvironment, and its inhibition normalizes tumor vasculature. In contrast, the signaling of the small GTPase R-Ras inhibits excessive angiogenic growth and promotes the maturation of regenerating blood vessels. R-Ras signaling counteracts VEGF-induced vessel sprouting, permeability, and invasive activities of endothelial cells. In this study, we investigated the effect of R-Ras on VEGF receptor 2 (VEGFR2) activation by VEGF, the key mechanism for angiogenic stimulation. We show that tyrosine phosphorylation of VEGFR2 is significantly elevated in the tumor vasculature and dermal microvessels of VEGF-injected skin in R-Ras knockout mice. In cultured endothelial cells, R-Ras suppressed the internalization of VEGFR2, which is required for full activation of the receptor by VEGF. Consequently, R-Ras strongly suppressed autophosphorylation of the receptor at all five major tyrosine phosphorylation sites. Conversely, silencing of R-Ras resulted in increased VEGFR2 phosphorylation. This effect of R-Ras on VEGFR2 was, at least in part, dependent on vascular endothelial cadherin. These findings identify a novel function of R-Ras to control the response of endothelial cells to VEGF and suggest an underlying mechanism by which R-Ras regulates angiogenesis.  相似文献   

11.
Vascular endothelial growth factor (VEGF) family members play important roles in embryonic development and angiogenesis during wound healing and in pathological conditions such as tumor formation. Parapoxviruses express a new member of the VEGF family which is a functional mitogen that specifically activates VEGF receptor (VEGFR)-2 but not VEGFR-1. In this study, we show that deletion from the viral VEGF of a unique C-terminal region increases both VEGFR-1 binding and VEGFR-1-mediated monocyte migration. Enzymatic removal of O-linked glycosylation from the C-terminus also increased VEGFR-1 binding and migration of THP-1 monocytes indicating that both the C-terminal residues and O-linked sugars contribute to blocking viral VEGF binding to VEGFR-1. The data suggest that conservation of the C-terminal residues throughout the viral VEGF subfamily may represent a means of reducing the immunostimulatory activities associated with VEGFR-1 activation while maintaining the ability to induce angiogenesis via VEGFR-2.  相似文献   

12.
Vascular endothelial growth factor receptors (VEGFR) are considered essential for angiogenesis. The VEGFR-family proteins consist of VEGFR-1/Flt-1, VEGFR-2/KDR/Flk-1, and VEGFR-3/Flt-4. Among these, VEGFR-2 is thought to be principally responsible for angiogenesis. However, the precise role of VEGFRs1-3 in endothelial cell biology and angiogenesis remains unclear due in part to the lack of VEGFR-specific inhibitors. We used the newly described, highly selective anilinoquinazoline inhibitor of VEGFR-2 tyrosine kinase, ZM323881 (5-[[7-(benzyloxy) quinazolin-4-yl]amino]-4-fluoro-2-methylphenol), to explore the role of VEGFR-2 in endothelial cell function. Consistent with its reported effects on VEGFR-2 [IC(50) < 2 nM], ZM323881 inhibited activation of VEGFR-2, but not of VEGFR-1, epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), or hepatocyte growth factor (HGF) receptor. We studied the effects of VEGF on human aortic endothelial cells (HAECs), which express VEGFR-1 and VEGFR-2, but not VEGFR-3, in the absence or presence of ZM323881. Inhibition of VEGFR-2 blocked activation of extracellular regulated-kinase, p38, Akt, and endothelial nitric oxide synthetase (eNOS) by VEGF, but did not inhibit p38 activation by the VEGFR-1-specific ligand, placental growth factor (PIGF). Inhibition of VEGFR-2 also perturbed VEGF-induced membrane extension, cell migration, and tube formation by HAECs. Vascular endothelial growth factor receptor-2 inhibition also reversed VEGF-stimulated phosphorylation of CrkII and its Src homology 2 (SH2)-binding protein p130Cas, which are known to play a pivotal role in regulating endothelial cell migration. Inhibition of VEGFR-2 thus blocked all VEGF-induced endothelial cellular responses tested, supporting that the catalytic activity of VEGFR-2 is critical for VEGF signaling and/or that VEGFR-2 may function in a heterodimer with VEGFR-1 in human vascular endothelial cells.  相似文献   

13.
Vascular endothelial growth factor (VEGF) binding to the kinase domain receptor (KDR/FLK1 or VEGFR-2) mediates vascularization and tumor-induced angiogenesis. Since there is evidence that KDR plays an important role in tumor angiogenesis, we sought to identify peptides able to block the VEGF-KDR interaction. A phage epitope library was screened by affinity for membrane-expressed KDR or for an anti-VEGF neutralizing monoclonal antibody. Both strategies led to the isolation of peptides binding KDR specifically, but those isolated by KDR binding tended to display lower reactivities. Of the synthetic peptides corresponding to selected clones tested to determine their inhibitory activity, ATWLPPR completely abolished VEGF binding to cell-displayed KDR. In vitro, this effect led to the inhibition of the VEGF-mediated proliferation of human vascular endothelial cells, in a dose-dependent and endothelial cell type-specific manner. Moreover, in vivo, ATWLPPR totally abolished VEGF-induced angiogenesis in a rabbit corneal model. Taken together, these data demonstrate that ATWLPPR is an effective antagonist of VEGF binding, and suggest that this peptide may be a potent inhibitor of tumor angiogenesis and metastasis.  相似文献   

14.
Blocking angiogenesis is an attractive strategy to inhibit tumor growth, invasion, and metastasis. We describe here the structure and the biological action of a new cyclic peptide derived from vascular endothelial growth factor (VEGF). This 17-amino acid molecule designated cyclopeptidic vascular endothelial growth inhibitor (cyclo-VEGI, CBO-P11) encompasses residues 79-93 of VEGF which are involved in the interaction with VEGF receptor-2. In aqueous solution, cyclo-VEGI presents a propensity to adopt a helix conformation that was largely unexpected because only beta-sheet structures or random coil conformations have been observed for macrocyclic peptides. Cyclo-VEGI inhibits binding of iodinated VEGF165 to endothelial cells, endothelial cells proliferation, migration, and signaling induced by VEGF165. This peptide also exhibits anti-angiogenic activity in vivo on the differentiated chicken chorioallantoic membrane. Furthermore, cyclo-VEGI significantly blocks the growth of established intracranial glioma in nude and syngeneic mice and improves survival without side effects. Taken together, these results suggest that cyclo-VEGI is an attractive candidate for the development of novel angiogenesis inhibitor molecules useful for the treatment of cancer and other angiogenesis-related diseases.  相似文献   

15.
We examined the involvement of cyclooxygenase (COX)-1 as well as COX-2 in the healing of gastric ulcers and investigated which prostaglandin (PG) EP receptor subtype is responsible for the healing-promoting action of PGE2. Male SD rats and C57BL/6 mice, including wild-type, COX-1(-/-), and COX-2(-/-), were used. Gastric ulcers were produced by thermocauterization under ether anesthesia. Gastric ulcer healing was significantly delayed in both rats and mice by indomethacin and rofecoxib but not SC-560 given for 14 days after ulceration. The impaired healing was also observed in COX-2(-/-) but not COX-1(-/-) mice. Mucosal PGE2 content increased after ulceration, and this response was significantly suppressed by indomethacin and rofecoxib but not SC-560. The delayed healing in mice caused by indomethacin was significantly reversed by the coadministration of 11-deoxy-PGE1 (EP3/EP4 agonist) but not other prostanoids, including the EP1, EP2, and EP3 agonists. By contrast, CJ-42794 (selective EP(4) antagonist) significantly delayed the ulcer healing in rats and mice. VEGF expression and angiogenesis were both upregulated in the ulcerated mucosa, and these responses were suppressed by indomethacin, rofocoxib, and CJ-42794. The expression of VEGF in primary rat gastric fibroblasts was increased by PGE2 or AE1-329 (EP4 agonist), and these responses were both attenuated by coadministration of CJ-42794. These results confirmed the importance of COX-2/PGE2 in the healing mechanism of gastric ulcers and further suggested that the healing-promoting action of PGE2 is mediated by the activation of EP4 receptors and is associated with VEGF expression.  相似文献   

16.
17.
Abstract

Background: Vascular endothelial growth factor (VEGF) A and B are endothelial cell mitogens whose ligation to VEGFR1/VEGFR2 drives tumor angiogenesis and metastasis, and epithelial-mesenchymal transition (EMT). Blockade of these signaling axes could be obtained by disturbing the interactions between VEGFA and/or VEGFB with VEGFR1 and/or VEGFR2.

Methods: A 14-mer peptide (VGB) that recognizes both VEGFR1 and VEGFR2 were investigated for its inhibitory effects on the VEGF‐induced proliferation and migration using MTT and scratch assay, respectively. Downstream signaling pathways were also assessed by quantitative estimation of gene and protein expression using real-time PCR and immunohistochemistry (IHC).

Results: We investigated the inhibitory effects of VGB on downstream mediators of metastasis, including epithelial-cadherin (E-cadherin), matrix metalloprotease-9 (MMP-9), cancer myelocytomatosis (c-Myc), and nuclear factor-κβ (NF-κβ), and migration, comprising focal adhesion kinase (FAK) and its substrate Paxilin. VGB inhibited the VEGF‐induced proliferation of human umbilical vein endothelial cells (HUVECs), 4T1 and U87 cells in a time- and dose-dependent manner and migration of HUVECs. Based on IHC analyses, treatment of 4T1 mammary carcinoma tumor with VGB led to the suppression of p-AKT, p-ERK1/2, MMP-9, NF-κβ, and activation of E-cadherin compared with PBS-treated controls. Moreover, quantitative real-time PCR analyses of VGB-treated tumors revealed the reduced expression level of FAK, Paxilin, NF-κβ, MMP-9, c-Myc, and increased expression level of E-cadherin compared to PBS-treated controls.

Conclusions: Our results demonstrated that simultaneous blockade of VEGFR1/VEGFR2 is an effective strategy to fight solid tumors by targeting a wider range of mediators involved in tumor angiogenesis, growth, and metastasis.  相似文献   

18.
Previous studies demonstrate that one of the six plasminogen type 2 glycoforms, plasminogen 2epsilon, enhances invasiveness of the 1-LN human prostate tumor cell line in an in vitro model. Binding of plasminogen 2epsilon to CD26 on the cell surface induces a Ca(2+) signaling cascade which stimulates the expression of matrix metalloproteinase-9, required by these cells to invade Matrigel. We now report that angiostatin, a fragment derived from plasminogen which prevents endothelial cell proliferation, is also a potent, direct inhibitor of 1-LN tumor cell invasiveness. We studied the effect of individual plasminogen 2 glycoform-derived angiostatins and found that only angiostatin 2epsilon binds to CD26 on the surface of 1-LN cells at a site also recognized by plasminogen 2epsilon. As a result, the plasminogen 2epsilon-induced Ca(2+) signaling cascade is inhibited, the expression of matrix metalloproteinase-9 is suppressed, and invasion of Matrigel by 1-LN cells is blocked. Angiostatin 2epsilon is also the only angiostatin glycoform which is able to inhibit in vitro endothelial cell proliferation and tubule formation. These studies suggest that, in addition to its ability to inhibit tumor vascularization, angiostatin 2epsilon may also directly block tumor metastasis.  相似文献   

19.
20.
Vascular endothelial growth factor-C (VEGF-C) has a well-defined action on neoplastic lymphangiogenesis and angiogenesis through VEGF receptor-3 (VEGFR-3) and VEGFR-2, respectively, which are generally expressed in endothelial cells. The function of the VEGF-C/receptors pathway in tumor cell types is largely unknown. In this study, we examined the expression and role of VEGF-C/receptors in gallbladder cancer (GBC) cells. We examined the expression of VEGF-C in 50 surgical specimens from gallbladder cancer and three human gallbladder cancer cell lines. Both siRNA and neutralizing antibody to deplete the expression of VEGF-C were used to characterize the biological effect of VEGF-C in GBC NOZ cells. Furthermore, we examined the expression of its receptors, VEGFR-3 and VEGFR-2, in three human GBC cell lines. Our results are as follows: The expression of VEGF-C in the invasive marginal portion was significantly higher than the expression in the central portions. All the three GBC cell lines expressed VEGF-C. Treatment of NOZ cells with VEGF-C siRNA or a neutralizing antibody suppressed cell proliferation and invasion. Moreover, all the three GBC cell lines expressed VEGFR3, but only the NOZ cells expressed VEGFR-2 mRNA. Treatment of NOZ cells with a VEGFR-3 neutralizing antibody suppressed cell invasion, but treatment of NOZ cells with a VEGFR-2 neutralizing antibody suppressed cell proliferation and invasion. In conclusion, GBC cells express both VEGF-C and its receptors. VEGF-C may have a role in the progressive growth and invasion of human GBC through an autocrine mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号