首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Summary In aberrant egg follicles of the pattern mutant dicephalic (dic) the oocyte is wedged in between two groups of nurse cells, and this condition may give rise to embryos which express anterior traits at both ends. We have analysed the role of the dic genotype of the germ line cells and the surrounding somatic follicle cells in the formation of the dic follicular phenotype. By means of pole cell transplantations into Fs (1) K 1237 hosts (this cell-autonomous mutation causes degeneration of the host's germ line cells early in oogenesis), we constructed chimeras in which either the follicle cells, the germ line cells, or both were homozygous for the dic mutation. In all three combinations the dic phenotype was expressed but not in controls with dic + in both germ line cells and follicular epithelium. Since follicles with the dic phenotype may be produced if either the germ line cells or the follicle cells lack dic + gene activity we suggest that cellular interactions between both cell types are required for the correct positioning of the oocyte at the follicle's posterior pole.  相似文献   

2.
Summary Drosophila females homozygous for the mutation dicephalic occasionally produce ovarian follicles with a nurse-cell cluster on each oocyte pole (dic follicles). Most dic follicles contain 15 nurse cells as in the normal follicle, but the total nurse-cell volume is larger in dic follicles; this is in keeping with the increase in DNA content recently described. However, the relative increase in oocyte volume during nurse-cell regression (from stage 10B onward) is not significantly larger in dic than in normal follicles. Time-lapse recordings in vitro show that, as a rule, both nurse cell clusters in a dic follicle export cytoplasm to the oocyte but nurse-cell regression remains incomplete at both poles and the persisting remnants of the nurse cells cause anomalies in chorion shape. The kinematics of cytoplasmic transfer are less aberrant at that oocyte pole which harbours the germinal vesicle. Possible links are discussed between these anomalies of oogenesis and the double-anterior embryonic patterns observed in the majority of developing dic eggs.  相似文献   

3.
Summary Homozygous females of the mutantsegalitarian andBicaudal-D R26produce follicles in which the oocyte is replaced by an additional nurse cell. Normal morphological markers for polarity can be identified in mutant follicles but the normal spatial organization of these markers is disturbed. For example, nurse-cell nuclei of different ploidy classes are present but, contrary to wild-type follicles, the nuclei show no anteroposterior ploidy gradient. The two cells with four intercellular bridges, one of which should have developed into the oocyte rather than a nurse cell, are located at the posterior pole only in young follicles (up to about stage 5), whereas during later stages they are more often found at lateral or intermediate positions. This disturbed polarity correlates with a variable aberrant pattern of extracellular ionic currents. Moreover, in the mutant follicles patches of columnar follicular epithelium differentiate locally although this type of epithelium forms normally only around the oocyte. The follicle cells at both follicle poles possess anterior quality since they migrate from both poles towards the centre of the follicle, as do the border cells restricted to the anterior pole in wild-type follicles. Our analysis indicates that in the mutants the follicular polarity is normal at first but becomes disturbed during stages 5 to 6. The secondary breakdown of polarity is likely to follow on from the absence of the oocyte.  相似文献   

4.
Summary The developmental potential of the cells of the somatic follicular epithelium (follicle cells) was studied in mutants in which the differentiation of the germ-line cells is blocked at different stages of oogenesis. In two mutants, sn 36a and kelch, nurse cell regression does not occur, yet the follicle cells around the small oocyte continue their normal developmental program and produce an egg shell with micropylar cone and often deformed operculum and respiratory appendages. Neither the influx of nurse cell cytoplasm into the oocyte nor the few follicle cells covering the nurse cells are apparently required for the formation of the egg shell. In the tumor mutant benign gonial cell neoplasm (bgcn) the follicle cells can also differentiate to some extent although the germ-line cells remain morphologically undifferentiated. Vitelline membrane material was synthesized by the follicle cells in some bgcn chambers and in rare cases a columnar epithelium, which resembled morphologically that of wild-type stage-9 follicles, formed around the follicle's posterior end. The normal polarity of the follicular epithelium that is characteristic for mid-vitellogenic stages may, therefore, be established in the absence of morphologically differentiating germ-line cells. However, the tumorous germ-line cells do not constitute a homogeneous cell population since in about 30% of the analyzed follicles a cell cluster at or near the posterior pole can be identified by virtue of its high number of concanavalin A binding sites. This molecular marker reveals an anteroposterior polarity of the tumorous chambers. In follicles mutant for both bgcn and the polarity gene dicephalic the cluster of concanavalin A-stained germ-line cells shifts to more anterior positions in the follicle.  相似文献   

5.
Diatraea saccharalis F. is one of the greatest pests of the sugar cane culture. This report aimed to characterize the germarium region of the sugarcane borer by light and transmission electron microscopy, emphasizing the morphological steps of the ovarian cluster formation. In the germarium of this insect, four zones could be morphologically identified during the cluster formation. In the most apical end of each ovariole--Zone I--the germ line stem cells undergo complete mitotic division, originating the cystoblasts. In the Zone II, each cystoblast produces a group of eight cells, the cystocytes, which are interconnected by the ring canals. Clusters containing all the cystocytes in the meiosis, characterizes the Zone III. Germ cells with ultrastructural features of apoptosis are also detected in this Zone. In the Zone IV the cystocytes differentiate, morphologically, into one oocyte and seven nurse cells. Interstitial somatic cells and pre-follicle cells exhibit, in their cytoplasm, heterogeneous vacuoles containing degenerated cellular fragments, characterized as apoptotic bodies. Our results pointed out to the morphological evidences related with important control mechanisms for new clusters/follicles production and for the cellular arrangement into the germarium, resulting from the programmed cell death. We believe that the morphological characterization of ovarian cluster formation in D. saccharalis provided valuable information for the understanding of the initial steps of oogenesis and contributed for the knowledge of the cellular mechanisms related with the oocyte production and with reproduction in insects.  相似文献   

6.
Maternally inherited mitochondria and other cytoplasmic organelles play essential roles supporting the development of early embryos and their germ cells. Using methods that resolve individual organelles, we studied the origin of oocyte and germ plasm-associated mitochondria during Drosophila oogenesis. Mitochondria partition equally on the spindle during germline stem cell and cystocyte divisions. Subsequently, a fraction of cyst mitochondria and Golgi vesicles associates with the fusome, moves through the ring canals, and enters the oocyte in a large mass that resembles the Balbiani bodies of Xenopus, humans and diverse other species. Some mRNAs, including oskar RNA, specifically associate with the oocyte fusome and a region of the Balbiani body prior to becoming localized. Balbiani body development requires an intact fusome and microtubule cytoskeleton as it is blocked by mutations in hu-li tai shao, while egalitarian mutant follicles accumulate a large mitochondrial aggregate in all 16 cyst cells. Initially, the Balbiani body supplies virtually all the mitochondria of the oocyte, including those used to form germ plasm, because the oocyte ring canals specifically block inward mitochondrial transport until the time of nurse cell dumping. Our findings reveal new similarities between oogenesis in Drosophila and vertebrates, and support our hypothesis that developing oocytes contain specific mechanisms to ensure that germ plasm is endowed with highly functional organelles.  相似文献   

7.
In Hirudo medicinalis and Haemopis sanguisuga, two convoluted ovary cords are found within each ovary. Each ovary cord is a polarized structure composed of germ cells (oogonia, developing oocytes, nurse cells) and somatic cells (apical cell, follicular cells). One end of the ovary cord is club-shaped and comprises one huge apical cell, numerous oogonia, and small cysts (clusters) of interconnected germ cells. The main part of the cord contains fully developed cysts composed of numerous nurse cells connected via intercellular bridges with the cytophore, which in turn is connected by a cytoplasmic bridge with the growing oocyte. The opposite end of the cord degenerates. Cord integrity is ensured by flattened follicular cells enveloping the cord; moreover, inside the cord, some follicular cells (internal follicular cells) are distributed among germ cells. As oogenesis progresses, the growing oocytes gradually protrude into the ovary lumen; as a result, fully developed oocytes arrested in meiotic metaphase I float freely in the ovary lumen. This paper describes the successive stages of oogenesis of H. medicinalis in detail. Ovary organization in Hirudinea was classified within four different types: non-polarized ovary cords were found in glossiphoniids, egg follicles were described in piscicolids, ovarian bodies were found characteristic for erpobdellids, and polarized ovary cords in hirudiniforms. Ovaries with polarized structures equipped with apical cell (i.e. polarized ovary cords and ovarian bodies) (as found in arhynchobdellids) are considered as primary for Hirudinea while non-polarized ovary cords and the occurrence of egg follicles (rhynchobdellids) represent derived condition.  相似文献   

8.
In the germarium of polytrophic ovarioles of Calliphora erythrocephala (Mg.) fly, four mitotic divisions of cystoblasts give rise to 16-cell germ-line cysts. One cell differentiates into an oocyte, while the remaining 15 cells become nurse cells. Concomitantly actin-rich ring canals are formed at the intercellular junctions. The present study considers a mutual arrangement of the ring canals formed after the second to fourth mitoses relative to the ring canal formed after the first mitotic division in different regions of the germarium and egg chambers. During the cyst formation and its movement to the posterior end of the germarium, the ring canals are displaced relative to one another, thereby giving different branching variants of the cyst. The pattern of cell interconnections becomes stable in germarium region 2b and does not change during the cyst movement along the ovariole despite the cyst polarizes and increases in size.  相似文献   

9.
The occurrence of vertical transmission of the DNA virus of tsetse was studied in virus-infected, femaleGlossina pallidipes with hypertrophied salivary glands (HSG). Ultrastructural examination of tissue components of ovaries of these females revealed virus particles within both germ cell cystocyte clusters and in the follicles, sparsely distributed within nurse cells and in the oocyte cytoplasm. The presence of the virus particles within the ooplasm demonstrates the ovum as a vehicle through which theG. pallidipes virus is disseminated in nature.  相似文献   

10.
The interstitial deletion D14 affecting the importin-alpha 2 gene of Drosophila, or imp-alpha 2(D14), causes recessive female sterility characterized by a block of nurse cell-oocyte transport during oogenesis. In wild-type egg chambers, the Imp-alpha 2 protein is uniformly distributed in the nurse cell cytoplasm with a moderate accumulation along the oocyte cortex. Cytochalasin D treatment of wild-type egg chambers disrupts the in vivo association of Imp-alpha 2 with F-actin and results in its release from the oocyte cortex and its transfer into nurse cell nuclei. Binding assay shows that the interaction of Imp-alpha 2 with F-actin, albeit not monomeric actin, requires the occurrence of NLS peptides. Phenotypic analysis of imp-alpha 2(D14) ovaries reveals that the block of nurse cell-oocyte transport results from the occlusion of the ring canals that constitute cytoplasmic bridges between the nurse cells and the oocyte. Immunohistochemistry shows that, although the Imp-alpha2 protein cannot be detected on the ring canals, the Kelch protein, a known ring canal component, fails to bind to ring canals in imp-alpha 2(D14) egg chambers. Since loss-of-function mutations of kelch results in a similar dumpless phenotype, we propose that the Imp-alpha 2 protein plays a critical role in Kelch function by regulating its deposition on ring canals during their assembly.  相似文献   

11.
12.
Germline cysts are conserved structures in which cells initiating meiosis are interconnected by ring canals. In many species, the cyst phase is of limited duration, but the chordate, Oikopleura, maintains it throughout prophase I as a unique cell, the coenocyst. We show that despite sharing one common cytoplasm with meiotic and nurse nuclei evenly distributed in a 1:1 ratio, both entry into meiosis and subsequent endocycles of nurse nuclei were asynchronous. Coenocyst cytoskeletal elements played central roles as oogenesis progressed from a syncytial state of indistinguishable germ nuclei, to a final arrangement where the common cytoplasm had been equally partitioned into resolved, mature oocytes. During chromosomal bouquet formation in zygotene, nuclear pore complexes clustered and anchored meiotic nuclei to the coenocyst F-actin network opposite ring canals, polarizing oocytes early in prophase I. F-actin synthesis was required for oocyte growth but movement of cytoplasmic organelles into oocytes did not require cargo transport along colchicine-sensitive microtubules. Instead, microtubules maintained nurse nuclei on the F-actin scaffold and prevented their entry into growing oocytes. Finally, it was possible to both decouple meiotic progression from cellular mechanisms governing oocyte growth, and to advance the timing of oocyte growth in response to external cues.  相似文献   

13.
Mutations in supernova, previously shown to uncouple chromosome replication from segregation during cleavage in Drosophila embryos, also sanctions extra divisions of cystoblasts and spermatoblasts. This leads either to the formation of egg chambers which contain more than fifteen nurse cells or testes which have an excess of spermatocytes. In maturing egg chambers two potential oocytes may be specified in which case they are often ectopically located and connected with surrounding nurse cells by four ring canals. However, a typical oocyte nucleus is not always present and these chambers usually become necrotic and degenerate. The nurse cells are of variable size, but are still interconnected by a system of ring canals. They all possess a polyploid nucleus. Sequestering of maternal mRNA's from the nurse cells into the potential oocyte(s) takes place but there is no localization of this maternal information within the oocyte probably because of defective microtubule assembly. Many spermatocytes fail to complete meiosis so that bundles of spermatids are reduced in size and the males have reduced fertility. It is proposed that this gene is indirectly involved in regulating the timing of mitotic divisions in both cystoblasts and spermatoblasts through its interference with microtubule assembly which is consistent with its role during embryogenesis.  相似文献   

14.
15.
The Drosophila melanogaster mutant fs(1)1304 is an ovary autonomous female sterile mutant that causes abnormal morphology of the egg. Vitellogenesis proceeds at an abnormally slow rate in homozygous females. We have used pole cell transplantation to construct germ line mosaics in order to determine whether the 1304 defect depends upon the genotype of the germ line cells (oocyte or nurse cells) or the somatic line (follicle cells). We have found that the germ line is the primary target tissue where the mutant gene is expressed.  相似文献   

16.
Piscicola has a pair of elongated sac-shaped ovaries. Inside the ovaries are numerous small somatic cells and regularly spherical egg follicles. Each follicle is composed of three types of cells: many (average 30) germ cells (cystocytes) interconnected by intercellular bridges in clones (cysts), one intermediate cell, and three to five outer follicle cells (envelope cells). Each germ cell in a clone has one intercellular bridge connecting it to the central anucleate cytoplasmic mass, the cytophore. Each cluster of germ cells is completely embedded inside a single huge somatic follicle cell, the intermediate (interstitial) cell. The most spectacular feature of the intermediate cell is its development of a system of intracytoplasmic canals apparently formed of invaginations of its cell membrane. Initially the complex of germ cell cluster + intermediate cell is enclosed within an envelope composed of squamous cells. As oogenesis progresses the envelope cells gradually degenerate. All the germ cells that have terminated their mitotic divisions are of similar size and enter meiotic prophase, but one of the cystocytes promptly starts to grow faster and differentiates into the oocyte, whereas the remaining cystocytes withdraw from meiosis and become nurse cells (trophocytes). Numerous mitochondria, ER, and a vast amount of ribosomes are transferred from the trophocytes via the cytophore toward the oocyte. Eventually the oocyte ingests all the content of the cytophore, and the trophocytes degenerate. Little vitellogenesis takes place; the oocyte gathers nutrients in the form of small lipid droplets. At the end of oogenesis, an electron-dense fibrous vitelline envelope appears around the oocyte, among short microvilli. At the same time, electron-dense cortical granules occur in the oocyte cortical cytoplasm; at the end of oogenesis they are numerous, but after fertilization they disappear from the ooplasm. In the present article we point out many differences in the course of oogenesis in two related families of rhynchobdellids: piscicolids and glossiphoniids.  相似文献   

17.
Histological and ultrastructural analysis of polytrophic ovary structure in Neuroptera revealed an unusual organization of their germ cell clusters. In all species under study (representing 5 families), clusters with variable and unfixed numbers of cystocytes are formed. Moreover, spatial organization of cystocyte connections within the cluster is linear rather than typically branched; only a few branching sites being observed. The oocyte is located in the central, always linear, part of the cluster and therefore is directly connected via intercellular bridges with only two nurse cells. It is postulated here that the linear character of germ cell clusters in Neuroptera may result from asynchrony of cystocyte divisions. Mechanisms of germ cell cluster formation and differentiation are discussed.  相似文献   

18.
In mammals, the final number of oocytes available for reproduction of the next generation is defined at birth. Establishment of this oocyte pool is essential for fertility. Mammalian primordial germ cells form and migrate to the gonad during embryonic development. After arriving at the gonad, the germ cells are called oogonia and develop in clusters of cells called germ line cysts or oocyte nests. Subsequently, the oogonia enter meiosis and become oocytes. The oocyte nests break apart into individual cells and become packaged into primordial follicles. During this time, only a subset of oocytes ultimately survive and the remaining immature eggs die by programmed cell death. This phase of oocyte differentiation is poorly understood but molecules and mechanisms that regulate oocyte development are beginning to be identified. This review focuses on these early stages of female germ cell development.  相似文献   

19.
Intracellular activities of K+, H+, Mg2+, Ca2+, and Cl?, measured with ion selective microelectrodes in the oocyte and the nurse cells in ovarian follicles of Hyalophora cecropia, indicated that a Ca2+ current is a key component of the electrical potential that is maintained across the intercellular bridges connecting these two cells. In vitellogenic follicles, Ca2+ activity averaged 650 nM in the oocyte and 190 nM in the nurse cells, whereas activities of the other ions studied differed between these cells by no more than 6%. Incubation in 200 μM ammonium vanadate caused a reversal of electrical potential from 8.3 mV, nurse cell negative, to 3.0 mV, oocyte negative, and at the same time the Ca2+ gradient was reversed: activities rose to an average 3.0 μM in the nurse cells and 1.6 μM in the oocyte, whereas transbridge ratios of the other cations remained at 0–3%. In immature follicles that had not yet initiated their transbridge potentials, Ca2+ activities averaged ~? 2 μM in both oocyte and nurse cells. The results suggest that vitellogenic follicles possess a vanadatesensitive Ca2+ extrusion mechanism that is more powerful in the nurse cells than in the oocyte. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Summary An ultrastructural study was made of the ring canal system which connects the sister ovarian cystocytes that arise in the germaria of wild type Drosophila melanogaster females. It was discovered that during an oogonial mitosis both chromosomes and spindle are enclosed by a multilayered, perforated membrane system derived (at least in part) from the nuclear envelope. The cytokinesis of stem line oogonia takes place through the formation of a cleavage furrow. A second method of formation of plasma membrane is found in the case of cystocytes. It involves the production along the plane of division of a plaque of interconnected vesicles and tubules and later the coalescence of nearby tubules to form continuous sheets of membrane which segregate the cytoplasms of the sister cells. However, these remain connected by a canal which is enclosed by a ring-shaped rim that is completed prior to the plasma membrane to which the rim is subsequently attached. It is postulated that the rim represents a transformed midbody. As development proceeds the canal becomes wider, its rim becomes thicker, and the inner circumference of the rim becomes coated with a thick deposit having different cytochemical properties than the rim itself. Cystocyte divisions produce sister cells which differ in that one receives all previously formed canals; the other none. In the case of the last division (and perhaps in earlier ones as well) the sister cell receiving all previously formed canals also receives more cytoplasm than its sister. As the cells of the cluster grow, the canals remain close together. This finding suggests that when new plasma membrane is synthesized, it is added in areas remote from the canals. An investigation of the positioning in three dimensions of the fifteen canals of a newly formed, 16 cellcluster suggests that the spindles produced at one division are never parallel to those formed at the subsequent division. This continual shifting of the axes of the spindles at consecutive divisions presumably results in the branching chains of cells which characterize a cystocyte cluster. The possession of a unique pattern of cortical structures by two cystocytes is accompanied by the nuclear synthesis of synaptonemal complexes. The other fourteen cystocytes differentiate into nurse cells. In the most posterior portion of the germarium one of the two potential oocytes switches to the nurse cell developmental pathway. This switched off oocyte and the definitive oocyte grow at rates which differ greatly and are correlated to the amount of contact between their surfaces and certain follicle cells. As development proceeds centrioles accumulate in the oocyte, and most of these are thought to have been carried from the nurse cells into the oocyte in the nutrient stream.The authors are grateful to Richard Z. Belch and James E. Bradof for their conscientious assistance and to E. John Pfiffner for preparation of the inked drawings and construction of the Polyform models. This research was supported by the National Science Foundation grant GB7457.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号