首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Sensory ganglia taken from quail embryos at E4 to E7 were back-transplanted into the vagal neural crest migration pathway (i.e., at the level of somites 1 to 6) of 8- to 10-somite stage chick embryos. Three types of sensory ganglia were used: (i) proximal ganglia of cranial sensory nerves IX and X forming the jugular-superior ganglionic complex, whose neurons and nonneuronal cells both arise from the neural crest; (ii) distal ganglia of the same nerves, i.e., the petrosal and nodose ganglia in which the neurons originate from epibranchial placodes and the nonneuronal cells from the neural crest; (iii) dorsal root ganglia taken in the truncal region between the fore- and hindlimb levels. The question raised was whether cells from the graft would be able to yield the neural crest derivatives normally arising from the hindbrain and vagal crest, such as carotid body type I and II cells, enteric ganglia, Schwann cells located along the local nerves, and the nonneuronal contingent of cells in the host nodose ganglion. All the grafted cephalic ganglia provided the host with the complete array of these cell types. In contrast, grafted dorsal root ganglion cells gave rise only to carotid body type I and II cells, to the nonneuronal cells of the nodose ganglion, and to Schwann cells; the ganglion-derived cells did not invade the gut and therefore failed to contribute to the host's enteric neuronal system. Coculture on the chorioallantoic membrane of aneural chick gut directly associated with quail sensory ganglia essentially reinforced these results. These data demonstrate that the capacity of peripheral ganglia to provide enteric plexuses varies according to the level of the neuraxis from which they originate.  相似文献   

2.
Anatomical studies were conducted to characterize the source, type, and distribution of parathyroid gland innervation in European starlings. Denervation experiments demonstrated that the parathyroid glands and adjacent carotid bodies are innervated by nerve fibers originating in the nodose ganglion of the vagus nerve. In the parathyroid parenchyma, these fibers terminate adjacent to chief cells or near vascular smooth muscle. Vagal fibers also form synapses with catecholamine-containing glomus cells of the carotid body. Blood that first perfuses the carotid body subsequently perfuses the parathyroid parenchyma. These observations suggest that vagal innervation may influence parathyroid function in starlings either through direct chief cell innervation or through alteration of vascular perfusion. A neurohemal relationship also may exist between the carotid body and parathyroids.  相似文献   

3.
Explant and dissociated neuron-enriched cultures of nodose ganglia (inferior or distal sensory ganglion of the Xth cranial nerve) were established from chick embryos taken between embryonic Day 4 (E4) and Day 16 (E16). The response of each type of culture to nerve growth factor (NGF) was examined over this developmental range. At the earliest ages taken (E4-E6), NGF elicited modest neurite outgrowth from ganglion explants cultured in collagen gel for 24 hr, although the effect of NGF on ganglia taken from E4 chicks was only marginally greater than spontaneous neurite extension from control ganglia of the same developmental age. The response of nodose explants to NGF was maximal at E6-E7, but declined to a negligible level in ganglia taken from E9-E10 or older chick embryos. In dissociated neuron-enriched cultures, nodose ganglion neurons were unresponsive to NGF throughtout the entire developmental age range between E5 and E12. In contrast to the lack of effect of NGF, up to 50% of nodose ganglion neurons survived and produced extensive neurites in dissociated cultures, on either collagen- or polylysine-coated substrates, in the presence of extracts of late embryonic or early posthatched chick liver (E18-P7). Antiserum to mouse NGF did not block the neurotrophic activity of chick (or rat or bovine) liver extracts. Whether cultured with chick liver extract alone or with chick liver extract plus NGF, nodose ganglion neurons taken from E6-E12 chick embryos and maintained in culture for 2 days were devoid of NGF receptors, as assessed by autoradiography of cultures incubated with 125I-NGF. Under similar conditions 70-95% of spinal sensory neurons (dorsal root ganglion--DRG) were heavily labeled. 2+  相似文献   

4.
The ontogeny of the neurons exhibiting substance P-like immunoreactivity (SPLI) was examined in the spinal and cranial sensory ganglia of chick and quail embryos. It was shown that in dorsal root ganglia (DRG) virtually all neuronal somas occupying the mediodorsal (MD) region of the ganglia are SPLI-positive while the larger neurons of the lateroventral (LV) area are SPLI-negative. In the cranial nerve ganglia, both types of neurons coexist in the trigeminal ganglion but with a different distribution: small neurons with SPLI are proximal while large neurons without SPLI occupy the maxillomandibular and ophthalmic lobes. The distal ganglia of nerves VII and IX (i.e., geniculate, petrosal) do not show cell bodies with SPLI in the two species considered. A few of them only (about 12%) are found in the nodose (distal ganglion of nerve X). The proximal ganglia of nerves IX and X (i.e., superior-jugular complex) are composed of small neurons which virtually all exhibit SPLI. Chimaeric cranial sensory ganglia were constructed by grafting the quail hind-brain primordium into chick embryos. Revelation of SPLI was combined with acridine orange staining on the same sections in order to ascertain the placodal (chick host) or neural crest (quail donor) origin of the SP-positive neurons in each type of ganglion. We found that all the neurons showing SPLI are derived from the neural crest in the trigeminal and in the superior and jugular ganglia. In the geniculate, petrosal, and nodose all the neurons are derived from the placodal ectoderm. The small number of SPLI-positive cells of the nodose ganglia are not an exception to this rule. Therefore, generally speaking, the sensory neurons of the cranial ganglia that express the SP phenotype are derived from the crest, with the exception of some neurons present in the nodose of both quail and chick embryos and which are of placodal origin. The vast majority of placode-derived neurons do not have amounts of SP that can be detected under the conditions of the present study.  相似文献   

5.
The plasticity of neural crest cells for the expression of adrenergic and cholinergic transmitter phenotypes has been well studied. The object of this study was to determine if cells of a sensory ganglion are capable of neuropeptide transmitter plasticity. We studied whether cells of the trigeminal ganglion, which do not express the neuropeptide vasoactive intestinal peptide (VIP) in vivo, would express this peptide when grown with a tissue the gut, that contains large numbers of VIP neurons. Embryonic aneural chick rectum was explanted with the embryonic quail trigeminal ganglion on the chorioallantoic membrane of chick hosts for 7-8 days. The explants were fixed, sectioned, and stained for VIP immunoreactivity (IR), for neurofilament protein immunoreactivity, and for the quail nucleolar marker. In sections of the explants we observed two populations of quail neurons: small (10-13 microns) VIP-IR cells and large (25-32 microns) cells lacking VIP-IR and resembling native trigeminal neurons. Trigeminal ganglia explanted with embryonic heart or trigeminal ganglia explanted alone lacked small VIP-IR cells but contained large VIP-negative neurons. These results show that cells of the trigeminal ganglion grown with the gut can express a neuropeptide they do not express in the absence of the gut or in vivo. Thus the embryonic trigeminal ganglion contains cells that are plastic with respect to neuropeptide expression.  相似文献   

6.
J Fontaine-Perus 《Peptides》1984,5(2):195-200
The distribution of the VIP containing structures was studied in the gut and in the paravertebral sympathetic ganglia of the quail and chick embryos by immunocytochemistry. In the gut, development of peptidergic nerves followed a craniocaudal gradient. Immunoreactive fibres were first visible in the oesophagus at day 9 in the quail and day 10 in the chick, at 12 days they extended over the whole length of the gut. Cell bodies were localized at day 9 in the foregut and observed in the mid- and hind-gut just before hatching. Transplantations on the chorioallantoic membrane of fragments of various parts of the digestive tract clearly demonstrated that VIP nerve cell bodies belonged to the intrinsic innervation of the gut. Besides the gut, sympathetic paravertebral ganglia contained cells with VIP immunoreactivity detected at day 9 and 10 in quail and chick respectively. In order to find out whether VIP containing neurons differentiated normally in chick embryos in which quail neural crest cells had been implanted at an early stage of development we looked for the appearance of peptidergic neurones in the following situations: when the quail neural primordium had been grafted orthotopically and isochronically into chick host (1) at the adrenomedullary (somites 18-24) and (2) at the vagal (somites 1-7) levels of the neural axis. In all conditions VIP immunoreactivity was observed in quail cells located either in the sympathetic paravertebral ganglia of the trunk at the level of the graft or in the enteric ganglia according to the graft was made at the adrenomedullary and vagal levels respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Nodose ganglia are composed of A-, Ah- and C-type neurons. Despite their important roles in regulating visceral afferent function, including cardiovascular, pulmonary, and gastrointestinal homeostasis, information about subtype-specific expression, molecular identity, and function of individual ion transporting proteins is scarce. Although experiments utilizing the sliced ganglion preparation have provided valuable insights into the electrophysiological properties of nodose ganglion neuron subtypes, detailed characterization of their electrical phenotypes will require measurements in isolated cells. One major unresolved problem, however, is the difficulty to unambiguously identify the subtype of isolated nodose ganglion neurons without current-clamp recording, because the magnitude of conduction velocity in the corresponding afferent fiber, a reliable marker to discriminate subtypes in situ, can no longer be determined. Here, we present data supporting the notion that application of an algorithm regarding to microscopic structural characteristics, such as neuron shape evaluated by the ratio between shortest and longest axis, neuron surface characteristics, like membrane roughness, and axon attachment, enables specific and sensitive subtype identification of acutely dissociated rat nodose ganglion neurons, by which the accuracy of identification is further validated by electrophysiological markers and overall positive predictive rates is 89.26% (90.04%, 76.47%, and 98.21% for A-, Ah, and C-type, respectively). This approach should aid in gaining insight into the molecular correlates underlying phenotypic heterogeneity of nodose ganglia. Additionally, several critical points that help for neuron identification and afferent conduction calibration are also discussed.  相似文献   

8.
The nodose ganglion is the distal cranial ganglion of the vagus nerve which provides sensory innervation to the heart and other viscera. In this study, removal of the neuronal precursors which normally populate the right nodose ganglion was accomplished by ablating the right nodese placode in stage 9 chick embryos. Subsequent histological evaluation showed that in 54% of lesioned embryos surviving to day 6, the right ganglion was absent. Most embryos surviving to day 12, however, had identifiable right ganglia. In day 12 embryos, the right ganglion which developed was abnormal, with ganglion volume and ganglion cell diameter reduced by 50% and 20%, respectively, compared to control ganglia. To investigate the source of the neuron population in the regenerated ganglion, we combined nodose placode ablation with bilateral replacement of chick with quail cardiac neural crest (from mid-otic placode to somite 3). These cells normally provide only non-neuronal cells to the nodose ganglion, but produce neurons in other regions. At day 9, quail-derived neurons were identified in the right nodose ganglia of these chimeras, indicating that cardiac neural crest cells can generate neurons in the ganglion when placode-derived neurons are absent or reduced in number. On the other hand, we found that sympathetic neural crest (from somites 10 to 20) does not support ganglion development, suggesting that only neural crest cells normally present in the ganglion participate in reconstituting its neuronal population. Our previous work has shown that right nodose placode ablation produces abnormal cardiac function, which mimics a life-threatening human heart condition known as long QT syndrome. The present results suggest that the presence of neural crest-derived neurons in the developing right nodose ganglion may contribute to the functional abnormality in long QT syndrome.This work was supported by grant PO1 HL 36059  相似文献   

9.
Summary The cellular localization of carbonic anhydrase (CAH) in the carotid body of the rat was investigated by means of Hansson's cobalt-precipitation technique in cultures of dissociated cells. In both young (2-day-old) and old (77-day-old) cultures, the parenchymal glomus (type-I) cells were selectively stained by this technique, and in addition expressed tyrosine hydroxylase and neuron-specific enolase as revealed by immunofluorescence. Enzymic reaction product of CAH appeared to be predominantly intracellular since staining was more intense and occurred more rapidly following permeabilization of the cell membranes with Triton X-100; its formation was inhibited by the CAH-inhibitor acetazolamide (1–10 M) or by increasing the pH from 5.8 to 7.5. Cryostat sections of the carotid bifurcation revealed intense CAH-reaction product in cell clusters of the carotid body, in a few cells of the nodose ganglion, and in red blood cells. Neuronal cell bodies of the petrosal ganglion and superior cervical ganglion (SCG) were largely non-reactive. The SCG is known to contain clusters of small intensely fluorescent (SIF) cells, which were also non-reactive when grown in dissociated cell culture. Thus, although glomus and SIF cells are often considered to be similar cell types, functional CAH-activity appears unique to glomus cells, and this may be important for the physiological response of the carotid body to certain chemosensory stimuli.  相似文献   

10.
Contrary to traditional teaching, mammalian primary sensory neurons may express catecholaminergic (CA) neurotransmitter characteristics in vivo. Sensory neurons in the nodose, petrosal, and dorsal root ganglia of rats express tyrosine hydroxylase, the rate-limiting enzyme in CA biosynthesis, and formaldehyde-induced CA fluorescence, in addition to other CA traits. These findings suggest that catecholamines may function as sensory as well as autonomic motor (e.g., sympathetic) neurotransmitters. Most CA cells in the petrosal ganglion project peripherally to the carotid body, which indicates a striking correlation between CA expression in sensory neurons and the pattern of sensory innervation. Inasmuch as petrosal ganglion afferents make synaptic contact with chemoreceptive glomus cells in the carotid body, it is likely that CA sensory neurons in the ganglion transmit chemoreceptor information to the brain stem. Comparison with sympathetic neurons indicates that some mechanisms of CA regulation, such as altered activity of tyrosine hydroxylase in response to depolarizing stimuli, are shared among sensory and traditional CA populations. Other mechanisms, including trophic regulation, appear to be distinct. Therefore, despite expression of common phenotypic traits, CA expression in diverse populations of peripheral neurons is not necessarily associated with a common repertoire of regulatory mechanisms.  相似文献   

11.
12.
13.
The quail-chick marker system has been used to study the early developmental stages of the ganglia located along cranial nerves VII, IX, and X. The streams of neural crest cells arising from the rhombencephalic-vagal neural crest were followed from the onset of their migration up to the localization of crest cells in the trunk and root ganglia of these nerves. It was shown that two different populations of crest cells are segregated early as a result of morphogenetic movements in the hypobranchial region. The dorsal population gives rise to the root ganglia of nerves IX and X located close to the encephalic vesicles, where the crest cells differentiate both into neurons and into glia. In contrast, the ventral stream of neural crest cells contributes together with cells from epibranchial placodes to the trunk ganglia (geniculate, petrous, and nodose ganglia) of cranial nerves VII, IX, and X. The successive steps of the invasion of the placodal anlage by crest cells can be followed owing to the selective labeling of the neural crest cells. It appears that the latter give rise to the satellite cells of the geniculate, petrous, and nodose ganglia while the large sensory neurons originate from the placodes. The nodose ganglion has been the subject of further studies aimed to investigate whether neuronal potentialities can be elicited in the neural crest-derived cells that it contains. The ability to label selectively either the neurons or the glia by the quail nuclear marker made this investigation possible in the particular case of the nodose ganglion whose neurons and satellite cells have a different embryonic origin. By the technique already described (N. M. Le Douarin, M. A. Teillet, C. Ziller, and J. Smith, 1978, Proc. Nat. Acad. Sci. USA75, 2030–2034) of back-transplantation into the neural crest migration pathway of a younger host, it was shown that the presumptive glial cells of the nodose ganglion are able to remigrate when transplanted into a 2-day chick host and to differentiate into autonomic structures (sympathetic ganglion cells, adrenomedullary cells, and enteric ganglia). It is proposed as a working hypothesis that neuronal potentialities contained in the neural crest cells which invade the placodal primordium of the nodose ganglion are repressed through cell-cell interactions occurring between placodal and crest cells.  相似文献   

14.
15.
The chicken carotid body receives numerous branches from the vagus nerve, especially distal (nodose) ganglion, and the recurrent laryngeal nerve. Dense networks of peptidergic nerve fibers immunoreactive for substance P, calcitonin gene-related peptide (CGRP), galanin, vasoactive intestinal peptide (VIP) and neuropeptide Y are distributed in and around the carotid body. Substance-P- and CGRP-immunoreactive fibers projecting to the chicken carotid body mainly come from the vagal ganglia. In the present study, various types of denervation experiments were performed in order to clarify the origins of VIP-, galanin- and neuropeptide-Y-immunoreactive fibers in the chicken carotid bodies. After nodose ganglionectomy, midcervical vagotomy or excision of the recurrent laryngeal nerve, VIP-, galanin- and neuropeptide-Y-immunoreactive fibers were unchanged in the carotid body region. Furthermore, these peptidergic fibers remained unaffected even by removal of the nodose ganglion in conjunction with severance of the recurrent laryngeal nerve that induced a marked decrease in TuJ1-immunoreactive fibers in the carotid body region. VIP-, galanin- and neuropeptide-Y-immunoreactive fibers are densely distributed around the arteries supplying the carotid body in normal chickens. The peptidergic fibers around the arteries were also unaffected after the denervation experiments. However, after removal of the 14th cervical ganglion of the sympathetic trunk, which lies close to the vertebral artery on the root of the brachial plexus and issues prominent branches to the artery, VIP-, galanin- and neuropeptide-Y-immunoreactive fibers almost disappeared in the carotid body region. The ganglion contained many VIP-, galanin- and neuropeptide-Y-immunoreactive neurons. Thus it is clear that VIP-, galanin- and neuropeptide-Y-immunoreactive fibers in the chicken carotid body region are mainly derived from the 14th cervical sympathetic ganglion via the vertebral artery.  相似文献   

16.
By grafting ganglia from embryonic quails into the neural crest migration pathway of 2-day chick embryos, it was previously demonstrated that all type of ganglia possess more developmental potentialities than those normally expressed in the normal course of development. Namely autonomic neurones with catecholamine and adrenomedullary cells can be obtained from grafted spinal ganglia. The latter also yield sensory neurons to the host dorsal root ganglia (DRG) but only if they are taken from the donor before 8 days of incubation. In the present article we show that the capacity to differentiate sensory neurons in back-transplantation experiments can be correlated with the presence in the donor DRG of cycling neuronal precursors. Once all the neurons have been withdrawn from the cell cycle - an event which occurs first in the mediodorsal and then in the lateroventral area of the ganglion - the DRG cell population gives rise exclusively to autonomic ganglion cells in the host. It is concluded that in the conditions of the back-transplantation experiments, the postmitotic neurons contained in the donor ganglion do not survive. Therefore, the neurons and paraganglion cells which differentiate in the host arise from still undifferentiated precursor cells. This indicates that besides sensory neuron precursors the embryonic DRG cell population also contains precursor cells for the autonomic differentiation pathway.  相似文献   

17.
The carotid body consists of chemoreceptive glomus cells, sustentacular cells and nerve endings. The murine carotid body, located at the carotid bifurcation, is always joined to the superior cervical ganglion of the sympathetic trunk. Glomus cells and sympathetic neurons are immunoreactive for the TuJ1, PGP9.5, tyrosine hydroxylase (TH) and neuropeptide Y (NPY) markers. Glomus cells are also immunoreactive for serotonin (5-HT). A targeted mutation of Mash1, a mouse homolog of the Drosophila achaete-scute complex, results in the elimination of sympathetic ganglia. In Mash1 null mutant mice, the carotid body primordium forms normally in the wall of the third arch artery at embryonic day (E) 13.0 and continues to develop, although the superior cervical ganglion is completely absent. However, no cells in the mutant carotid body display the TuJ1, PGP 9.5, TH, NPY and 5-HT markers throughout development. The absence of glomus cells was also confirmed by electron microscopy. The carotid body of newborn null mutants is composed of mesenchymal-like cells and nerve fibers. Many cells immunoreactive for the S-100 protein, a sustentacular cell marker, appear in the mutant carotid body during fetal development. The Mash1 gene is thus required for the genesis of glomus cells but not for sustentacular cells.  相似文献   

18.
Exogenously applied tachykinins produce no measurable electrophysiological responses in the somata of vagal afferent neurons [nodose ganglion neurons (NGNs)] isolated from naive guinea pigs. By contrast, after in vitro antigen challenge of nodose ganglia from guinea pigs immunized with chick ovalbumin, approximately 60% (53 of 89) of NGNs were depolarized an average of 13 +/- 1.2 mV by substance P (SP; 100 nM; n = 53). Receptor antagonists and enzyme inhibitors were utilized to screen a number of mast cell-derived mediators for their role in the uncovering or "unmasking" of functional tachykinin receptors after antigen challenge. Two chemically distinct 5-hydroxytryptamine-3-receptor antagonists significantly reduced the percentage of NGNs displaying depolarizing SP responses. Treatment with Y-25130 (1 or 10 microM) or tropisetron (1 microM) 15 min before and during antigen challenge reduced the percentage of SP-responsive neurons to approximately 20 and approximately 15% respectively. These results suggest that activation of 5-hydroxytryptamine-3 receptors plays an integral role in the unmasking of functional tachykinin receptors after specific antigen challenge of nodose ganglia. The mediator(s) underlying tachykinin-receptor unmasking in the remainder of the NGNs has yet to be characterized. However, it does not appear to be histamine, prostanoids, or peptidoleukotrienes.  相似文献   

19.
20.
Mammalian carotid bodies are richly vascularized chemosensory organs that sense blood levels of O2, CO2/H+, and glucose and maintain homeostatic regulation of these levels via the reflex control of ventilation. Carotid bodies consist of innervated clusters of type I (or glomus) cells in intimate association with glial-like type II cells. Carotid bodies make afferent connections with fibers from sensory neurons in the petrosal ganglia and receive efferent inhibitory innervation from parasympathetic neurons located in the carotid sinus and glossopharyngeal nerves. There are synapses between type I (chemosensory) cells and petrosal afferent terminals, as well as between neighboring type I cells. There is a broad array of neurotransmitters and neuromodulators and their ionotropic and metabotropic receptors in the carotid body. This allows for complex processing of sensory stimuli (e.g., hypoxia and acid hypercapnia) involving both autocrine and paracrine signaling pathways. This review summarizes and evaluates current knowledge of these pathways and presents an integrated working model on information processing in carotid bodies. Included in this model is a novel hypothesis for a potential role of type II cells as an amplifier for the release of a key excitatory carotid body neurotransmitter, ATP, via P2Y purinoceptors and pannexin-1 channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号