首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Disc electrophoresis was used to examine and characterize the esterases present in the fat body, haemolymph, and midgut of last stage larvae of the southwestern corn borer, Diatraea grandiosella. Significant temporal changes were observed in the pattern of the 4 major esterases of the fat body and 3 major esterases of the haemolymph. These changing profiles presumably relate, in part, to a requirement for the degradation of juvenile hormone (JH) in preparation for metamorphosis.The binding capacity of esterases present in the larval midgut towards JH I and three JH mimics (alkyl-3,7,11-trimethyl-2,4-dodecadienoates) was also examined. The midgut of last stage nondiapausing larvae was shown to contain a carboxylesterase which bound all three JH mimics. Another esterase which bound JH I, but not the mimics, was also present. An esterase with a similar electrophoretic mobility was detected in the haemolymph and integument. Since the JH I binding esterase did not bind the JH mimics, the mimics do not appear to synergize JH by inhibiting its ester hydrolysis.  相似文献   

2.
Exposure of early fourth-instar larvae of Aedes aegypti to the juvenile hormone analogue Altosid ZR15® (methoprene) significantly increased the concentration of carbohydrates in the haemolymph of late fourth-instar larvae and reduced the haemolymph carbohydrate concentration of 24-h-old pupae relative to controls. Such treatment also effected a decline in haemolymph amino nitrogen levels of the pupal stage and a depletion of haemolymph proteins in late fourth-instar larvae as well as pupae. Two of nine protein fractions in the haemolymph of larvae were significantly depleted following methoprene treatment. Fourteen soluble protein fractions were present in the haemolymph of control pupae; two of these were missing from the pupae which were treated as larvae with methoprene. A further protein fraction, common to the haemolymph of both treated and control pupae, was significantly reduced in concentration as a consequence of exposure to methoprene. The juvenile hormone analogue impaired the capacity of the fat bodies of late fourth-instar larvae and pupae to synthesise proteins, resulting in a lowered concentration of fat body proteins. Glycogen levels in the fat bodies of treated larvae were significantly lower than in controls and glycogenolysis was suppressed due to an overall depletion of glycogen phosphorylase and, in pupae, a lowered ratio of active: inactive enzyme. The data are consistent with the proposition that the juvenile hormone analogue elicits neuroendocrinological changes in the target insect.  相似文献   

3.
《Insect Biochemistry》1990,20(6):593-604
Juvenile hormone (JH) esterase activity was found in the plasma of larvae, pupae and adults of wild-type tobacco hornworms, Manduca sexta. There was a single peak of plasma JH esterase activity approx. 28 h prior to ecdysis in each instar from the second through the fourth instar and a peak of activity prior to both wandering and pupation in the fifth (last) instar. JH esterase activity was high in newly formed male and female pupae but declined to minimal levels by day 1 of the pupal stage. For the remainder of the pupal period, activity was at background levels. JH esterase activity increased again in newly emerged, virgin male and female adults but declined and remained at a low level 1 day after emergence through death. Gel filtration analysis of larval, pupal and adult plasma resolved a single peak of JH esterase activity with an apparent molecular weight of 66,000. However, isoelectric focusing revealed three forms with isoelectric points of 5.5, 5.8 and 6.1. These isoelectric forms were also found in black and white mutants of last instar M. sexta and in purified JH esterase from wild-type larvae. The plasma JH esterase activity metabolized JH I 2–3 times faster than JH III and was sensitive to inhibition by octylthio-1,1,1-trifluoro-2-propanone and insensitive to O,O-diisopropyl phosphorofluoridate. Gel filtration, isoelectric focusing, substrate specificity and developmental studies suggest that the same JH esterases are found in the plasma of larvae, pupae and adults and appear to be different from general (α-NA) esterase.  相似文献   

4.
5.
Juvenile hormone esterase (JHE) is the primary juvenile hormone (JH) metabolic enzyme in insects and plays important roles in the regulation of molt and metamorphosis. We investigated its mRNA expression profiles and hormonal control in Bombyx mori larvae. JHE mRNA was expressed at the end of the 4th and 5th (last) larval instars in the midgut and in all the three (anterior, middle, posterior) parts of the silk gland. In the fat body, JHE expression peaked twice in the 5th instar, at wandering and before pupation, while it gradually decreased through the 4th instar. When 20-hydroxyecdysone (20E) was injected into mid-5th instar larvae, JHE mRNA expression was induced in the anterior silk gland but suppressed in the fat body. Topical application of a juvenile hormone analog fenoxycarb to early-5th instar larvae induced JHE expression in both tissues. In the anterior silk gland, JHE expression was accelerated and strengthened by 20E plus fenoxycarb treatments compared with 20E or fenoxycarb single treatment, indicating positive interaction of 20E and JH. JHE mRNA is thus expressed in tissue-specific manners under the control of ecdysteroids and JH.  相似文献   

6.
From the first day of the last (fourth) larval instar no trace of juvenile hormone (JH) can be detected in the haemolymph by Galleria bioassay. Three specific diapause proteins, which are also found in diapausing adults, appear in the haemolymph. These proteins disappear towards the end of the pupal stage. Study of the ultrastructure of the fat body revealed the formation from lysosomes of proteinaceous bodies which are also characteristic for adult diapause. The behaviour of last instar larvae and pupae resembles that of prediapausing and diapausing adults respectively. Injection of synthetic JH delays the appearance of the diapause proteins in the haemolymph and of proteinaceous bodies in the fat body for 2 to 3 days. The absence of JH seems to trigger off these diapause phenomena.  相似文献   

7.
Juvenile hormone esterase titres were monitored in gate I and gate II last instar larvae of Trichoplusia ni using JH III as substrate. Two peaks of activity were observed for both gate I and gate II larvae, although the first and second juvenile hormone esterase peaks for the gate II larvae are extended and delayed one day, respectively. Head or thoracic ligations before the prepupal stage lower or block the appearance of both esterase peaks. Juvenile hormone I and II, as well as homo and dihomo juvenoids can induce the second juvenile hormone esterase peak in both normal and ligated larvae, and increase the esterase titre during the first peak in nonligated larvae. Induction of the juvenile hormone esterases is possible in non-ligated larvae as soon as the moult to the last instar has occurred and in ligated larvae as soon as the first esterase peak has started to decline. Distinct mechanisms of regulation are present for the first and second juvenile hormone esterase peaks. Juvenile hormone does not appear to be involved in regulating its own metabolism by directly inducing the first esterase peak; however, evidence is consistent with a brief burst of juvenile hormone which occurs prior to pupation inducing the production of the second peak of juvenile hormone esterase activity.  相似文献   

8.
《Insect Biochemistry》1989,19(6):557-571
Topical application of the juvenoid, epofenonane, to last stadium postwandering larvae of Trichoplusia ni caused a precocious elevation of juvenile hormone esterase (JHE) activity that was tissue speific and time dependent. This increase in enzyme activity over controls was most dramatic in the hemolymph, whereas increases in the fat body were lower. Antibodies raised against JHE reacted on Western blots with a fat body and hemolymph protein present in epofenonane treated and untreated last stadium day 3 larvae. The abundance of this protein, which comigrated with JHE, closely coincided with the temporal increases in JHE catalytic activity that occurred in response to treatment in vivo with epofenonane.The presence of epofenonane (5–10,000 nM) in the medium at the start of fat body incubations failed to shift the temporal appearance of JHE activity or boost activity levels significantly over those of controls. If larvae were treated in vivo with epofenonane before fat body tissue was removed, only a small, but significant increase in JHE activity was found in vitro. The rate of enzyme secretion was insufficient to account for the rapid increases in enzyme activity that occur in the hemolymph in response to epofenonane, even though tissue held in vitro was deemed viable by monitoring lactate dehydrogenase activity in the medium, fat body intracellular ATP, and the incorporation of [35S]methionine into fat body protein. Fat body tissue removed from various aged last stadium larvae released enzyme at different rates in vitro.  相似文献   

9.
10.
Juvenile hormone or ZR512 applied topically to day-5, fifth-instar, neck-ligated Manduca sexta larvae results in the acceleration of pharate pupal development when compared to neck-ligated, untreated larvae. This occurs as a result of an increase in the haemolymph ecdysteroid titre. Juvenile hormone, therefore, appears to stimulate ecdysone synthesis by the prothoracic glands of these animals, but not directly as shown by in vitro analysis. When ecdysone synthesis by the prothoracic glands of these ZR512- or juvenile hormone-treated animals was analyzed in vitro, increased gland activity was demonstrated but this did not occur until at least 2 days after treatment. This time lag in response supports the concept of an indirect stimulation of the prothoracic glands. Incubation of fat body from these ZR512- or juvenile hormone-treated, neck-ligated, larvae in 19AB culture medium revealed that the resulting pre-conditioned medium was capable of stimulating prothoracic glands in vitro up to 9-fold in a dose-dependent manner. A developmental profile was generated of the amount of this stimulatory factor released into the medium by fat body of untreated larvae representing each day of the last instar, and revealed that maximal release occurred with fat body from day-9 animals. The alterations in the amount of factor release by the fat body during larval-pupal development roughly correlated with the juvenile hormone titre and suggested a possible role for this factor in the regulation of the ecdysteroid titre. In contrast to the prothoracicotropic hormone, the fat body stimulatory factor is heat labile and has an apparent mol. wt in the 30,000 Dalton range. These data, particularly the kinetics of prothoracic gland stimulation, suggest that the factor may be a protein transporting a substrate for ecdysone biosynthesis to the prothoracic glands.  相似文献   

11.
Infection of the fat body of Lymantria dispar (Lep.: Lymantriinae) larvae with the microsporidium Vairimorpha disparis has severe effects on juvenile hormone (JH) metabolism of the host. Beginning 8 days postinfection, activity of the JH degrading enzyme JH-esterase was significantly lower in the hemolymph of infected than uninfected larvae. Activity remained low as microsporidiosis progressed. JH titers were slightly elevated in infected larvae; the difference was not significant in most cases. This disturbance of JH metabolism may be due to generally impaired fat body functions and high demand for resources by the developing pathogen.  相似文献   

12.
The regulation of juvenile hormone esterase in last-instar diapause and nondiapause larvae of Ostrinia nubilalis was investigated using topically applied juvenile hormone I and a juvenile hormone mimic, methoprene. The influence of the head on juvenile hormone esterase was also investigated. Both juvenile hormone and methoprene caused increases in esterase levels when applied to feeding animals. Neither the hormone nor methoprene was capable of elevating nondiapause esterase activity to levels comparable to those found in untreated prediapause larvae. The esterase levels could be elevated in the larval body, without the head, during prepupal development of nondiapause larvae and in post-feeding diapause larvae. In both cases, juvenile hormone or methoprene induced juvenile hormone esterase activity in head-ligated animals. Topically applied methoprene prolonged feeding and delayed the onset of diapause. When methoprene was applied to larvae that had entered diapause, it disrupted diapause by inducing a moult.  相似文献   

13.
14.
《Journal of Asia》2002,5(2):175-180
Diflubenzuron (DFB) has been known to prevent metamorphosis of silkworm, Bombyx mori, from larval to pupal stage at low dose exposure. To explain this inhibitory action of DFB, a hypothesis was raised that DFB acts like juvenile hormone (JH) or DFB inhibits JH esterase to increase endogenous JH titer. A JH bioassay using isolated abdomen clearly indicates that DFB does not act as JH analog because DFB did not induce vitellogenesis in the isolated female abdomen, while endogenous JHs did significantly. General esterase activities in hemolymph were lower in DFB-treated fifth instar larvae than in the control larvae, but there was no difference between fat body esterase activities in both groups. Two hemolymph esterases (‘E1’ and ‘E2’) of the fifth instar larvae were separated and visualized by α-and β-naphthyl acetate. From in vitro incubation experiment, the cathodal esterase (‘E1’) was sensitive to DFB at its nanomolar range. Considering the fact that early fifth instar larvae have high level of JH esterase in the hemolymph, these results suggest that DFB inhibit larval to pupal metamorphosis by blocking JH degradation, which increases endogenous JH titer especially at the critical period when the larvae determine metamorphic development at the following molt.  相似文献   

15.
Juvenile hormone (JH) esterases can be artificially induced to appear in the hemolymph of last instar larvae of the lepidopterous insect Trichoplusiani (Noctuidae) by topical treatment with JH I, JH II, or dihomo branched juvenoids. ETB (ethyl-4-[2-(t-butylcarbonyloxy) butoxy] benzoate; ZR-2646) at high doses is a weak inducer of JH esterase (JHE). However, at doses of ETB that induce only low levels of JHE activity, ETB will block the JHE induction caused by the dihomo juvenoid epofenonane and at higher doses will reduce the induction caused by JH I or JH II. ETB is not a JHE inhibitor; rather, it appears to be acting as a JH agonist/antagonist in normal larvae and in isolated abdomens. These effects of ETB on JHE induction may illustrate a new mode of action of anti-JH's.  相似文献   

16.
Haemolymph levels of juvenile hormone esterase, 1-naphthyl acetate esterase, and juvenile hormone were measured in synchronously staged diapause and nondiapause larvae of the European corn borer, Ostrinia nubilalis. Juvenile hormone esterase levels were monitored using juvenile hormone I as a substrate while juvenile hormone titres were measured with the Galleria bioassay. Haemolymph of nondiapause larvae showed two peaks of juvenile hormone hydrolytic activity: one near the end of the feeding phase and a smaller one just prior to pupal ecdysis. These peaks of enzyme activity correlated well with the low levels of haemolymph juvenile hormone. Juvenile hormone titres were high early in the stadium then showed a second peak during the prepupal stage coinciding with low esterase activity. Diapause haemolymph had peak juvenile hormone esterase activity nearly 4 times the nondiapause level, reaching a peak near the end of the feeding phase. Diapause-destined larvae retained high juvenile hormone titres even during the rise of the high esterase levels. 1-naphthyl acetate esterase levels did not correlate with the juvenile hormone esterase levels in either the diapause or nondiapause haemolymph. High levels of 1-naphthyl acetate esterase activity were associated with moulting periods.  相似文献   

17.
Juvenile hormone esterase (JHE) activity, ecdysone titre, and developmental competence of the epidermis were determined in last instar larvae and pupae of Galleria mellonella. Haemolymph JHE activity reaches a peak before increases are observed in ecdysone titre both during larval-pupal and pupal-adult metamorphosis. JHE activity is low during the penultimate larval instar although general esterase activity is relatively high. In last instar larvae two ecdysone peaks are noted after the increase in JHE activity. Furthermore, epidermal cell reprogramming occurs just after the increase in haemolymph JHE activity and possibly before the first increase in ecdysone titre. This was tested by injection of high doses of β-ecdysone into last instar larvae of different ages resulting in rapid cuticle deposition. Reprogramming occurred if the resulting cuticle was of the pupal type. These correlative observations may increase our understanding of the relative importance of an ecdysone surge in the absence of JH in reprogramming of the insect epidermis.  相似文献   

18.
SYNOPSIS. Lepidopteran juvenile hormone (JH) esterase appearsto have a functional role in the regulation of embryogenesis,larval growth and development, and adult reproduction. In preovipositionaland newly laid eggs of the tobacco hornworm, Manduca sexta,JH esterase activity was elevated presumably to metabolize maternalJHs, and then declined after blastoderm formation. Also, a singlepeak in hemolymph JH esterase activity was found prior to ecdysisin the second through the fourth instar of M. sexta, the functionof which is unclear. However, in the last instar, elevated hemolymphJH esterase activity was noted prior to wandering and againprior to ecdysis to scavenge the last traces of JH necessaryfor normal development. The hemolymph JH esterase is likelyof multiple tissue origin for the prewandering peak with thefat body excluded as a source for the prepupal peak; an inhibitoryfactor from the brain and JH regulate JH esterase biosynthesis.In adult cabbage loopers, Trichoplusia ni, elevated hemolymphJH esterase activity appeared to be important in reducing theJH titer and preventing egg maturation. Structure/activity datawith trifluoromethylketones were incorporated into the designof a novel, JH esterase inhibitor, the sulfone and hydrate ofoctylthio-1,1,1- trifluoropropan-2-one, with selective and persistent,in vivo inhibitory activity. The topical application of thiscompound to last instar larvae and virgin adults of T. ni producedjuvenizing effects (delayed pupation and induced egg maturation/oviposition,respectively) providing direct evidence of a functional rolefor JH esterase in lepidopteran development.  相似文献   

19.
The tissue distribution, developmental control, and induction of juvenile hormone esterase (JHE) mRNA was examined in Heliothis virescens using an 800-base pair fragment of a JHE cDNA clone. Northern hybridization analysis of poly(A)+RNA from fat body and integument of fifth stadium larvae indicated the presence of a single JHE mRNA species having an estimated length of 3 kilobases. On Day 2 of the fifth stadium (L5D2), basal JHE mRNA levels were 3-fold higher in the integument than the fat body, which correlated with the higher specific activity of the enzyme in the integument at this time. However, JHE mRNA levels in the fat body on Day 4 of the fifth stadium were 9-fold higher than on Day 2, while mRNA levels in the integument remained the same. This endogenous increase in JHE mRNA and activity in the fat body occurred at the time of peak hemolymph JHE activity. JHE mRNA was not detected in third stadium larvae which have very low levels of JHE activity. Treatment of L5D2 larvae with the juvenile hormone mimic epofenonane resulted in a 7- and 14-fold increase in the level of JHE mRNA in the integument and fat body, respectively. The mRNA induced in both tissues was of the same estimated length as the constitutively expressed message. The data indicate that the developmental regulation and induction of JHE can occur at the level of mRNA. There is evidence that the fat body secretes more JHE than does the integument and could be the major source of hemolymph JHE.  相似文献   

20.
The juvenile hormone esterase (JHE) activity in Galleria mellonella larvae was measured after exposure to different experimental conditions that affect larval-pupal transformation. The data show that stimulation of production of JHE is closely coupled with the developmental signals that intiate larval-pupal metamorphosis. Injury, which delays pupation, delays the appearance of JHE activity if the larvae are injured within 48 hr after the last larval moult. Chilling of day-0 larvae induces a supernumerary larval moult and inhibits the appearance of JHE. However, JHE activity increases in chilled larvae when their commitment for an extra larval moult is reversed by starvation. Starvation is effective in reversing the commitment for an extra larval moult if commenced within 48 hr after chilling, thereby suggesting a critical period for that commitment. These data suggest that the stimulus for JHE synthesis and/or release occurs approximately within 48 hr after the last larval ecdysis. A series of studies involving implantation of brain, suboesophageal ganglion and fat body into chilled, as well as chilled and ligated larvae suggest that a factor from the brain is involved in stimulation or production of JHE in Galleria larvae.JH, which suppresses JHE activity in day-3, -5 and early day-6 Galleria larvae, stimulates the production of JHE in late day-6 larvae, suggesting that reprogramming in larval fat body may occur on day 6 of the last larval stadium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号