首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Congenitally abnormal fibrinogen Kyoto I with impaired fibrin monomer polymerization contains a normal gamma-chain and a gamma-chain variant (gamma Kyoto I) that has an apparently lower Mr on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the Laemmli system (Laemmli, U. K. (1970) Nature 227, 680-685) but migrates with apparently normal Mr in the Weber and Osborn system (Weber, K., and Osborn, M. (1969) J. Biol. Chem. 244, 4406-4412). Reverse-phase high performance liquid chromatographic analyses of the cyanogen bromide or lysyl endopeptidase cleavage fragments of the purified gamma-chains of fibrinogen Kyoto I showed the presence of peptides not seen from normal fibrinogen. Amino acid sequence analysis of these peptides indicated that gamma Asn308 of the gamma-chain variant is replaced by lysine. Purified fragment D1 of fibrinogen Kyoto I also contains two types of D1 gamma-remnants: normal and apparently lower Mr types. Abnormal fragment D1 is cleaved faster to fragments D2 and D3 by plasmin in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) than normal fragment D1, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by immunoblotting using anti-gamma-chain monoclonal antibody. Analysis of peptides released from fragment D1 by plasmin in the presence of EGTA demonstrated the cleavage of the gamma Lys308-Gly309 bond. Fragment D1 of fibrinogen Kyoto I has normal calcium binding properties. The data suggest that a region or conformation containing gamma Asn308 affects the polymerization of fibrin monomers and that the gamma Asn308----Lys replacement causes a conformational change in the gamma-chain which results in the accelerated cleavage of gamma Lys356-Ala357 and gamma Lys302-Phe303 bonds by plasmin and also results in the generation of a new plasmin cleavage site between Lys308 and Gly309 in the presence of EGTA. During these studies, we found that part of the gamma Lys212-Glu213 bond in fragment D1 is cleaved by plasmin in the presence of EGTA.  相似文献   

2.
Cellular immune responses can elicit local deposition of fibrin at the site of immunologic reactions, as well as the formation of intravascular fibrin in disseminated reactions. The subsequent physiologic proteolysis of fibrinogen and fibrin by plasmin results in small peptides that suppress lymphocyte functions in vitro and in the immune response in vivo. The intramolecular origin of lymphocyte suppressive activity and the proteolytic events responsible for the release of active peptides have been analyzed. Plasmic peptides from the isolated B beta and gamma constituent chains of fibrinogen did not inhibit mitogen-driven responses of human peripheral blood mononuclear cells. In contrast, plasmic digests of the A alpha chain, but not the intact A alpha chain were suppressive. Advanced plasmic digests of fibrinogen and the A alpha chain were suppressive at similar concentrations, suggesting that biological activity is derived predominantly from the A alpha chain. Limited plasmic digests of fibrinogen were fractionated to yield a heat-precipitable 250,000 dalton fragment X and heat-soluble proteolytic products containing fragments derived from the carboxyl-terminal region of the A alpha chain including a 42,000 dalton major A alpha chain derivative. Neither fragment X nor derivatives produced by its additional plasmic proteolysis were suppressive. In contrast, the heat-soluble fraction from limited plasmic cleavage was suppressive, and this activity was enhanced 10-fold by additional plasmic cleavage of this fraction. The isolated 42,000 dalton A alpha chain fragment was devoid of activity, but plasmic digestion of this derivative generated peptides of less than 8000 daltons that inhibited mitogen-stimulated thymidine uptake by lymphocytes. Two synthetic peptides corresponding to A alpha 220-230 and B beta 43-47, peptides with known vasoactive activities, suppressed lymphocyte thymidine uptake at very high concentrations. Based on their maximal yield from plasmic digests of fibrinogen, these two peptides would account for only 1% of the immunosuppressive activity of fibrinogen derivatives. In summary, the results indicate that the suppressive activity of fibrinogen is predominantly derived from the 42,000 dalton carboxyl terminal region of the A alpha chain of the molecule and is not attributable to the known vasoactive peptides. Initial proteolytic release of this region from the core of fibrinogen does not result in suppressive activity, but additional cleavage releases small peptides with the lymphocyte inhibitory function.  相似文献   

3.
Three Fragment D species (D1, D2, D3) were isolated with time from a plasmin digest of fibrinogen and had molecular weights of 92,999, 86,000 and 82,000 by summation of subunit molecular weights from sodium dodecyl sulfate polyacrylamide gel electrophoresis. Their molecular weights by sedimentation equilibrium ultracentrifugation were 94,000 t87,000, 88,000 to 82, 000, and 76,000 to 70,000 depending on the values calculated for the partial specific volumes. Each of the Fragment D species contained three disulfide-linked subunits derived from the Aalpha, Bbeta, and gamma chains of fibrinogen and differed only in the extent of COOH-terminal degradation of their gamma chain derivatives. Plasmin cleaved Fragment D1 to release the cross-link sites from its gamma' subunit of 38,000 molecular weight; however, the beta' subunit of 42,000 molecular weight and the alpha' subunit of 12,000 molecular weight were resistant to further digestion by plasmin. Fragment D isolated from highly cross-linked fibrin had a dimeric structure due to cross-link formation between the gamma' subunits of two fibrinogen Fragment D species. The molecular weight of fibrin Fragment D was 184,000 by summation of subunit molecular weights and 190,000 to 175,000 by sedimentation equilibrium. Cross-linking the gamma chain, as well as incorporating the site-specific fluorescent label monodansyl cadaverine into the gamma chain cross-link acceptor site, prevented its COOH-terminal degradation by plasmin. Therefore, only one species of fibrin Fragment D, as well as only one species of monodansyl cadaverine-labeled fibrin Fragment D monomer, was generated during plasmin digestion. These results show unequivocally that each fibrinogen Fragment D contains only three subunit chains and therefore the digestion of fibrinogen by plasmin must result in the production of two Fragment D molecules from each fibrinogen molecule. The recently proposed model of fibrinogen cleavage that postulates the generation of a single Fragment D with three pairs of subunit chains from each fibrinogen molecule is incorrect. Incorporation of monodansyl cadaverine into the cross-link acceptor sites of the alpha chain did not alter its cleavage by plasmin detectably. A series of monodansyl cadaverine-labeled peptides, which ranged in molecular weight from 40,000 to 23,000, were cleaved from the alpha chain of monodansyl cadaverine-labeled fibrin monomer during the early stages of plasmin digestion. These peptides were degraded progressively to a brightly fluorescent plasmin-resistant peptide of 21,000 molecular weight and a weakly fluorescent peptide of 2,500 molecular weight. Thus both alpha chain cross-link acceptor sites are contained within a peptide segment of 23,000 molecular weight.  相似文献   

4.
Conformational and structural modulations of the NH2-terminal region of fibrinogen and fibrin associated with plasmin cleavage have been examined utilizing specific antibody probes. The E region derived from the NH2-terminal aspects of fibrinogen undergoes complex structural and conformational changes throughout the cleavage process as indicated by differences in the quantitative and qualitative expression of antigenic determinants by the E region of each isolated cleavage fragment. When the range of antigenic determinants recognized by the antibody probe is limited to a specific molecular marker on the gamma chain within the E region, fg-E-neo, evidence for a systematic and progressive modulation of this site during plasmin cleavage is observed. Fg-E-neo undergoes progressive exposure as the cleavage of fibrinogen proceeds from X to Y to D:E complex. Separation of the D:E complex into its constituent, D and E fragments, is associated with further exposure of fg-E-neo determinants. The sequential cleavage of fibrin by plasmin also leads to progressive exposure of the fg-E-neo site; however, comparison of corresponding fragments derived from fibrinogen and fibrin reveals significant differences in the character of fg-E-neo expression. Immunochemical differences between fibrin and fibrinogen E fragments are not abolished by further exposure of the fragments to plasmin, are apparently not due to the presence or absence of fibrinopeptides, and are maintained following denaturation and renaturation of the fragments. These results suggest that the differential expression of fg-E-neo by the E fragments may be primarily dependent upon differences in amino acid compositions of the fragments.  相似文献   

5.
Calcium is required for effective fibrin polymerization. The high affinity Ca2+ binding capacity of fibrinogen was directly localized to the gamma-chain by autoradiography of nitrocellulose membrane blots of fibrinogen subunits incubated with 45Ca2+. Terbium (Tb3+) competitively inhibited 45Ca2+ binding to fibrinogen during equilibrium dialysis, accelerated fibrin polymerization, and limited fibrinogen fragment D digestion by plasmin. The intrinsic fluorescence of Ca2+-depleted fibrinogen was maximally enhanced by Ca2+ and Tb3+, but not by Mg2+, at about 3 mol of cation/mol of fibrinogen. Protein-bound Tb3+ fluorescence at 545 nm was maximally enhanced by resonance energy transfer from tryptophan (excitation at 290 nm) at about 2 mol of Tb3+mol of fibrinogen and about 1 mol of Tb3+/mol of plasmic fragment D94 (Mr 94,000). Fibrinogen fragments D78 (Mr 78,000) and E did not show effective enhancement of Tb3+ fluorescence, suggesting that the Ca2+ site is located within gamma 303 to gamma 411, the peptide which is absent in fragment D78 but present in D94. When CNBr fragments of the carboxyamidated gamma-subunit were assayed for enhancement of Tb3+ fluorescence, peptide CBi (gamma 311-336) bound 1 mol of Tb3+/mol of CBi. Thus, the Ca2+ site is located within this peptide. The sequence between gamma 315 and gamma 329 is homologous to the calmodulin and parvalbumin Ca2+ binding sites.  相似文献   

6.
Kinetics of inhibition of fibrin monomer polymerization produced by Fab fragments prepared from immunochemically purified monospecific antibodies to the surface epitopes of different domains of fibrinogen molecule has been correlated with electron microscopic observations of resulting specimens. Fab fragments prepared from anti FgD antisera were the most efficient inhibitors of thrombin-catalysed conversion of fibrinogen to fibrin; polymerization of fibrin monomers as detected spectrophotometrically was abolished at 2:1 molar ratio of anti FgD Fab fragments to fibra monomer. These Fab fragments acting as a steric hindrance of polymerization sites inhibited the first stage of fibrin monomer aggregation. Interaction of Fab fragments derived from antibodies specific for alpha 239-476 with corresponding segment of fibrinogen molecule resulted in a weak inhibition of fibrin monomer polymerization. However, fibrin obtained in the presence of these Fab fragments was significantly modified and showed no periodicity. This observation may suggest that anti alpha 239-476 Fab impaired the course of the second stage of fibrin monomer polymerization, i.e. lateral association of fibrin fibrils.  相似文献   

7.
We have isolated an intermediate plasmic degradation product, D2, of fibrinogen that does not inhibit the polymerization of fibrin monomer but does bind Ca2+. Fibrinogen was digested to a limited extent with plasmin in the presence of Ca2+, and a "large" fragment D (fragment D1A) was isolated with a gamma-chain remnant consisting of residues 63-411. Fragment D1A was digested further in the presence of Ca2+, yielding fragment D1 (with its gamma-chain containing residues 86-411). The digestion of fragment D1 [in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to complex Ca2+] led to a gradual shortening of the carboxyl-terminal portion of the gamma-chain. Fragment D2 (with its gamma-chain containing residues 86-335/356) was isolated from an intermediate digest in the presence of EGTA. The Lys-338-Cys-339 peptide bond of the gamma-chain is intact in this preparation of D2, even though it is split in the isolated peptide gamma303-355 (with an intact disulfide bond at Cys-326-Cys-339). Fragment D2 does not interfere with the polymerization of fibrin monomer, whereas fragment D1 is a potent inhibitor of this polymerization. We conclude that the gamma-chain segment 356/357-411, present in fragment D1 but absent from fragment D2, is essential for maintenance of a polymerization site located in the outer (D) nodule of fibrinogen. This segment (356/357-411) is longer than two shorter ones reported earlier [Olexa, S.A., & Budzynski, A. Z. (1981) J. Biol. Chem. 256, 3544-3549; Horwitz, B.H., Váradi, A., & Scheraga, H.A. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5980-5984]; the data for the earlier reports are reinterpreted here. Finally, fragment D2 possesses a single Ca2+ binding site, as revealed by equilibrium dialysis binding studies. Since fragment D3 (with its gamma-chain containing residues 86-302) fails to bind Ca2+, we conclude that segment gamma 303-355/356 plays a crucial role in Ca2+ binding.  相似文献   

8.
The conformations of the gamma chain COOH terminus of intact fibrinogen and various fragments containing this region have been compared by an immunochemical analysis. Location of a major epitope in the sequence gamma 391-405 was successfully predicted from a hydrophobicity profile. An antibody population specific for the native epitope within the gamma 391-405 segment was isolated by immunoadsorption. Between 19.2 and 22.8% of antibodies were obtained from three different antisera, indicating that this region represents one of the major epitopes of native fibrinogen. Anti-gamma 391-405(N) antibodies were used to determine the value of Kconf, the equilibrium constant for the interconversion of the non-native and native conformations of this epitope. The measurements were done using native fibrinogen, fragments D1 and DD, gamma chain, and gamma 391-405. In addition, the effect of 5 M guanidine HCl on the conformation of fragments D1 and DD, which is known to abolish their antipolymerizing activity, was studied. Radioiodinated fibrinogen was used in the determination of Kconf, CI50%, and CIs (quantitative analytical parameters calculated from competitive inhibition radioimmunoassays) by measuring the competition between 125I-fibrinogen and the fibrinogen derivatives under study for binding to the immunochemically purified antibody. The measurements indicated that the epitope is unperturbed by iodination of fibrinogen and that 38.5% of fragment D1, 8.9% of fragment DD, 3.6% of the gamma chain, and less than 0.008% of the gamma 391-405 molecules adopt in aqueous solution the native conformation within the epitope. Denaturation of fragment D1 with 5 M guanidine HCl affected only slightly the conformation of this gamma chain determinant. More significant changes in the conformation were observed when fragment DD was denatured. The results suggest that long-range interactions are necessary for the stabilization of the native structure in the region of fibrinogen that interacts with the antibody and which is in close vicinity to the polymerization site, cross-linking site, and platelet recognition site.  相似文献   

9.
The accessibility of the gamma 95-264 sequence to specific antibody probes in the native fibrinogen molecule and its plasmic cleavage fragments have been investigated. The gamma 95-264 segment was generated by cyanogen bromide cleavage of the gamma chain and isolated by gel filtration and ion exchange chromatography. Rabbit antisera to this peptide and to gamma chain recognized at least five antigenic loci uniformly distributed throughout this segment. In primary binding assays, antibodies to gamma 95-264 bound gamma 95-264, free gamma chain, and fibrinogen fragment D, but not native fibrinogen. Also, gamma 95-264 was bound by antibodies to gamma chain and fibrinogen fragment D, but not by antibodies generated to native fibrinogen. Thus, the gamma 95-264 sequence was not accessible to antibody in the native structure. In competitive equilibrium radioimmunoassays, neither native fibrinogen nor highly soluble fibrinogen fraction I-9 inhibited the binding of gamma 95-264 by its antiserum or anti-gamma chain. With plasmic cleavage, however, the gamma 95-264 sequence became accessible to antibody and the series of fragments D greater than Y greater than D:E = X describes the relative reactivity of the gamma chain sequence in fibrinogen degradation products. Differential expression of gamma 95-264 antigenic loci was also observed with D fragments differing in molecular weight. Plasmic cleavage of cross-linked and noncross-linked fibrin generated D fragments which did not express gamma 95-264 as well as fibrinogen D derivatives, indicating that the D domains of fibrinogen and fibrin are immunochemically distinguishable. These findings indicate that the central segment of the gamma chain is inaccessible to antibody in native fibrinogen, but that proper surface orientation is achieved upon plasmic degradation.  相似文献   

10.
The carboxyl-terminal residues of mammalian fibrinogens of six different species and the chain peptides, alpha(A), beta(B) and gamma, isolated from these fibrinogens were determined by hydrazinolysis, digestion with carboxypeptidases and selective tritium labelling. The C-terminal ends of bovine fibrinogen and fibrin were identified as proline and valine, in the molar ratio of approximately 1:2. Proline was identified as the C-terminus of the alpha(A)-chain, and C-terminal valine was found on both the beta(B)- and gamma-chains. On hydrazinolysis after selective tritium labelling of fibrinogen, radioactive C-terminal valine was also identified. The same C-terminal ends as those of bovine fibrinogen were found on the corresponding chain peptides isolated from sheep fibrinogen. The C-terminal residues of all the chain peptides of human and horse fibrinogens, however, were valine. In hog and dog fibrinogens, proline was identified at the C-termini of the alpha(A)-chains, and C-terminal valine and isoleucine were found on the beta(B)- and gamma-chains, respectively. Thus, the C-terminal amino acid residues of the fibrinogens of all mammalian species tested were very similar. It should be noted that hydrophobic amino acids, like isoleucine, valine and proline, are mainly located in the C-terminal ends of all three chain peptides in the fibrinogen molecule.  相似文献   

11.
A Bini  D Wu  J Schnuer  B J Kudryk 《Biochemistry》1999,38(42):13928-13936
Matrix metalloproteinases (MMPs) participate in physiological remodeling of the extracellular matrix. Recently we determined that both fibrinogen (Fg) and cross-linked fibrin (XL-Fb) are substrates for selected MMPs. Specifically, XL-Fb clots were solubilized by MMP-3 (stromelysin 1) by cleavage at gamma Gly 404-Ala 405, resulting in a D-like monomer fragment. Similarly, MMP-7 (matrilysin) and MT1-MMP (membrane type 1 matrix metalloproteinase) solubilized XL-Fb clots. However, the molecular mass of fragment D-dimer, obtained after MMP-7 and MT1-MMP degradation of XL-Fb, is similar to that of fragment D-dimer from plasmin degradation ( approximately 186 kDa). In contrast, fragment D-like monomer, from MMP-3 degradation of both fibrinogen (Fg) and XL-Fb, is similar to fragment D from plasmin degradation of Fg ( approximately 94 kDa). Reduced chains from MMP-3, MMP-7, and MT1-MMP digests of Fg and XL-Fb were subjected to direct sequence analyses and D/D-dimer alpha-chain showed cleavage at both alpha Asp 97-Phe 98 and alpha Asn 102-Asn 103. Degradation of the beta-chain resulted in microheterogeneity of cleavage sites at beta Asp 123-Leu 124, beta Asn 137-Val 138, and beta Glu 141-Tyr 142, whereas all three enzymes cleaved the gamma-chain at gamma Thr 83-Leu 84. In both Fg and XL-Fb, several cleavage sites obtained by proteolysis with MMP-3, MMP-7, and MT1-MMP were found to be in very close proximity to those obtained by plasmin on these same substrates. That does not occur with other MMPs such as MMP-1, -2, and -9 and MT2-MMP. The degradation of XL-Fb by MMPs suggests both plasmin-dependent and independent mechanisms of fibrinolysis that might be relevant in inflammation, angiogenesis, arthritis, and atherosclerosis.  相似文献   

12.
In an abnormal fibrinogen with impaired fibrin monomer polymerization designed as fibrinogen Osaka II, we have identified substitution of Arg by Cys at position 275 of the gamma chain. This Cys is linked to a free cysteine molecule by a disulfide link as evidenced by fast atom bombardment mass spectrometry. This finding was supported by identification of a single cysteine released from isolated abnormal fragment D1 upon reduction. This unique cystine structure at the mutation site has not been reported heretofore in any abnormal protein including fibrinogen. The substitution may well perturb the structure required for fibrin monomer polymerization, specifically that assigned to the carboxyl-terminal D domain of fibrinogen. Indeed, isolated fragment D1 with the Cys substitution failed to inhibit thrombin-mediated clotting of normal fibrinogen and normal fibrin monomer polymerization, while normal fragment D1 inhibited them markedly. Our data seem to provide supporting evidence that the putative polymerization site(s) assigned to the D domain of fibrinogen may be structure-dependent, including the carboxyl-terminal segment of the gamma chain as well as a contiguous region that contains the gamma 275 residue.  相似文献   

13.
In order to study thrombin interaction with fibrinogen, thrombin binding to fragments D and E (prepared by plasmin digestion of fibrinogen) and to intact S-carboxymethylated chains of fibrinogen (A alpha, B beta, and gamma) was analyzed by autoradiography, immunoblotting, and affinity chromatography. Complex formation was observed between late fragment E and thrombin but not with fragment D. The three reduced chain remnants of fragment E all formed complexes with thrombin. Also, thrombin bound to the intact, separated A alpha, B beta, and gamma chains of fibrinogen as well as to the alpha and beta chains of fibrin. In these experiments the extended substrate-binding site, but not the catalytic-binding site, was being examined because fragment E had as its amino-terminal amino acids Val20 in the alpha chain, Lys54 in the beta chain, and Tyr1 in the gamma chain. Also, thrombin inhibited in its active center by D-phenyl-alanyl-L-prolyl-L-arginine-chloromethyl ketone bound to fragment E and to the separated chains in the same manner as unmodified thrombin. A lysine residue to thrombin was essential for its binding to fibrinogen. Thrombin attached to CNBr-activated Sepharose through its amino groups did not bind to fragment E, but when thrombin was attached through its carboxyl groups, it bound fragment E.  相似文献   

14.
Fragments D1 and DD, plasmic degradation products of human fibrinogen and cross-linked fibrin, respectively, originate from the COOH-terminal domain of the parent molecule. Since a specific binding site for fibrin resides in the COOH-terminal region of the gamma chain, the primary structure of the two fragments was compared and their affinity for fibrin monomer measured. Fragments D1 and DD contained the same segments of the three fibrinogen chains, corresponding to the sequences alpha 105-206, beta 134-461, and gamma 63-411. Fragment DD had a double set of the same chain remnants. Fragments D1 and DD inhibited polymerization of fibrin monomer in a dose-dependent manner; 50% inhibition occurred at a molar ratio of fragment to monomer of 1:1 and 0.5:1, respectively. To prevent fibrin monomer polymerization and render it suitable for binding studies in the liquid phase, fibrinogen was decorated with Fab fragments isolated from rabbit antibodies to human fragment D1. Fibrinogen molecules decorated with 6 molecules of this Fab fragment did not clot after incubation with thrombin, and the decorated fibrin monomer could be used to measure binding of fragments D1 and DD in a homogeneous liquid phase. The data analyzed according to the Scatchard equation and a double-reciprocal plot gave a dissociation constant of 12 nM for fragment D1 and 38 nM for fragment DD. There were two binding sites/fibrin monomer molecule for each fragment. After denaturation in 5 M guanidine HCl, the inhibitory function on fibrin polymerization was irreversibly destroyed. Denatured fragments also lost binding affinity for immobilized fibrin monomer. The preservation of the native tertiary structure in both fragments was essential for the expression of polymerization sites in the structural D domain.  相似文献   

15.
The rate of activation of plasminogen by tissue-type plasminogen activator is greatly increased by fibrin, but not by fibrinogen. A possible explanation for this phenomenon could be that conformational changes take place during the transformation of fibrinogen to fibrin which lead to exposure of sites involved in the accelerated plasmin formation. This is also supported by our recent observation that some enzymatically prepared fragments of fibrinogen and fibrin (D EGTA, D-dimer, Y) and also CNBr fragment 2 from fibrinogen have this property. CNBr fragment 2 consists of amino acid residues A alpha (148-207), B beta (191-224) + (225-242) + (243-305) and gamma 95-265, kept together by disulphide bonds. In order to study the localization of a stimulating site within this structure we purified the chain remnants of CNBr fragment 2 after reduction and carboxymethylation, and found that only A alpha 148-207 was stimulating. This was further confirmed by digesting pure A alpha-chains with CNBr and purifying the resulting A alpha-chain fragments. CNBr digests of B beta- and gamma-chains were not stimulatory. The A alpha-chain remnant (residues 111-197) in D EGTA and D-dimer also comprise the major part (residues A alpha 148-197) of the CNBr A alpha-chain fragment. We conclude that a site capable of accelerating the plasminogen activation by tissue-type plasminogen activator preexists in fibrinogen, that this site becomes exposed upon fibrin formation or disruption of fibrinogen by plasmin or CNBr and that this site is within the stretch A alpha 148-197, which is retained in the A alpha-chain remnants of fibrinogen degradation products.  相似文献   

16.
Prolonged thrombin time was completely corrected by the addition of millimolar concentrations of calcium in a new abnormal fibrinogen, Osaka V. Analysis of lysyl endopeptidase digests of A alpha-, B beta-, or gamma-chains by high performance liquid chromatography, and the following amino acid sequence analysis of relevant peptides revealed that about 50% of the gamma-chain has a replacement of gamma-arginine 375 by glycine. When fibrinogen was digested with plasmin in the presence of millimolar concentration of calcium, the amount of fragment D1 was about 50% of the normal control, and the rest was further cleaved to fragment D2, D3, or D62 with an apparent Mr of 62,000. Plasmic digestion of cross-linked fibrin in the presence of calcium resulted in the appearance of an abnormal fragment with an apparent Mr of 123,000 as well as fragments D2, D3, and D62, concomitant with the decrease of D dimer. The gamma-remnant of the abnormal fragment proved to be a cross-linked complex of the normal D1 gamma-remnant and residues 374-406/411 of the abnormal gamma-chain. The number of high affinity Ca(2+)-binding sites for the normal fibrinogen and fibrinogen Osaka V obtained by equilibrium dialysis was 2.88 (about 3) and 1.85, respectively, and that for the abnormal molecules was calculated as 0.9 (about 1) from their relative amounts in the samples, suggesting the lack of two Ca(2+)-binding sites in the D-domains. These data suggest that the normal structure of the COOH-terminal portion of the gamma-chain including residue 375 is required for the full expression of high affinity calcium binding to D-domains, the ability to be protected by calcium against plasmic digestion, and fibrin polymerization. During these studies, we found that the NH2-terminal amino acid of the gamma-remnant in fragments D or D dimer which were obtained after prolonged digestion with plasmin is gamma-Met89.  相似文献   

17.
E Suenson  S Thorsen 《Biochemistry》1988,27(7):2435-2443
Plasmin-catalyzed modification of the native plasma zymogen Glu1-plasminogen to its more reactive Lys78 form has been shown to be enhanced in the presence of fibrin. The aim of the present work has been to characterize the influence of fibrinopeptide release, fibrin polymerization, and plasmin cleavage of fibrin on the rate of Lys78-plasminogen formation. 125I-Labeled Glu1- to Lys78-plasminogen conversion was catalyzed by performed Lys78-plasmin, or by plasmin generated during plasminogen activation with tissue plasminogen activator or urokinase. The two forms of plasminogen were quantitated following separation by polyacrylamide gel electrophoresis in acetic acid/urea. Plasmin generated by plasminogen activator was monitored by a fixed-time amidolytic assay. The rate of Lys78-plasminogen formation was correlated, in separate experiments, to the simultaneous, plasmin-catalyzed cleavage of 125I-labeled fibrinogen or fibrin to fragments X, Y, and D. The radiolabeled components were quantitated after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results show that the formation of both bathroxobin-catalyzed des-A-fibrin and thrombin-catalyzed des-AB-fibrin leads to marked stimulation of Lys78-plasminogen formation, whereas inhibition of fibrin polymerization, with Gly-Pro-Arg-Pro, abolishes the stimulatory effect. The rate of Lys78-plasminogen formation varies markedly in the course of fibrinolysis. The apparent second-order rate constant of the reaction undergoes a transient increase upon transformation of fibrin to des-A(B) fragment X polymer and decreases about 10-fold to the level observed during fibrinogenolysis upon further degradation to soluble fragments Y and D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We synthesized a variant, recombinant fibrinogen modeled after the heterozygous dysfibrinogen Vlissingen/Frankfurt IV, a deletion of two residues, gammaAsn-319 and gammaAsp-320, located within the high affinity calcium-binding pocket. Turbidity studies showed no evidence of fibrin polymerization, although size exclusion chromatography, transmission electron microscopy, and dynamic light scattering studies showed small aggregates. These aggregates did not resemble normal protofibrils nor did they clot. Fibrinopeptide A release was normal, whereas fibrinopeptide B release was delayed approximately 3-fold. Plasmin cleavage of this fibrinogen was not changed by the presence of calcium or Gly-Pro-Arg-Pro, indicating that both the calcium-binding site and the "a" polymerization site were non-functional. We conclude that the loss of normal polymerization was due to the lack of "A-a" interactions. Moreover, functions associated with the C-terminal end of the gamma chain, such as platelet aggregation and factor XIII cross-linking, were also disrupted, suggesting that this deletion of two residues affected the overall structure of the C-terminal domain of the gamma chain.  相似文献   

19.
Cross-linking site in fibrinogen for alpha 2-plasmin inhibitor   总被引:4,自引:0,他引:4  
A plasma proteinase inhibitor, alpha 2-plasmin inhibitor (alpha 2PI), is cross-linked with alpha chain of fibrin(ogen) by activated coagulation Factor XIII (plasma transglutaminase). alpha 2PI serves only as a glutamine substrate (amine acceptor) for activated Factor XIII in the cross-linking reaction, and the cross-linking occurs between Gln-2 of the alpha 2PI molecule and a lysine residue (amine donor) of fibrin(ogen) alpha chain, whose position was investigated. alpha 2PI and fibrinogen were reacted by activated Factor XIII. The resulting alpha 2PI fibrinogen A alpha chain complex was separated and subjected to two cycles of Edman degradation using phenyl isothiocyanate for the first cycle and dimethylaminoazobenzene-isothiocyanate for the second cycle. The aqueous phase after the cleavage stage of the second cycle, containing dimethylaminoazobenzene-thiohydantoin-Gln cross-linked with A alpha chain, was subjected to CNBr fragmentation and tryptic digestion. Only one of the peptides was found to have the peak of absorbance at 420 nm, indicating the presence of dimethylaminoazobenzene-thiohydantoin-Gln in that peptide. The peptide was identified as corresponding to residues Asn-290-Arg-348 of A alpha chain by analyses of the NH2-terminal amino acid sequence and amino acid composition. The peptide contains a single lysine at position 303, indicating that Lys-303 of fibrinogen A alpha chain is the lysine residue that forms a cross-link with Gln-2 of alpha 2PI.  相似文献   

20.
Employing high-performance liquid chromatography (HPLC), we have isolated and quantified the peptides that are released from the NH2-terminus of human fibrinogen B beta-chains by plasmin proteolysis. The peptides were identified by amino acid composition and by a radioimmunoassay developed for fibrinopeptide B detection. B beta 1-42 was the earliest fragment released during limited plasmin proteolysis. The level of this peptide reached a maximum and then began to decline during the course of the digestion. In addition, increasing levels of B beta 1-21 and of FPB followed the production of B beta 1-42. Using purified B beta 1-42 as a substrate, preferential cleavage was shown to occur at the 21-22 bond, with a minor cleavage at the 14-15 bond. Exhaustive digestion yielded two major components which were separated by HPLC: B beta 1-14 (FPB) and beta 22-42. The rate of cleavage at the 14-15 bond, which is the customary site of thrombin proteolysis, was not affected by the addition of hirudin indicating that this was not the result of trace contamination with thrombin. We have also examined plasmin proteolysis at the NH2-terminal region of the B beta-chains of a variety of fibrinogen derivatives and have found similar patterns of B beta 1-42 release. Using HPLC data, we have estimated the Km for plasmic cleavage of the beta 21-22 bond to be 1.8 X 10(-5) M and of the beta 14-15 bond to be 2.8 X 10(-5) M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号