首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Striped skunks, initially negative for antibodies to Sarcocystis neurona, formed sarcocysts in skeletal muscles after inoculation with S. neurona sporocysts collected from a naturally infected Virginia opossum (Didelphis virginiana). Skunks developed antibodies to S. neurona by immunoblot and muscles containing sarcocysts were fed to laboratory-reared opossums which then shed sporulated Sarcocystis sporocysts in their faeces. Mean dimensions for sporocysts were 11.0 x 7.5 microm and each contained four sporozoites and a residuum. Sarcocysts from skunks and sporocysts from opossums fed infected skunk muscle were identified as S. neurona using PCR and DNA sequence analysis. A 2-month-old, S. neurona-naive pony foal was orally inoculated with 5 x 10(5) sporocysts. Commercial immunoblot for antibodies to S. neurona performed using CSF collected from the inoculated pony was low positive at 4 weeks p.i., positive at 6 weeks p.i., and strong positive at 8 weeks p.i. Gamma-interferon gene knockout mice inoculated with skunk/opossum derived sporocysts developed serum antibodies to S. neurona and clinical neurologic disease. Merozoites of S. neurona present in the lung, cerebrum, and cerebellum of mice were detected by immunohistochemistry using polyclonal antibodies to S. neurona. Based on the results of this study, the striped skunk is an intermediate host of S. neurona.  相似文献   

2.
Sarcocysts were dissected from the tongue of a nine-banded armadillo (Dasypus novemcinctus). DNA was extracted and characterised by PCR amplification followed by restriction fragment length polymorphism analysis and nucleotide sequencing. A total of 1879 nucleotides were compared; the sarcocyst DNA sequence was identical to that reported for Sarcocystis neurona. DNA was extracted from the sarcocysts of five more nine-banded armadillos. A 254-nucleotide sequence was determined for each and found to be identical to S. neurona. Western blot techniques for detection of anti-S. neurona antibody were developed for use with armadillo plasma and samples from 19 wild-caught and 17 captive-raised armadillos were examined. Whereas all of the 19 wild-caught armadillos had antibodies to S. neurona, only one of 17 captive-raised armadillos did. These results suggest that the nine-banded armadillo are naturally infected with S. neurona.  相似文献   

3.
The North American opossum (Didelphis virginiana) is host to at least 3 species of Sarcocystis: Sarcocystisfalcatula, Sarcocystis neurona, and a recently recognized Sarcocystis sp. A new name, Sarcocystis speeri, is proposed for the third unnamed Sarcocystis. Immunodeficient mice are an experimental intermediate host for S. speeri. Sarcocystis speeri sporocysts are 12-15 x 8-10 microm in size, and its schizonts are found in many organs of mice. Sarcocysts of S. speeri are found in skeletal muscles and they are up to 5 mm long and filiform. By light microscopy, the sarcocyst wall is thin (<1 microm thick); ultrastructurally, the cyst wall is up to 1.8 microm thick and has characteristic steeple-shaped villar protrusions surmounted by a spire. Sarcocystis speeri schizonts are morphologically and antigenically distinct from schizonts of S. neurona, and S. speeri sporocysts were not infective to budgerigars (Melopsittacus undulatus).  相似文献   

4.
Sarcocystis neurona was isolated from the blood of a 5-month-old Arabian foal with severe combined immunodeficiency. The foal had been inoculated approximately 3 weeks previously with 5 x 10(5) sporocysts that were isolated from the intestines of an opossum and identified by restriction enzyme analysis of PCR products as S. neurona. The isolate obtained from the blood of this foal was characterized by genetic, serologic, and morphologic methods and identified as S. neurona (WSU1). This represents the first time that S. neurona has been isolated from any tissue after experimental infection of a horse. This is also the first time a parasitemia has been detected during either natural or experimental infection. The severe combined immunodeficiency foal model provides a unique opportunity to study the pathogenesis of S. neurona infection in horses and to determine the role of the immune system in the control of infection with and development of neurologic disease.  相似文献   

5.
Serum was collected from laboratory-reared Virginia opossums (Didelphis virginiana) to determine whether experimentally infected opossums shedding Sarcocystis neurona sporocysts develop serum antibodies to S. neurona merozoite antigens. Three opossums were fed muscles from nine-banded armadillos (Dasypus novemcinctus), and 5 were fed muscles from striped skunks (Mephitis mephitis). Serum was also collected from 26 automobile-killed opossums to determine whether antibodies to S. neurona were present in these opossums. Serum was analyzed using the S. neurona direct agglutination test (SAT). The SAT was modified for use with a filter paper collection system. Antibodies to S. neurona were not detected in any of the serum samples from opossums, indicating that infection in the opossum is localized in the small intestine. Antibodies to S. neurona were detected in filter-paper-processed serum samples from 2 armadillos naturally infected with S. neurona.  相似文献   

6.
Sarcocystis sporocysts were found in intestinal scrapings from 24 (54.5%) of 44 opossums (Didelphis virginiana). The number of sporocysts varied from a few (< 10,000) to 245 million. Sporocysts from 23 of 24 opossums were fed to captive budgerigars (Melopsittacus undulatas), and the inocula from 21 opossums were infective, indicating the presence of Sarcocystis falcatula. Sporocysts from 24 opossums were fed to gamma-interferon-knockout (KO) or nude mice; inocula from 14 opossums were infective to mice. Sarcocystis neurona was detected in tissues of KO mice by specific staining with anti-S. neurona antibodies, and the parasite was cultured in vitro from the brains of KO mice fed sporocysts from 8 opossums. Sarcocystis speeri was identified by specific staining with anti-S. speeri antibodies in tissues of KO mice fed inocula from 8 opossums; 3 opossums had mixed S. neurona and S. speeri infections. Thus, the prevalences of sporocysts of different species of Sarcocystis in opossums were: S. falcatula 21 of 44 (47.7%), S. neurona 8 of 44 (18.1%), and S. speeri 8 of 44 (18.1%) opossums. Sarcocystis neurona alone was found in 1 opossum, and S. speeri alone was found in 1 opossum. Mixed Sarcocystis infections were present in 21 opossums.  相似文献   

7.
8.
The dose-related infectivity of Sarcocystis neurona sporocysts and merozoites of 2 recent isolates of S. neurona was compared in gamma interferon knockout (KO) mice. Tenfold dilutions of sporocysts or merozoites were bioassayed in mice, cell culture, or both. All 8 mice, fed 1,000 sporocysts, developed neurological signs with demonstrable S. neurona in their tissues. Of 24 mice fed low numbers of sporocysts (100, 10, 1), 18 became ill by 4 wk postinoculation, and S. neurona was demonstrated in their brains; antibodies (S. neurona agglutination test) to S. neurona and S. neurona parasites were not found in tissues of the 6 mice that were fed sporocysts and survived for >39 days. One thousand culture-derived merozoites of these 2 isolates were pathogenic to all 8 mice inoculated subcutaneously (s.c.). Of the 24 mice inoculated s.c. with merozoites numbering 100, 10, or 1, only 3 mice had demonstrable S. neurona infection; antibodies to S. neurona were not found in the 21 mice that had no demonstrable organisms. As few as 10 merozoites were infective for cell cultures. These results demonstrate that at least 1,000 merozoites are needed to cause disease in KO mice. Sarcocystis neurona sporocysts were infective to mice by the s.c. route.  相似文献   

9.
Sarcocystis neurona causes encephalomyelitis in many species of mammals and is the most important cause of neurologic disease in the horse. Its complete life cycle is unknown, particularly its development and localization in the intermediate host. Recently, the raccoon (Procyon lotor) was recognized as a natural intermediate host of S. neurona. In the present study, migration and development of S. neurona was studied in 10 raccoons that were fed S. neurona sporocysts from experimentally infected opossums; 4 raccoons served as controls. Raccoons were examined at necropsy 1, 3, 5, 7, 10, 14, 15, 22, 37, and 77 days after feeding on sporocysts (DAFS). Tissue sections of most of the organs were studied histologically and reacted with anti-S. neurona-specific polyclonal rabbit serum in an immunohistochemical test. Parasitemia was demonstrated in peripheral blood of raccoons 3 and 5 DAFS. Individual zoites were seen in histologic sections of intestines of raccoons euthanized 1, 3, and 5 DAFS. Schizonts and merozoites were seen in many tissues 7 to 22 DAFS, particularly in the brain. Sarcocysts were seen in raccoons killed 22 DAFS. Sarcocysts at 22 DAFS were immature and seen only in skeletal muscle. Mature sarcocysts were seen in all skeletal samples, particularly in the tongue of the raccoon 77 DAFS; these sarcocysts were infective to laboratory-raised opossums. This is the first report of the complete development of S. neurona schizonts and sarcocysts in a natural intermediate host.  相似文献   

10.
Equine protozoal myeloencephalitis is the most important protozoan disease of horses in North America and is usually caused by Sarcocystis neurona. Natural cases of encephalitis caused by S. neurona have been reported in skunks (Mephitis mephitis) and raccoons (Procyon lotor). Opossums (Didelphis spp.) are the only known definitive host. Sera from 24 striped skunks, 12 raccoons, and 7 opossums (D. virginiana) from Connecticut were examined for agglutinating antibodies to S. neurona using the S. neurona agglutination test (SAT) employing formalin-fixed merozoites as antigen. The SAT was validated for skunk sera using pre- and postinfection serum samples from 2 experimentally infected skunks. Of the 24 (46%) skunks 11 were positive, and all 12 raccoons were positive for S. neurona antibodies. None of the 7 opossums was positive for antibodies to S. neurona. These results suggest that exposure to sporocysts of S. neurona by intermediate hosts is high in Connecticut. The absence of antibodies in opossums collected from the same areas is most likely because of the absence of systemic infection in the definitive host.  相似文献   

11.
Sarcocystis neurona was isolated in nude mice and gamma-interferon knockout mice fed sporocysts from faeces of naturally infected opossums (Didelphis virginiana). Mice fed sporocysts became lethargic and developed encephalitis. Protozoa were first found in the brain starting 21 days post-inoculation. Sarcocystis neurona was recovered in cell culture from the homogenate of liver, spleen and brain of a nude mouse 11 days after feeding sporocysts. The protozoa in mouse brain and in cell culture multiplied by schizogony and mature schizonts often had a residual body. Sarcocystis falcatula, which has an avian-opossum cycle, was not infective to nude or knockout mice. Protozoa were not found in tissues of nude mice or knockout mice after subcutaneous injection with culture-derived S. falcatula merozoites and sporocysts from the faeces of opossums presumed to contain only S. falcatula. Results demonstrate that S. neurona is distinct from S. falcatula, and that opossums are hosts for both species.  相似文献   

12.
Sarcocystis neurona and Sarcocystis fayeri infections are common in horses in the Americas. Their antemortem diagnosis is important because the former causes a neurological disorder in horses, whereas the latter is considered nonpathogenic. There is a concern that equine antibodies to S. fayeri might react with S. neurona antigens in diagnostic tests. In this study, 4 ponies without demonstrable serum antibodies to S. neurona by Western immunoblot were used. Three ponies were fed 1 x 10(5) to 1 x 10(7) sporocysts of S. fayeri obtained from dogs that were fed naturally infected horse muscles. All ponies remained asymptomatic until the termination of the experiment, day 79 postinoculation (PI). All serum samples collected were negative for antibodies to S. neurona using the Western blot at the initial screening, just before inoculation with S. fayeri (day 2) and weekly until day 79 PI. Cerebrospinal fluid samples from each pony were negative for S. neurona antibodies. Using the S. neurona agglutination test, antibodies to S. neurona were not detected in 1:25 dilution of sera from any samples, except that from pony no. 4 on day 28; this pony had received 1 X 10(7) sporocysts. Using indirect immunofluorescence antibody tests (IFATs), 7 serum samples were found to be positive for S. neurona antibodies from 1:25 to 1:400 dilutions. Sarcocystis fayeri sarcocysts were found in striated muscles of all inoculated ponies, with heaviest infections in the tongue. All sarcocysts examined histologically appeared to contain only microcytes. Ultrastructurally, S. fayeri sarcocysts could be differentiated from S. neurona sarcocysts by the microtubules (mt) in villar protrusions on sarcocyst walls; in S. fayeri the mt extended from the villar tips to the pellicle of zoites, whereas in S. neurona the mt were restricted to the middle of the cyst wall. Results indicate that horses with S. fayeri infections may be misdiagnosed as being S. neurona infected using IFAT, and further research is needed on the serologic diagnosis of S. neurona infections.  相似文献   

13.
Equine protozoal myeloencephalitis (EPM) is a debilitating neurologic disease of the horse. The causative agent. Sarcocystis neurona, has been suggested to be synonymous with Sarcocystis falcatula, implying a role for birds as intermediate hosts. To test this hypothesis, opossums (Didelphis virginiana) were fed muscles containing S. falcatula sarcocysts from naturally infected brown-headed cowbirds (Molothrus ater). Ten horses were tested extensively to ensure no previous exposure to S. neurona and were quarantined for 14 days, and then 5 of the horses were each administered 10(6) S. falcatula sporocysts collected from laboratory opossums. Over a 12-wk period, 4 challenged horses remained clinically normal and all tests for S. neurona antibody and DNA in serum and cerebrospinal fluid were negative. Rechallenge of the 4 seronegative horses had identical results. Although 1 horse developed EPM, presence of S. neurona antibody prior to challenge strongly indicated that infection occurred before sporocyst administration. Viability of sporocysts was confirmed by observing excystation in equine bile in vitro and by successful infection of naive brown-headed cowbirds. These data suggest that S. falcatula and S. neurona are not synonymous. One defining distinction is the apparent inability of S. falcatula to infect horses, in contrast to S. neurona, which was named when cultured from equine spinal cord.  相似文献   

14.
Sarcocystis neurona has become recognized as the major causative agent of equine protozoal myeloencephalitis (EPM) in the Americas. At least 3 pathogenic species of Sarcocystis, including S. neurona, can be isolated from opossums. Methods are needed to ascertain whether these isolates are viable and capable of causing infections. In this study, the nuclear stain propidium iodide (PI) was used to differentiate between live (viable) and heat-killed (nonviable) S. neurona sporocysts. PI was excluded by live sporocysts but penetrated compromised sporocyst membrane and stained sporozoite nuclei of dead sporocysts. After live and dead sporocysts were mixed at various ratios, the number of unstained sporocysts detected after the staining procedure correlated significantly (r2 = 0.9978) with the expected numbers of live sporocysts. Sporocyst mixtures were also assayed for in vitro excystation and development in tissue cultures. The correlation between the percentage of plaques formed in tissue cultures and the percentage of expected infectious (live) sporocysts in each mixture was r2 = 0.6712. By analysis of variance, no statistically significant difference was measured between the percentage of viable sporocysts and the percentage of infectious sporocysts (P = 0.3902) in each mixture. In addition, there was evidence of a relation between PI impermeability of sporocysts and animal infectivity. These results suggest that the PI dye-exclusion technique can be a useful tool in identifying viability and potential infectivity of S. neurona sporocysts and in differentiating between viable and nonviable sporocysts.  相似文献   

15.
Early localization and parasitemia of Sarcocystis neurona were studied in gamma interferon gene knockout (KO) mice fed S. neurona sporocysts. Mice were examined for S. neurona infection histologically and immunohistochemically and by bioassay in KO mice. For bioassay, blood and tissue homogenates were inoculated subcutaneously into KO mice. Parasitemia was demonstrated by bioassay in KO mice 1-8 days after feeding sporocysts (DAFS). Sporozoites were seen in histologic sections of all regions of the small intestine and in cells in Peyer's patches of a mouse killed 6 hr after feeding sporocysts. At 1 DAFS, organisms were present in all regions of the small intestine and were also seen in mesenteric lymph nodes. At 3 DAFS, organisms had begun to invade extraintestinal tissues. Sarcocystis neurona was demonstrated histologically in mouse brain as early as 4 DAFS.  相似文献   

16.
ABSTRACT. Cross-transmission experiments were performed in order to determine the host specificity in the intermediate and definitive hosts of the four described dihomoxenous Sarcocystis species, S. gallotiae, S. stehlinii, S. simonyi , and S. dugesii from lacertid lizards of the genera Gallotia and Podarcis from the Macaronesian Islands. Sarcocysts of either species from experimentally infected lizards were fed to a variety of laboratory-bred lizard species of the genera Gallotia, Lacerta , and Podarcis . These sarcocysts proved to be infectious to all examined animals, showing no definitive host specificity in the tested genera. Lizards of the genera Chalcides and Tarentola , however, were not susceptible definitive hosts for S. gallotiae . The inoculation of experimentally obtained sporocysts of each of the four Sarcocystis species to various lacertid lizard species revealed varying degrees of intermediate host specificity, generally demonstrating each native host to be the most susceptible.  相似文献   

17.
Sarcocystis neurona is the primary parasite associated with equine protozoal myeloencephalitis (EPM). This is a commonly diagnosed neurological disorder in the Americas that infects the central nervous system of horses. Current serologic assays utilize culture-derived parasites as antigen. This method requires large numbers of parasites to be grown in culture, which is labor intensive and time consuming. Also, a culture-derived whole-parasite preparation contains conserved antigens that could cross-react with antibodies against other Sarcocystis species and members of Sarcocystidae such as Neospora spp., Hammondia spp., and Toxoplasma gondii. Therefore, there is a need to develop an improved method for the detection of S. neurona-specific antibodies. The sera of infected horses react strongly to surface antigen 1 (SnSAG1), an approximately 29-kDa protein, in immunoblot analysis, suggesting that it is an immunodominant antigen. The SnSAG1 gene of S. neurona was cloned, and recombinant S. neurona SAG1 protein (rSnSAG1-Bac) was expressed with the use of a baculovirus system. By immunoblot analysis, the rSnSAG1-Bac antigen detected antibodies to S. neurona from naturally infected and experimentally inoculated equids, cats, rabbit, mice, and skunk. This is the first report of a baculovirus-expressed recombinant S. neurona antigen being used to detect anti-S. neurona antibodies in a variety of host species.  相似文献   

18.
Equine protozoal myeloencephalitis is the most important protozoan disease of horses in North America and is usually caused by Sarcocystis neurona. Natural and experimentally induced cases of encephalitis caused by S. neurona have been reported in raccoons (Procyon lotor) and raccoons are an intermediate host for this parasite. A 3-yr-long serological survey was conducted to determine the prevalence of agglutinating antibodies to S. neurona in raccoons collected from Fairfax County, Virginia, a suburban-urban area outside Washington, D.C. Samples from 469 raccoons were examined, and agglutinating antibodies (> or = 1:50 dilution) were found in 433 (92.3%) of the raccoons. This study indicates that exposure to S. neurona is high in this metropolitan area.  相似文献   

19.
Equine protozoal myeloencephalitis is a major cause of neurological disease in horses from the Americas. Horses are considered accidental intermediate hosts. The structure of sporocysts of the causative agent, Sarcocystis neurona, has never been described. Sporocysts of S. neurona were obtained from the intestines of a laboratory-raised opossum fed skeletal muscles from a raccoon that had been fed sporocysts. Sporocysts were 11.3 by 8.2 microm and contained 4 sporozoites. The appearance of the sporocyst residuum was variable. The residuum of some sporocysts was composed of many dispersed granules, whereas some had granules mixed with larger globules. Excystation was by collapse of the sporocyst along plates. The sporocysts wall was composed of 3 layers: a thin electron-dense outer layer, a thin electron-lucent middle layer, and a thick electron-dense inner layer. The sporocyst wall was thickened at the junctions of the plates. Sporozoites were weakly motile and contained a centrally or posteriorly located nucleus. No retractile or crystalloid body was present, but lipidlike globules about 1 microm in diameter were usually present in the conoidal end of sporozoites. Sporozoites contained 2-4 electron-dense rhoptries and other organelles typical of coccidian zoites. Sporozoites entered host cells in culture and underwent schizogony within 3 days.  相似文献   

20.
Sarcocystis neurona is the most important cause of equine protozoal myeloencephalitis (EPM), a neurologic disease of the horse. In the present work, the kinetics of S. neurona invasion is determined in the equine model. Six ponies were orally inoculated with 250 x 10(6) S. neurona sporocysts via nasogastric intubation and killed on days 1, 2, 3, 5, 7, and 9 postinoculation (PI). At necropsy, tissue samples were examined for S. neurona infection. The parasite was isolated from the mesenteric lymph nodes at 1, 2, and 7 days PI; the liver at 2, 5, and 7 days PI; and the lungs at 5, 7, and 9 days PI by bioassays in interferon gamma gene knock out mice (KO) and from cell culture. Microscopic lesions consistent with an EPM infection were observed in brain and spinal cord of ponies killed 7 and 9 days PI. Results suggest that S. neurona disseminates quickly in tissue of naive ponies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号