首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Peroxynitrite is a strong oxidant produced by rapid interaction between superoxide anion and nitric oxide radicals and induces oxidative stress and cell death. Treatment of PC12 cells with 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite, induced the expression of heme oxygenase-1 (HO-1), an antioxidant cytoprotective enzyme. Inhibition of the HO activity by zinc protoporphyrin IX or knockdown of HO-1 gene expression with siRNA exacerbated the SIN-1-induced apoptosis. After SIN-1 treatment, there was a time-related increase in nuclear localization and subsequent binding of NF-E2-related factor 2 (Nrf2) to the antioxidant-responsive element (ARE). Transfection of PC12 cells with dominant-negative Nrf2 abolished the SIN-1-induced increase in Nrf2-ARE binding and subsequent upregulation of HO-1 expression, leading to enhanced cell death. Upon exposure of PC12 cells to SIN-1, the phosphatidylinositol 3-kinase (PI3K) activity was increased in a time-dependent manner. Pretreatment of cells with LY294002, a pharmacologic inhibitor of PI3K or transfection with the kinase-dead mutant Akt abrogated the SIN-1-induced Nrf2 activation and HO-1 expression. Taken together, these results suggest that peroxynitrite activates Nrf2 via PI3K/Akt signaling and enhances Nrf2-ARE binding, which leads to upregulation of HO-1 expression. The SIN-1-induced HO-1 upregulation may confer the adaptive survival response against nitrosative stress.  相似文献   

2.
The antioxidant-responsive element (ARE) plays an important role in the induction of phase II detoxifying enzymes including NADPH:quinone oxidoreductase (NQO1). We report herein that activation of the human NQO1-ARE (hNQO1-ARE) by tert-butylhydroquinone (tBHQ) is mediated by phosphatidylinositol 3-kinase (PI3-kinase), not extracellular signal-regulated kinase (Erk1/2), in IMR-32 human neuroblastoma cells. Treatment with tBHQ significantly increased NQO1 protein without activation of Erk1/2. In addition, PD 98059 (a selective mitogen-activated kinase/Erk kinase inhibitor) did not inhibit hNQO1-ARE-luciferase expression or NQO1 protein induction by tBHQ. Pretreatment with LY 294002 (a selective PI3-kinase inhibitor), however, inhibited both hNQO1-ARE-luciferase expression and endogenous NQO1 protein induction. In support of a role for PI3-kinase in ARE activation we show that: 1) transfection of IMR-32 cells with constitutively active PI3-kinase selectively activated the ARE in a dose-dependent manner that was completely inhibited by treatment with LY 294002; 2) pretreatment of cells with the PI3-kinase inhibitors, LY 294002 and wortmannin, significantly decreased NF-E2-related factor 2 (Nrf2) nuclear translocation induced by tBHQ; and 3) ARE activation by constitutively active PI3-kinase was blocked completely by dominant negative Nrf2. Taken together, these data clearly show that ARE activation by tBHQ depends on PI3-kinase, which lies upstream of Nrf2.  相似文献   

3.
4.
Genipin, an aglycon of geniposide, has been reported to exhibit diverse pharmacological functions such as antitumor and anti-inflammatory effects. This study aimed to elucidate the anti-inflammatory mechanism of genipin, focusing particularly on the role of heme oxygenase-1 (HO-1), a potent anti-inflammatory enzyme. In RAW264.7 cells, genipin increased HO-1 expression and its enzyme activity via a NF-E2-related factor 2 (Nrf2)–antioxidant response element (ARE) pathway. These effects were significantly inhibited by exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, or by expression of a dominant negative mutant of PI 3-kinase. Additional experiments showed that the activation of c-Jun NH2-terminal kinase 1/2 (JNK1/2) is required for genipin-induced phosphorylation and nuclear translocation of Nrf2 and antioxidant response element (ARE)-driven induction of HO-1, and acts as a downstream effector of PI 3-kinase. Furthermore, functional significance of HO-1 induction was revealed by genipin-mediated inhibition of lipopolysaccharide-stimulated inducible nitric oxide synthase expression or cyclooxygenase-2 promoter activity, the response was reversed by the blocking of HO-1 protein synthesis or HO-1 enzyme activity. Therefore, identification of PI 3-kinase-JNK1/2-Nrf2-linked signaling cascade in genipin-mediated HO-1 expression defines the signaling event that could participate in genipin-mediated anti-inflammatory response.  相似文献   

5.
6.
The Nrf2/ARE pathway plays a pivotal role in chemoprevention and neuroprotection. Here, we report that sesquiterpene lactones extracted from Calea urticifolia and feverfew increased enhancer activity of the ARE. ARE activation was dependent on the number of α,β-unsaturated carbonyl groups each compound bears and calealactone A (CL-A) harboring 3 of those was the most potent ARE inducer. At subtoxic doses, CL-A induced expression of heme oxygenase-1 (HO-1) gene, one of ARE target genes, through activation of the Nrf2/ARE pathway involving transient ROS generation and activation of PI3-K/Akt and MAPK pathways. Interestingly, H2O2-induced ARE activation and HO-1 induction were potentiated by pretreatment with CL-A at lower concentrations, at which Nrf2/ARE activation by the compound was minimal. These results suggest a possibility that preconditioning by sesquiterpene lactone may enhance activation of the Nrf2/ARE pathway and induction of phase II detoxification/antioxidant enzymes upon oxidative stress, thereby resulting in increased resistance to oxidative damage.  相似文献   

7.
Induction of heme oxygenase-1 (HO-1) expression has been associated with adaptive cytoprotection against a wide array of toxic insults, but the underlying molecular mechanisms remain largely unresolved. In this study, we investigated the potential role of carbon monoxide (CO), one of the by-products of the HO-1 reaction, in the adaptive survival response to peroxynitrite-induced PC12 cell death. Upon treatment of rat pheochromocytoma (PC12) cells with the peroxynitrite generator 3-morpholinosydnonimine hydrochloride (SIN-1), the cellular GSH level decreased initially, but was gradually restored to the basal level. This was accompanied by increased expression of the catalytic subunit of glutamate-cysteine ligase (GCLC), the rate-limiting enzyme in GSH biosynthesis. The SIN-1-induced GCLC up-regulation was preceded by induction of HO-1 and subsequent CO production. Inhibition of HO activity by zinc protoporphyrin IX or knockdown of HO-1 gene expression by small interfering RNA abrogated the up-regulation of GCLC expression and the subsequent GSH restoration induced by SIN-1. In contrast, additional exposure to the CO-releasing molecule (CO-RM) restored the GSH level previously reduced by inhibition of CO production using zinc protoporphyrin IX. Furthermore, CO-RM treatment up-regulated GCLC expression through activation of Nrf2. The CO-RM-induced activation of Nrf2 was under the control of the phosphatidylinositol 3-kinase/Akt signaling pathway. In conclusion, CO produced by HO-1 rescues PC12 cells from nitrosative stress through induction of GCLC, which is mediated by activation of phosphatidylinositol 3-kinase/Akt and subsequently Nrf2 signaling.  相似文献   

8.
9.
Endothelial dysfunction is associated with the formation of peroxynitrite, described to be toxic. Recent data also suggests that peroxynitrite is able to activate the protective Nrf2 pathway and/or the unfolded protein response (UPR). The aim of our work was to study the response of human endothelial cells to 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor, and to highlight the possible protective roles of Nrf2 or the UPR pathway in this response.Immortal and primary human umbilical vein endothelial cells were exposed to SIN-1. SIN-1 incubation led to Nrf2 activation and to the overexpression of Nrf2-regulated genes, heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1. We also demonstrated that this defensive response protected cells against cell death induced by serum starvation, by reducing apoptosis (monitored by caspase-3 activity and DNA fragmentation) and favoring autophagosome formation, as evidenced by LC3-II accumulation. Interestingly, we observed an activation of the UPR, with a rapid and significant overexpression of CHOP in serum starved cells stimulated with SIN-1. While siRNA mediated knockdown of CHOP had no effect on DNA fragmentation, the invalidation of Nrf2 or HO-1 by siRNA strongly increased DNA fragmentation, but also reinforced the SIN-1-induced LC3-II accumulation.This study shows that peroxynitrite, at least at sublethal concentrations and within a narrow concentration range, could exert protective effects on endothelial cells by modulating the balance between autophagy and apoptosis, through Nrf2-dependent pathways.  相似文献   

10.
Oxidative stress and ferrous metabolism are important in the pathogenesis in Parkinson's disease. In dopaminergic neurons, several stress proteins are upregulated under oxidative stress. To clarify this mechanism, we investigated hemin-related signal transduction and the induction of oxidative stress-related proteins in SH-SY5Y cells. We identified phosphatidylinositol 3-kinase (PI3K) and Nrf2 as important molecules in the induction of heme oxygenase-1, thioredoxin, and peroxiredoxin-I. PI3K-related signal controlled Nrf2 activation, and consequently, PI3K inhibitors blocked the nuclear translocation of Nrf2 and induction of stress proteins. These observations suggest that PI3K and Nrf2 are key molecules in maintaining suitable conditions under oxidative stress and ferrous metabolism.  相似文献   

11.
12.
In this study, we investigated the protective effects of gastrodin (Gas) against homocysteine-induced human umbilical vein endothelial cell (HUVEC) injury and the role of the phosphoinositide 3-kinase (PI3K)/threonine kinase 1 (Akt)/endothelial nitric oxide synthase (eNOS) and NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathways. We stimulated cells with homocysteine (1 mmol/L, 24 hours) and tested the effects of gastrodin (200-800 μg/mL) on cell viability and the production of malondialdehyde (MDA), lactate dehydrogenase (LDH) and reactive oxygen species (ROS). Then, Nrf2 distribution in the cytoplasm and nucleus as well as the expression of enzymes downstream of Nrf2 was determined. Furthermore, we analysed the expression of bax, bcl-2 and cleaved caspase3, and assessed the involvement of the PI3K/Akt/eNOS pathway by Western blots. Finally, we tested the vasoactive effect of gastrodin in thoracic aortic rings. The results showed that gastrodin decreased MDA, LDH and ROS production and increased cell viability, NO production and relaxation of thoracic aortic rings. Moreover, the protective effects of Gas on NO production and relaxation of thoracic aortic rings were blocked by L-NAME but enhanced by Cav-1 knockdown, and MK-2206 treatment abolished the effect of Gas on the ROS. In addition, treatment with gastrodin increased Nrf2 nuclear translocation, thus enhancing the expression of downstream enzymes. Finally, gastrodin increased the expression of PI3K, p-Akt, and eNOS and decreased Cav-1 protein expression. In conclusion, our study suggested that gastrodin may protect HUVECs from homocysteine-induced injury, and the PI3K/Akt/eNOS and Nrf2/ARE pathways may be responsible for the efficacy of gastrodin.  相似文献   

13.
14.
15.
16.
17.
18.
Protein-calorie malnutrition (PCM) represents a global health problem. The breakdown rate of glutathione S-transferase (GST) subunits determines their differential contents during protein depletion. Hepatic GST expression and the underlying mechanistic basis were investigated in PCM rats. PCM caused no change in rGSTA1/2 subunit. In contrast, rGSTA3/5 subunit was 2.4-fold induced during PCM, while the levels for rGSTM1 and M2 subunits were 30% and 70% suppressed. Increased GSTA3/5 expression was significantly prevented by cysteine or methionine treatment, although such treatment failed to restore the rGSTM2 level. In contrast to differential GST protein expression, PCM caused a 5-10-fold increase in rGSTA2/A3/A5 and M1 mRNAs, whereas rGSTM2 mRNA was 70% decreased. The elevations in rGSTA2/A3/A5 and M1 mRNAs were completely abolished by cysteine or methionine treatment during PCM, although the rGSTM2 mRNA level was not restored. PCM induced oxidative stress in the liver, as evidenced by protein carbonylation. Antioxidant response element (ARE)-binding activity of nuclear extracts from PCM rats was increased, which was immunodepleted with anti-Nrf-1/2 antibodies. Activation of nuclear ARE-binding proteins was inhibited by cysteine. Data showed that hepatic GSTs were differentially expressed during PCM, that certain GST mRNAs were increased with the ARE activation, and that cysteine was active in preventing increases in GST mRNAs and ARE activation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号