首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the "nonamer binding region," which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease.  相似文献   

2.
The sequence specificity of the recombination activating gene (RAG) complex during V(D)J recombination has been well studied. RAGs can also act as structure-specific nuclease; however, little is known about the mechanism of its action. Here, we show that in addition to DNA structure, sequence dictates the pattern and efficiency of RAG cleavage on altered DNA structures. Cytosine nucleotides are preferentially nicked by RAGs when present at single-stranded regions of heteroduplex DNA. Although unpaired thymine nucleotides are also nicked, the efficiency is many fold weaker. Induction of single- or double-strand breaks by RAGs depends on the position of cytosines and whether it is present on one or both of the strands. Interestingly, RAGs are unable to induce breaks when adenine or guanine nucleotides are present at single-strand regions. The nucleotide present immediately next to the bubble sequence could also affect RAG cleavage. Hence, we propose “C(d)C(S)C(S)” (d, double-stranded; s, single-stranded) as a consensus sequence for RAG-induced breaks at single-/double-strand DNA transitions. Such a consensus sequence motif is useful for explaining RAG cleavage on other types of DNA structures described in the literature. Therefore, the mechanism of RAG cleavage described here could explain facets of chromosomal rearrangements specific to lymphoid tissues leading to genomic instability.  相似文献   

3.
The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Breaks in chromosome 18 are localized at the 3'-UTR of BCL2 gene or downstream and are mainly clustered in either the major breakpoint region or the minor breakpoint cluster region (mcr). The recombination activating gene (RAG) complex induces breaks at IgH locus of chromosome 14, whereas the mechanism of fragility at BCL2 mcr remains unclear. Here, for the first time, we show that RAGs can nick mcr; however, the mechanism is unique. Three independent nicks of equal efficiency are generated, when both Mg(2+) and Mn(2+) are present, unlike a single nick during V(D)J recombination. Further, we demonstrate that RAG binding and nicking at the mcr are independent of nonamer, whereas a CCACCTCT motif plays a critical role in its fragility, as shown by sequential mutagenesis. More importantly, we recapitulate the BCL2 mcr translocation and find that mcr can undergo synapsis with a standard recombination signal sequence within the cells, in a RAG-dependent manner. Further, mutation to the CCACCTCT motif abolishes recombination within the cells, indicating its vital role. Hence, our data suggest a novel, physiologically relevant, nonamer-independent mechanism of RAG nicking at mcr, which may be important for generation of chromosomal translocations in humans.  相似文献   

4.
The lymphoid-specific proteins RAG1 and RAG2 initiate V(D)J recombination by introducing DNA double-strand breaks at the recombination signal sequences (RSSs). In addition to DNA cleavage, the versatile RAG1/2 complex is capable of catalyzing several other reactions, including hybrid joint formation and the transposition of signal ends into a second DNA. Here we show that the RAG1/2 complex also mediates an unusual strand transfer reaction, inverse transposition, in which non-RSS DNA is cleaved and subsequently transferred to an RSS sequence by direct transesterification. Characterization of the reaction products and requirements suggests that inverse transposition is related to both hybrid joint formation and signal-end transposition. This aberrant activity provides another possible mechanism for some chromosomal translocations present in lymphoid tumors.  相似文献   

5.
V(D)J recombination entails double-stranded DNA cleavage at the antigen receptor loci by the RAG1/2 proteins, which recognize conserved recombination signal sequences (RSSs) adjoining variable (V), diversity (D) and joining (J) gene segments. After cleavage, RAG1/2 remain associated with the coding and signal ends (SE) in a post-cleavage complex (PCC), which is critical for their proper joining by classical non-homologous end joining (NHEJ). Certain mutations in RAG1/2 destabilize the PCC, allowing DNA ends to access inappropriate repair pathways such as alternative NHEJ, an error-prone pathway implicated in chromosomal translocations. The PCC is thus thought to discourage aberrant rearrangements by controlling repair pathway choice. Since interactions between RAG1/2 and the RSS heptamer element are especially important in forming the RAG-SE complex, we hypothesized that non-consensus heptamer sequences might affect PCC stability. We find that certain non-consensus heptamers, including a cryptic heptamer implicated in oncogenic chromosomal rearrangements, destabilize the PCC, allowing coding and SEs to be repaired by non-standard pathways, including alternative NHEJ. These data suggest that some non-consensus RSS, frequently present at chromosomal translocations in lymphoid neoplasms, may promote genomic instability by a novel mechanism, disabling the PCC’s ability to restrict repair pathway choice.  相似文献   

6.
Pavlicek JW  Lyubchenko YL  Chang Y 《Biochemistry》2008,47(43):11204-11211
During V(D)J recombination, site specific DNA excision is dictated by the binding of RAG1/2 proteins to the conserved recombination signal sequence (RSS) within the genome. The interaction between RAG1/2 and RSS is thought to involve a large DNA distortion that is permissive for DNA cleavage. In this study, using atomic force microscopy imaging (AFM), we analyzed individual RAG-RSS complexes, in which the bending angle of RAG-associated RSS substrates could be visualized and quantified. We provided the quantitative measurement on the conformations of specific RAG-12RSS complexes. Previous data indicating the necessity of RAG2 for recombination implies a structural role in the RAG-RSS complex. Surprisingly, however, no significant difference was observed in conformational bending with AFM between RAG1-12RSS and RAG1/2-12RSS. RAG1 was found sufficient to induce DNA bending, and the addition of RAG2 did not change the bending profile. In addition, a prenicked 12RSS bound by RAG1/2 proteins displayed a conformation similar to the one observed with the intact 12RSS, implying that no greater DNA bending occurs after the nicking step in the signal complex. Taken together, the quantitative AFM results on the components of the recombinase emphasize a tightly held complex with a bend angle value near 60 degrees , which may be a prerequisite step for the site-specific nicking by the V(D)J recombinase.  相似文献   

7.
Mammalian immune receptor diversity is established via a unique restricted set of site-specific DNA rearrangements in lymphoid cells, known as V(D)J recombination. The lymphoid-specific RAG1-RAG2 protein complex (RAG1/2) initiates this process by binding to two types of recombination signal sequences (RSS), 12RSS and 23RSS, and cleaving at the boundaries of RSS and V, D, or J gene segments, which are to be assembled into immunoglobulins and T-cell receptors. Here we dissect the ordered assembly of the RAG1/2 heterotetramer with 12RSS and 23RSS DNAs. We find that RAG1/2 binds only a single 12RSS or 23RSS and reserves the second DNA-binding site specifically for the complementary RSS, to form a paired complex that reflects the known 12/23 rule of V(D)J recombination. The assembled RAG1/2 paired complex is active in the presence of Mg2+, the physiologically relevant metal ion, in nicking and double-strand cleavage of both RSS DNAs to produce a signal-end complex. We report here the purification and initial crystallization of the RAG1/2 signal-end complex for atomic-resolution structure elucidation. Strict pairing of the 12RSS and 23RSS at the binding step, together with information from the crystal structure of RAG1/2, leads to a molecular explanation of the 12/23 rule.  相似文献   

8.
The most common chromosomal translocation in cancer, t(14;18) at the 150-bp bcl-2 major breakpoint region (Mbr), occurs in follicular lymphomas. The bcl-2 Mbr assumes a non-B DNA conformation, thus explaining its distinctive fragility. This non-B DNA structure is a target of the RAG complex in vivo, but not because of its primary sequence. Here we report that the RAG complex generates at least two independent nicks that lead to double-strand breaks in vitro, and this requires the non-B DNA structure at the bcl-2 Mbr. A 3-bp mutation is capable of abolishing the non-B structure formation and the double-strand breaks. The observations on the bcl-2 Mbr reflect more general properties of the RAG complex, which can bind and nick at duplex-single-strand transitions of other non-B DNA structures, resulting in double-strand breaks in vitro. Hence, the present study reveals novel insight into a third mechanism of action of RAGs on DNA, besides the standard heptamer/nonamer-mediated cleavage in V(D)J recombination and the in vitro transposase activity.  相似文献   

9.
During V(D)J recombination, processing of branched coding end intermediates is essential for generating junctional diversity. Here, we report that the RAG1/ RAG2 recombinase is a 3' flap endonuclease. Substrates of this nuclease activity include various coding end intermediates, suggesting a direct role for RAG1/ RAG2 in generating junctional diversity during V(D)J recombination. Evidence is also provided indicating that site-specific RSS nicking involves RAG1/RAG2-mediated processing of a localized flap-like structure, implying 3' flap nicking in multiple DNA processing reactions. We have also demonstrated that the bacterial transposase Tn10 contains a 3' flap endonuclease activity, suggesting a mechanistic parallel between RAG1/RAG2 and other transposases. Based on these data, we propose that numerous transposases may facilitate genomic evolution by removing single-stranded extensions during the processing of excision site junctions.  相似文献   

10.
The lymphoid cell-specific proteins RAG1 and RAG2 initiate V(D)J recombination by cleaving DNA adjacent to recombination signals, generating blunt signal ends and covalently sealed, hairpin coding ends. A critical next step in the reaction is opening of the hairpins, but the factor(s) responsible has not been identified and had been thought to be a ubiquitous component(s) of the DNA repair machinery. Here we demonstrate that RAG1 and RAG2 possess an intrinsic single-stranded nuclease activity capable of nicking hairpin coding ends at or near the hairpin tip. In Mn2+, a synthetic hairpin is nicked 5 nucleotides (nt) 5' of the hairpin tip, with more distant sites of nicking suppressed by HMG2. In Mg2+, hairpins generated by V(D)J cleavage are nicked whereas synthetic hairpins are not. Cleavage-generated hairpins are nicked at the tip and predominantly 1 to 2 nt 5' of the tip. RAG1 and RAG2 may therefore be responsible for initiating the processing of coding ends and for the generation of P nucleotides during V(D)J recombination.  相似文献   

11.

Background  

V(D)J recombination is initiated in antigen receptor loci by the pairwise cleavage of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins via a nick-hairpin mechanism. The RSS contains highly conserved heptamer (consensus: 5'-CACAGTG) and nonamer (consensus: 5'-ACAAAAACC) motifs separated by either 12- or 23-base pairs of poorly conserved sequence. The high mobility group proteins HMGB1 and HMGB2 (HMGB1/2) are highly abundant architectural DNA binding proteins known to promote RAG-mediated synapsis and cleavage of consensus recombination signals in vitro by facilitating RSS binding and bending by the RAG1/2 complex. HMGB1/2 are known to recognize distorted DNA structures such as four-way junctions, and damaged or modified DNA. Whether HMGB1/2 can promote RAG-mediated DNA cleavage at sites lacking a canonical RSS by targeting or stabilizing structural distortions is unclear, but is important for understanding the etiology of chromosomal translocations involving antigen receptor genes and proto-oncogene sequences that do not contain an obvious RSS-like element.  相似文献   

12.
RAG1 and RAG2 play a central role in V(D)J recombination, a process for antigen receptor gene assembly. The truncated ‘core’ regions of RAGs are sufficient to catalyze the recombination reaction, although with lower joining efficiency than full-length proteins. To investigate the role of the non-core regions of RAGs in the end-joining phase of antigen receptor rearrangement, we analyzed recombination products isolated from core RAG1 and core RAG2 knock-in mice. Here, we report that the truncation of RAGs increases the frequency of aberrant recombination in vivo. Signal joints (SJs) associated with V-to-D recombination of core RAG1 knock-in mice were normal, whereas those of core RAG2 knock-in mice were highly imprecise, containing large deletions and additions, and in some cases coding sequences. In contrast, we found an elevated level of imprecise D-to-J associated SJs for both core RAG1- and RAG2-expressing mice. Likewise, sequences of coding joints (CJs) were also affected by the expression of core RAGs. Finally, sequences found at the junctions of rearranged T-cell receptor loci were highly influenced by differences in rearranging recombination signal sequence pairs. We provide the first evidence that the non-core regions of RAGs have critical functions in the proper assembly and resolution of recombination intermediates in endogenous antigen receptor loci.  相似文献   

13.
RAG-1 and RAG-2 initiate V(D)J recombination by binding to specific recognition sequences (RSS) and then cleave the DNA in two steps: nicking and hairpin formation. Recent work has established that a dimer of RAG-1 and either one or two monomers of RAG-2 bind to a single RSS, but the enzymatic contributions of the RAG molecules within this nucleoprotein complex and its functional organization have not been elucidated. Using heterodimeric protein preparations containing both wild-type and catalytically deficient RAG-1 molecules, we found that one active monomer is sufficient for both nicking and hairpin formation at a single RSS, demonstrating that a single active site can carry out both cleavage steps. Furthermore, the mutant heterodimers efficiently cleaved both RSS in a synaptic complex. These results strongly suggest that two RAG-1 dimers are responsible for RSS cleavage in a synaptic complex, with one monomer of each dimer catalyzing both nicking and hairpin formation at each RSS.  相似文献   

14.
V(D)J recombination is a process integral to lymphocyte development. However, this process is not always benign, since certain lymphoid malignancies exhibit recurrent chromosomal abnormalities, such as translocations and deletions, that harbor molecular signatures suggesting an origin from aberrant V(D)J recombination. Translocations involving LMO2, TAL1, Ttg-1, and Hox11, as well as a recurrent interstitial deletion at 1p32 involving SIL/SCL, are cited examples of illegitimate V(D)J recombination. Previous studies using extrachromosomal substrates reveal that cryptic recombination signal sequences (cRSSs) identified near the translocation breakpoint in these examples support V(D)J recombination with efficiencies ranging from about 30- to 20,000-fold less than bona fide V(D)J recombination signals. To understand the molecular basis for these large differences, we investigated the binding and cleavage of these cRSSs by the RAG1/2 proteins that initiate V(D)J recombination. We find that the RAG proteins comparably bind all cRSSs tested, albeit more poorly than a consensus RSS. We show that four cRSSs that support levels of V(D)J recombination above background levels in cell culture (LMO2, TAL1, Ttg-1, and SIL) are also cleaved by the RAG proteins in vitro with efficiencies ranging from 18 to 70% of a consensus RSS. Cleavage of LMO2 and Ttg-1 by the RAG proteins can also be detected in cell culture using ligation-mediated PCR. In contrast, Hox11 and SCL are nicked but not cleaved efficiently in vitro, and cleavage at other adventitious sites in plasmid substrates may also limit the ability to detect recombination activity at these cRSSs in cell culture.  相似文献   

15.
Lieber MR  Yu K  Raghavan SC 《DNA Repair》2006,5(9-10):1234-1245
When a single double-strand break arises in the genome, nonhomologous DNA end joining (NHEJ) is a major pathway for its repair. When double-strand breaks arise at two nonhomologous sites in the genome, NHEJ also appears to be a major pathway by which the translocated ends are joined. The mechanism of NHEJ is briefly summarized, and alternative enzymes are also discussed. V(D)J recombination and class switch recombination are specialized processes designed to create double-strand DNA breaks at specific locations in the genomes of lymphoid cells. Sporadic Burkitt's lymphoma and myelomas can arise due to translocation of the c-myc gene into the Ig heavy chain locus during class switch recombination. In other lymphoid neoplasms, the RAG complex can create double-strand breaks that result in a translocation. Such RAG-generated breaks occur at very specific nucleotides that are directly adjacent to sequences that resemble canonical heptamer/nonamer sequences characteristic of normal V(D)J recombination. This occurs in some T cell leukemias and lymphomas. The RAG complex also appears capable of recognizing regions for their altered DNA structure rather than their primary sequence, and this may account for the action by RAGs at some chromosomal translocation sites, such as at the bcl-2 major breakpoint region in the follicular lymphomas that arise in B lymphocytes.  相似文献   

16.
Melek M  Gellert M 《Cell》2000,101(6):625-633
During B and T cell development, the RAG1/RAG2 protein complex cleaves DNA at conserved recombination signal sequences (RSS) to initiate V(D)J recombination. RAG1/2 has also been shown to catalyze transpositional strand transfer of RSS-containing substrates into target DNA to form branched DNA intermediates. We show that RAG1/2 can resolve these intermediates by two pathways. RAG1/2 catalyzes hairpin formation on target DNA adjacent to transposed RSS ends in a manner consistent with a model leading to chromosome translocations. Alternatively, disintegration removes transposed donor DNA from the intermediate. At high magnesium concentrations, such as are present in mammalian cells, disintegration is the favored pathway of resolution. This may explain in part why RAG1/2-mediated transposition does not occur at high frequency in cells.  相似文献   

17.
Somatic V(D)J recombination of the immune receptor genes is mediated by the recombination signal sequence (RSS) and the recombination-activating genes RAG1 and RAG2. Previously, proteins binding specifically to the RSS have been characterized in nuclear extracts of T and B lymphocytes. Further elucidation of the role of those RSS-binding proteins in V(D)J recombination, however, has been hampered by the fact that their identities have not been established. Here, we show that the major RSS-binding protein present in the nuclear extracts of B lymphocytes is an Mr 135,000 species. Notably, its affinity for the RSS decreased when RAG1 and RAG2 were induced. In immunoblot analyses and gel supershift assays, we showed that KRC antisera react with the Mr 135,000 RSS-binding protein. We previously cloned KRC from a thymocyte expression library using 32P-RSS as a ligand and showed that KRC fusion proteins bind specifically to the RSS and to the kappaB enhancer motif. The lymphoid expression and DNA-binding characteristics suggest that KRC may be involved in lymphocyte development.  相似文献   

18.
Antibody and T cell receptor genes are assembled from gene segments by V(D)J recombination to produce an almost infinitely diverse repertoire of antigen specificities. Recombination is initiated by cleavage of conserved recombination signal sequences (RSS) by RAG1 and RAG2 during lymphocyte development. Recent evidence demonstrates that recombination can occur at noncanonical RSS sites within Ig genes or at other loci, outside the context of normal lymphocyte receptor gene rearrangement. We have characterized the ability of the RAG proteins to bind and cleave a cryptic RSS (cRSS) located within an Ig V(H) gene segment. The RAG proteins bound with sequence specificity to either the consensus RSS or the cRSS. The RAG proteins nick the cRSS on both the top and bottom strands, thereby bypassing the formation of the DNA hairpin intermediate observed in RAG cleavage of canonical RSS substrates. We propose that the RAG proteins may utilize an alternative mechanism for double-stranded DNA cleavage, depending on the substrate sequence. These results have implications for further diversification of the antigen receptor repertoire as well as the role of the RAG proteins in genomic instability.  相似文献   

19.
RAG1 and RAG2 (RAGs) initiate V(D)J recombination by introducing breaks between two coding segments and flanking recombination signals (RSs). Nonhomologous end-joining (NHEJ) proteins then join the coding segments and join the RSs. In wild-type cells, both full-length and truncated ("core") RAGs lead to accumulation of "hybrid" V(D)J joins, in which an RS is appended to a different coding sequence. We now show that while hybrid joins do not accumulate in NHEJ-deficient cells that express full-length RAGs, they do accumulate in NHEJ-deficient cells that express the core RAGS; like those catalyzed by core RAGs in vitro, however, they are sealed on just one DNA strand. These results suggest a potential role for the non-core regions in repressing potentially harmful transposition events.  相似文献   

20.
The RAG1 and RAG2 proteins initiate V(D)J recombination by introducing double-strand breaks at the border between a recombination signal sequence (RSS) and a coding segment. To understand the distinct functions of RAG1 and RAG2 in signal recognition, we have compared the DNA binding activities of RAG1 alone and RAG1 plus RAG2 by gel retardation and footprinting analyses. RAG1 exhibits only a three- to fivefold preference for binding DNA containing an RSS over random sequence DNA. Although direct binding of RAG2 by itself was not detected, the presence of both RAG1 and RAG2 results in the formation of a RAG1-RAG2-DNA complex which is more stable and more specific than the RAG1-DNA complex and is active in V(D)J cleavage. These results suggest that biologically effective discrimination between an RSS and nonspecific sequences requires both RAG1 and RAG2. Unlike the binding of RAG1 plus RAG2, RAG1 can bind to DNA in the absence of a divalent metal ion and does not require the presence of coding flank sequence. Footprinting of the RAG1-RAG2 complex with 1,10-phenanthroline-copper and dimethyl sulfate protection reveal that both the heptamer and the nonamer are involved. The nonamer is protected, with extensive protein contacts within the minor groove. Conversely, the heptamer is rendered more accessible to chemical attack, suggesting that binding of RAG1 plus RAG2 distorts the DNA near the coding/signal border.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号