首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Neutral endopeptidase (NEP) is one of the major endopeptidases responsible for the inactivation of substance P in the carotid body, a neurotransmitter shown to be important in the transduction of hypoxic stimuli. Ventilatory responses to acute hypoxia were measured by indirect plethysmography in unanesthetized, unrestrained wild-type mice and in mice in which the NEP gene was deleted (NEP -/-). Ventilation was measured while the animals breathed room air: 12% O(2) in N(2) and 8% O(2) in N(2). Deletion of the NEP gene caused marked alterations in both the magnitude and composition of the hypoxic ventilatory response to both 8% O(2) in N(2) and 12% O(2) in N(2), compared with the wild-type mice (C57BL/6J) on the same genetic background as the NEP -/- mice. Treatment of C57BL/6J mice with thiorphan, a NEP inhibitor, resulted in a greater ventilatory response to 8% O(2) because of a significantly greater shortening of expiratory time. The results of these studies demonstrate that NEP plays an important role in modifying the expression of the ventilatory response to acute hypoxia.  相似文献   

2.
Objectives: The lipopolysaccharide (LPS)-induced acute lung injury (ALI) model has been widely applied for pathophysiological and pharmacological research. The aim of present study is to understand the variation of acute pulmonary inflammation between mouse strains. Methods: The present study investigated the susceptibility of acute production of inflammatory mediators, e.g. cytokines, chemokines and others, to LPS in C57BL/6J, Balb/cJ, DBA/1J, CD-1, NMRI, DBA/2J, A/J, and C3H/HeN mice. Results: The susceptibility to intra-tracheal challenge with LPS varied between measured variables, durations and strains. General lung hyper-reactive susceptibility to LPS-induced pulmonary production of 6–8 inflammatory mediators followed the order NMRI, Balb/cJ, C3H/HeN, A/J, C57BL/6J, DBA/1J, DBA/2J and CD-1 mice at 4 h, and A/J, C3H/HeN, CD-1, NMRI, C57BL/6J, Balb/cJ, DBA/2J and DBA/1J mice at 24 h. Conclusions: Our data provide information for scientists to consider the proper strain of mice for the measurement of specific inflammatory mediators and to select sensitive or resistant mouse strains for understanding genetic variation in the pathogenesis and for the screening of target-oriented drug development.  相似文献   

3.
BACKGROUND: Methanol causes axial skeleton and craniofacial defects in both CD-1 and C57BL/6J mice during gastrulation, but C57BL/6J embryos are more severely affected. We evaluated methanol-induced pathogenesis in CD-1 and C57BL/6J embryos exposed during gastrulation in whole embryo culture. METHODS: Conceptuses with five to seven somites were exposed to 0, 1, 2, 3, 4, or 6 mg methanol/ml culture medium for 24 hr and embryonic morphology was assessed. Cell death was evaluated by histology and LysoTracker red staining, and cell-cycle distribution was evaluated by flow cytometry. RESULTS: In C57BL/6J embryos, craniofacial defects were observed at 3 mg methanol/ml and greater. The response for CD-1 embryos was different, with increased dysmorphology only at 6 mg/ml. However, protein content in CD-1 embryos was reduced at 3 mg methanol/ml and above, indicating growth retardation. Yolk sac toxicity occurred only at 6 mg methanol/ml in both strains. Methanol caused only small changes in cell-cycle distribution, while cell death was induced at 4 and 6 mg methanol/ml in both strains after 8 hr. The extent of cell death after 8 hr was greater in C57BL/6J embryos, and increased over time through 18 hr; in contrast, CD-1 embryos showed less cell death at 18 than at 8 hr, suggesting recovery. CONCLUSIONS: Cell death plays a prominent role in methanol-induced dysmorphogenesis, while cell-cycle perturbation may not. Differences in the extent of cell death between CD-1 and C57BL/6J embryos correlated with differences in the severity of dysmorphogenesis.  相似文献   

4.
Muscle fiber type, myosin heavy chain (MHC) isoform composition, capillary density (CD) and citrate synthase (CS) activity were investigated in predominantly slow-twitch (soleus or SOL) and fast-twitch (extensor digitorum longus or EDL) skeletal muscle from mice with inherited differences in hypoxic exercise tolerance. Striking differences in hypoxic exercise tolerance previously have been found in two inbred strains of mice, Balb/cByJ (C) and C57BL/6J (B6), and their F1 hybrid following exposure to hypobaric hypoxia. Mice from the three strains were exposed for 8 weeks to either normobaric normoxia or hypobaric hypoxia (1/2 atm). Hypoxia exposure led to a slightly higher 2b fiber composition and a lower fiber area of types 1 and 2a in SOL of all mice. In the EDL, muscle fiber and MHC isoform composition remained unaffected by chronic hypoxia. Chronic hypoxia did not significantly affect CD in either muscle from any of the three strains. There were relatively larger differences in CS activity among strains and treatment, and in SOL the highest CS activity was found in the F1 mice that had been acclimated to hypoxia. In general, however, neither differences among strains nor treatment in these properties of muscle vary in a way that clearly relates to inherited hypoxic exercise tolerance.  相似文献   

5.
Genetic background is important in determining susceptibility to metabolic abnormalities such as insulin resistance and beta-cell dysfunction. Islet amyloid is associated with reduced beta-cell mass and function and develops in the majority of our C57BL/6J x DBA/2J (F(1)) male human islet amyloid polypeptide (hIAPP) transgenic mice after 1 yr of increased fat feeding. To determine the relative contribution of each parental strain, C57BL/6J (BL6) and DBA/2J (DBA2), to islet amyloid formation, we studied male hIAPP mice on each background strain (BL6, n = 13; and DBA2 n = 11) and C57BL/6J x DBA/2J F(1) mice (n = 17) on a 9% (wt/wt) fat diet for 1 yr. At the end of 12 mo, islet amyloid deposition was quantified from thioflavin S-stained pancreas sections. The majority of mice in all groups developed islet amyloid (BL6: 91%, F(1): 76%, DBA2: 100%). However, the prevalence (%amyloid-positive islets; BL6: 14 +/- 3%, F(1): 44 +/- 8%, DBA2: 49 +/- 9%, P < 0.05) and severity (%islet area occupied by amyloid; BL6: 0.03 +/- 0.01%, F(1): 9.2 +/- 2.9%, DBA2: 5.7 +/- 2.3%, p < or = 0.01) were significantly lower in BL6 than F(1) and DBA2 mice. Increased islet amyloid severity was negatively correlated with insulin-positive area per islet, in F(1) (r(2) = 0.75, P < 0.001) and DBA2 (r(2) = 0.87, P < 0.001) mice but not BL6 mice (r(2) = 0.07). In summary, the extent of islet amyloid formation in hIAPP transgenic mice is determined by background strain, with mice expressing DBA/2J genes (F(1) and DBA2 mice) being more susceptible to amyloid deposition that replaces beta-cell mass. These findings underscore the importance of genetic and environmental factors in studying metabolic disease.  相似文献   

6.
We investigated the effects of 1) acute hypoxia and 2) 5 wk of chronic intermittent hypoxia (IH) on the systemic and pulmonary circulations of C57BL/6J mice. Mice were chronically instrumented with either femoral artery or right ventricular catheters. In response to acute hypoxia (4 min of 10% O2; n = 6), systemic arterial blood pressure fell (P < 0.005) from 107.7 +/- 2.5 to 84.7 +/- 6.5 mmHg, whereas right ventricular pressure increased (P < 0.005) from 11.7 +/- 0.8 to 14.9 +/- 1.3 mmHg. Another cohort of mice was then exposed to IH for 5 wk (O2 nadir = 5%, 60-s cycles, 12 h/day) and then implanted with catheters. In response to 5 wk of chronic IH, mice (n = 8) increased systemic blood pressure by 7.5 mmHg, left ventricle + septum weight by 32.2 +/- 7.5 x 10(-2) g/100 g body wt (P < 0.015), and right ventricle weight by 19.3 +/- 3.2 x 10(-2) g/100 g body wt (P < 0.001), resulting in a 14% increase in the right ventricle/left ventricle + septum weight (P < 0.005). We conclude that in C57BL/6J mice 1) acute hypoxia causes opposite effects on the pulmonary and systemic circulations, leading to preferential loading of the right heart; and 2) chronic IH in mice results in mild to moderate systemic and pulmonary hypertension, with resultant left- and right-sided ventricular hypertrophy.  相似文献   

7.
Acutely lowering ambient O(2) tension increases ventilation in many mammalian species, including humans and mice. Inheritance patterns among kinships and between mouse strains suggest that a robust genetic influence determines individual hypoxic ventilatory responses (HVR). Here, we tested specific genetic hypotheses to describe the inheritance patterns of HVR phenotypes among two inbred mouse strains and their segregant and nonsegregant progeny. Using whole body plethysmography, we assessed the magnitude and pattern of ventilation in C3H/HeJ (C3) and C57BL/6J (B6) progenitor strains at baseline and during acute (3-5 min) hypoxic [mild hypercapnic hypoxia, inspired O(2) fraction (FI(O(2))) = 0.10] and normoxic (mild hypercapnic normoxia, FI(O(2)) = 0.21) inspirate challenges in mild hypercapnia (inspired CO(2) fraction = 0.03). First- and second-filial generations and two backcross progeny were also studied to assess response distributions of HVR phenotypes relative to the parental strains. Although the minute ventilation (VE) during hypoxia was comparable between the parental strains, breathing frequency (f) and tidal volume were significantly different; C3 mice demonstrated a slow, deep HVR relative to a rapid, shallow phenotype of B6 mice. The HVR profile in B6C3F(1)/J mice suggested that this offspring class represented a third phenotype, distinguishable from the parental strains. The distribution of HVR among backcross and intercross offspring suggested that the inheritance patterns for f and VE during mild hypercapnic hypoxia are consistent with models that incorporate two genetic determinants. These results further suggest that the quantitative genetic expression of alleles derived from C3 and B6 parental strains interact to significantly attenuate individual HVR in the first- and second-filial generations. In conclusion, the genetic control of HVR in this model was shown to exhibit a relatively simple genetic basis in terms of respiratory timing characteristics.  相似文献   

8.
品系对小鼠胚胎干细胞分离效率的影响   总被引:4,自引:0,他引:4  
为了充分利用小鼠胚胎干(ES)细胞,就必须从众多小鼠品系中分离ES细胞系。本研究通过传统的成纤维细胞饲养层法,从CD-1、129/Sv、C57BL/6J和129/Sv×C57BL/6J四种不同遗传背景的小鼠中分离得到12个ES细胞系,而从KM小鼠没有得到ES细胞系。所有的ES细胞系都具有典型的ES细胞特征,AKP染色呈阳性。从四种不同遗传背景的ES细胞系得到了包含多种组织的畸胎瘤;与桑椹胚聚合后,都得到了生殖系嵌合体。结果表明:品系对小鼠ES细胞的分离有显著影响,利用129小鼠以及包含129小鼠遗传背景的杂交小鼠都较容易分离ES细胞,由ES细胞得到生殖系嵌合体的效率在不同品系间有显著差异,从杂交ES细胞比近交ES细胞中更容易得到生殖系嵌合体。  相似文献   

9.
A major impediment to novel drug development has been the paucity of animal models that accurately reflect symptoms of affective disorders. In animal models, prolonged social stress has proven to be useful in understanding the molecular mechanisms underlying affective-like disorders. When considering experimental approaches for studying depression, social defeat stress, in particular, has been shown to have excellent etiological, predictive, discriminative and face validity. Described here is a protocol whereby C57BL/6J mice that are repeatedly subjected to bouts of social defeat by a larger and aggressive CD-1 mouse results in the development of a clear depressive-like syndrome, characterized by enduring deficits in social interactions. Specifically, the protocol consists of three important stages, beginning with the selection of aggressive CD-1 mice, followed by agonistic social confrontations between the CD-1 and C57BL/6J mice, and concluding with the confirmation of social avoidance in subordinate C57BL/6J mice. The automated detection of social avoidance allows a marked increase in throughput, reproducibility and quantitative analysis. This protocol is highly adaptable, but in its most common form it requires 3-4 weeks for completion.  相似文献   

10.
We previously reported the unexpected finding that 4 wk of exposure to intermittent hypoxia (IH), which simulates the hypoxic stress of obstructive sleep apnea, improved LV cardiac function in healthy, lean C57BL/6J mice. The purpose of the present study was to assess the impact of 4 wk of IH on cardiac function in a transgenic murine model that exhibits a natural history of heart failure. We hypothesized that IH exposure would exacerbate cardiac decompensation in heart failure. Adult male FVB (wild type) and transgenic mice with cardiac overexpression of tumor necrosis factor α (TNF-αTG) at 10-12 wk of age were exposed to 4 wk of IH (nadir inspired oxygen 5-6% at 60 cycles/h for 12 h during light period) or intermittent air (IA) as control. Cardiac function was assessed by echocardiography and pressure-volume loop analyses, and mRNA and protein expression were performed on ventricular homogenates. TNF-αTG mice exposed to IA exhibited impaired LV contractility and increased LV dilation associated with markedly elevated cardiac expression of atrial natriuretic peptide and brain natriuretic peptide compared with wild-type mice. When wild-type FVB mice were exposed to IH, they exhibited increases in arterial pressure and dP/dt(max), consistent with our previous report in C57BL/6J mice. Surprisingly, we found that TNF-αTG mice exposed to IH showed a reduction in end-diastolic volume (38.7 ± 3.8 to 22.2 ± 2.1 ul; P < 0.01) and an increase in ejection fraction (29.4 ± 2.5 to 41.9 ± 3.1%; P < 0.05). In contrast to our previous study in C56Bl/6J mice, neither FVB nor TNF-αTG mice exhibited an upregulation in β-adrenergic expression or cAMP in response to IH exposure. We conclude that 4 wk of exposure to IH in mice induces adaptive responses that improve cardiac function in not only healthy animals but also in animals with underlying heart failure.  相似文献   

11.
The strain distribution for macronutrient diet selection was described in 13 mouse strains (AKR/J, NZB/B1NJ, C57BL/6J, C57BL/6ByJ, DBA/2J, SPRET/Ei, CD-1, SJL/J, SWR/J, 129/J, BALB/cByJ, CAST/Ei, and A/J) with the use of a self-selection protocol in which separate carbohydrate, fat, and protein diets were simultaneously available for 26-30 days. Relative to carbohydrate, nine strains consumed significantly more calories from the fat diet; two strains consumed more calories from carbohydrate than from fat (BALB/cByJ, CAST/Ei). Diet selection by SWR/J mice was variable over time, resulting in a lack of preference. One strain (A/J) failed to adapt to the diet paradigm due to inadequate protein intake. Comparisons of proportional fat intake across strains revealed that fat selection/consumption ranged from 26 to 83% of total energy. AKR/J, NZB/B1NJ, and C67BL/6J mice self-selected the highest proportion of dietary fat, whereas the CAST/Ei and BALB/cByJ strains chose the lowest. Finally, epididymal fat depot weight was correlated with fat consumption. There were significant positive correlations in AKR/J and C57BL/6J mice, which are highly sensitive to dietary obesity. However, absolute fat intake was inversely correlated with epididymal fat in two of the lean strains: SWR/J and CAST/Ei. We hypothesize that the SWR/J and CAST/Ei strains are highly sensitive to a negative feedback signal generated by increasing body fat, but the AKR/J and C67BL/6J mice are not. The variation in dietary fat selection across inbred strains provides a tool for dissecting the complex genetics of this trait.  相似文献   

12.
Sleep apnea syndrome increases the risk of cardiovascular morbidity and mortality. We previously reported that intermittent hypoxia increases superoxide production in a manner dependent on nicotinamide adenine dinucleotide phosphate and accelerates adverse left ventricular (LV) remodeling. Recent studies have suggested that hydrogen (H(2)) may have an antioxidant effect by reducing hydroxyl radicals. In this study, we investigated the effects of H(2) gas inhalation on lipid metabolism and LV remodeling induced by intermittent hypoxia in mice. Male C57BL/6J mice (n = 62) were exposed to intermittent hypoxia (repetitive cycle of 1-min periods of 5 and 21% oxygen for 8 h during daytime) for 7 days. H(2) gas (1.3 vol/100 vol) was given either at the time of reoxygenation, during hypoxic conditions, or throughout the experimental period. Mice kept under normoxic conditions served as controls (n = 13). Intermittent hypoxia significantly increased plasma levels of low- and very low-density cholesterol and the amount of 4-hydroxy-2-nonenal-modified protein adducts in the LV myocardium. It also upregulated mRNA expression of tissue necrosis factor-α, interleukin-6, and brain natriuretic peptide, increased production of superoxide, and induced cardiomyocyte hypertrophy, nuclear deformity, mitochondrial degeneration, and interstitial fibrosis. H(2) gas inhalation significantly suppressed these changes induced by intermittent hypoxia. In particular, H(2) gas inhaled at the timing of reoxygenation or throughout the experiment was effective in preventing dyslipidemia and suppressing superoxide production in the LV myocardium. These results suggest that inhalation of H(2) gas was effective for reducing oxidative stress and preventing LV remodeling induced by intermittent hypoxia relevant to sleep apnea.  相似文献   

13.
Heart rate variability (HRV) is a well-characterized, noninvasive means of assessing cardiac autonomic nervous system activity. This study examines the basic cardiac responses to hypoxic and hypercapnic challenges in seven strains of commonly used inbred mice (A/J, BALB/cJ, C3H/HeJ, C57BL/6J, CBA/J, DBA/2J, and FVB/J). Adult male mice, 8-12 wk of age, were chronically instrumented to a femoral artery catheter for the continuous measurement of systemic arterial blood pressure and heart rate. Mice were exposed to multiple 4-min periods of hypoxia (10% O2), hypercapnia (5% CO2), and combined hypoxia/hypercapnia (10% O2 + 5% CO2). HRV was derived from pulse intervals of the blood pressure tracings. Hypoxia induced increases in high-frequency HRV power and decreased low-frequency (LF) HRV power in most strains. Hypercapnia led to decreased high-frequency HRV power and increased LF HRV power in most strains. Strain differences were most notable in regard to the concomitant exposures of hypoxia and hypercapnia, with FVB/J mice mirroring their own response to hypercapnia alone, whereas CBA/J mice mirrored their own responses to hypoxia. As blood pressure is most likely the driving factor for heart rate changes via the baroreflex pathway, it is interesting that LF, considered to reflect cardiac sympathetic activity, was negatively correlated with heart rate, suggesting that LF changes are driven by baroreflex oscillation and not necessarily by absolute sympathetic or parasympathetic activity to the heart. These findings suggest that genetic background can influence the centrally mediated cardiovascular responses to basic hypoxic and hypercapnic challenges.  相似文献   

14.
The present report demonstrates differential DNA-repair activity among 14 strains of immature (20 ± 2 days old) male mice (inbred strains: C57BL/6J, RF/J, Nude homo/nu, RIII/2J, Pl/J, AKR/J, Nude hetro/nude, C3H/HeJ, SWR/J, SM/J, ST/J, LP/J, BALB/cJ and random-bred strain: CD-1). The prespermiogenic cells were isolated and enriched by collagenase-trypsin digestion of seminiferous tubules and subsequent 3% albumin-gradient centrifugation. Enriched prespermiogenic cells demonstrated a viabiilty greater than 95% by trypan blue exclusion criteria. For in vitro unscheduled DNA synthesis (UDS) determination, prespermiogenic cells (106 cells/ml) were incubated with methyl methanesulfonate (0.4 mM) in the presence of 20 mM hydroxyurea (HU). At 20 mM HU concentration, 90% of S-phase DNA activity in prespermiogenic cells was inhibited and thus, the net UDS activity following MMS exposure was readily determined. MMS-induced UDS activity in the CD-1 mouse strain was both linear up to 4 h of incubation and dose-dependent at 4 h incubation. The apparent Km for MMS-induced UDS activity in prespermiogenic cells was approx. 1.8 × 10?4 M. Of the 14 mice strains tested, C57BL/6J and RF/J exhibited the highest DNA-repair activity, while BALB/cJ, LP/J, and ST/J showed the lowest. A maximal difference in UDS activity fo 3.5-fold was observed between C57BL/6J and BALB/cJ. Furthermore, a 2.5-fold difference was also noted between RF/J and LP/J mouse strains. Thus, wide variations in DNA-repair activity among 14 mouse strans were clearly demonstrated. Whether genetically select mouse strains with the lowest DNA-repair activity should have greater sensitivity toward environmental mutagens needs to be tested.  相似文献   

15.
BACKGROUND: Exposure of pregnant outbred CD-1 mice to methanol during the period of gastrulation results in exencephaly, cleft palate, and cervical vertebra malformations [Rogers and Mole, Teratology 55: 364, 1997], while inbred C57BL/6J mice are sensitive to the teratogenicity of ethanol. C57BL/6J fetuses exhibit the holoprosencephaly spectrum of malformations after maternal exposure to ethanol during gastrulation, but the sensitivity of C57BL/6J mice to methanol-induced teratogenesis has not been previously described. METHODS: Pregnant C57BL/6J mice were administered two i.p. injections totaling 3.4 or 4.9 g/kg methanol or distilled water four hrs apart on gestation day 'GD' 7. On GD 17, litters were examined for numbers of live, dead and resorbed conceptuses, fetuses were weighed as a litter and examined externally, and all fetuses were double stained for skeletal analysis. RESULTS: No maternal intoxication was apparent, but the high dosage level caused a transient deficit in maternal weight gain. The number of live fetuses per litter was reduced at both dosages of methanol, and fetal weight was lower in the high dosage group. Craniofacial defects were observed in 55.8% of fetuses in the low dosage group and 91.0% of fetuses in the high dosage group, including micro/anophthalmia, holoprosencephaly, facial clefts and gross facial angenesis. Skeletal malformations, particularly of the cervical vertebrae, were observed at both dosages of methanol, and were similar to those previously reported in the CD-1 mouse following methanol exposure. CONCLUSIONS: The types of craniofacial malformations induced in the C57BL/6J mouse by methanol indicate that methanol and ethanol have common targets and may have common modes of action.  相似文献   

16.
D K Hansen  M E Hodes 《Teratology》1983,28(2):175-179
Inbred strains of mice differ in their response to the embryopathic effects of phenytoin (PHT). A/J animals, the most susceptible strain, were mated to C57BL/6J mice, the most resistant strain. The susceptibility of the F1 hybrid offspring was determined by the susceptibility of the mother. B6AF1 animals were as resistant as C57BL/6J parental mice, and AB6F1 hybrids were as susceptible as A/J mice. This was especially evident when orofacial anomalies were tallied. (B6A)F2 hybrid offspring were as resistant as their C57BL/6J grandparents.  相似文献   

17.
Day 3 thymectomy (D3Tx) results in a loss of peripheral tolerance mediated by CD4(+)CD25(+) T cells and the development of autoimmune ovarian dysgenesis (AOD) in A/J and (C57BL/6J x A/J)F(1) (B6AF(1)) hybrids but not in C57BL/6J mice. Quantitative trait loci (QTL) linkage analysis using a B6AF(1) x C57BL/6J backcross population verified Aod1 and Aod2 that were previously mapped as qualitative traits. Additionally, three new QTL intervals, Aod3, Aod4, and Aod5, on chromosomes 1, 2, and 7, respectively, influencing specific subphenotypes of AOD were identified. QTL linkage analysis using the A x B and B x A recombinant inbred lines verified Aod3 and confirmed linkage to H2. Aod5 colocalized with Mater, an ovarian-specific autoantigen recognized by anti-ovarian autoantibodies in the sera of D3Tx mice. Sequence analysis of Mater identified allelic, strain-specific splice variants between A/J and C57BL/6J mice making it an attractive candidate gene for Aod5. Interaction analysis revealed significant epistatic effects between Aod1-5 and Gasa2, a locus associated with susceptibility to D3Tx-induced autoimmune gastritis, as well as with H2. These results indicate that the QTL controlling D3Tx-induced autoimmune phenomenon are both organ specific and more generalized in their effects with respect to the genesis and activity of the immunoregulatory mechanisms maintaining peripheral tolerance.  相似文献   

18.
This study was investigated the roles of interleukin-1 (IL-1) on diurnal rhythms of heart rate (HR), locomotor activity (LA), and body temperature (BT). For this purpose, HR, LA, and BT were recorded from conscious and unrestrained IL-1 alpha/beta doubly deficient (KO) and normal C57BL/6J mice using a telemetry system. These parameters were continuously recorded from just after to 2 weeks after transmitter implantation, because we thought that the surgical stress-induced IL-1 might affect the biobehavioral activities of the animals. At 1 day after implantation, HR and LA in IL-1 alpha/beta KO mice were higher than those in C57BL/6J mice. While BT in IL-1 alpha/beta KO mice was lower than that in C57BL/6J mice. Moreover, diurnal rhythmicity in these parameters after implantation in IL-1 alpha/beta KO mice appeared earlier than in C57BL/6J mice. At 2 weeks after implantation, there were no significant differences in the light- and dark-phase values of each parameter between IL-1 alpha/beta KO and C57BL/6J mice, however, IL-1 alpha/beta KO mice showed clear ultradian rhythmicity. It is thought that a phenotypical difference in biobehavioral activities between IL-1 alpha/beta KO and C57BL/6J mice may reflect IL-1 induced febrile and behavioral responses. These results suggest that IL-1 may play important physiological and pathophysiological roles on biobehavioral activities.  相似文献   

19.
Both the serotonergic and endocannabinoid systems modulate frontocortical glutamate release; thus they are well positioned to participate in the pathogenesis of psychiatric disorders. With the help of fluorescent and confocal microscopy, we localized the CB(1) cannabinoid receptor (CB(1)R) in VGLUT1- and 2- (i.e. glutamatergic) and serotonin transporter- (i.e. serotonergic) -positive fibers and nerve terminals in the mouse and rat frontal cortex. CB(1)R activation by the synthetic agonists, WIN55212-2 (1 μM) and R-methanandamide (1 μM) inhibited the simultaneously measured evoked Ca(2+)-dependent release of [(14)C]glutamate and [(3)H]serotonin from frontocortical nerve terminals of Wistar rats, in a fashion sensitive to the CB(1)R antagonists, O-2050 (1 μM) and LY320135 (5 μM). CB(1)R agonists also inhibited the evoked release of [(14)C]glutamate in C57BL/6J mice in a reversible fashion upon washout. Interestingly, the evoked release of [(14)C]glutamate and [(3)H]serotonin was significantly greater in the CB(1)R knockout CD-1 mice. Furthermore, CB(1)R binding experiments revealed similar frontocortical CB(1)R density in the rat and the CD-1 mouse. Still, the evoked release of [(3)H]serotonin was modulated by neither CB(1)R agonists nor antagonists in wild-type CD-1 or C57BL/6J mice. Altogether, this is the first study to demonstrate functional presynaptic CB(1)Rs in frontocortical glutamatergic and serotonergic terminals, revealing species differences.  相似文献   

20.
Acetazolamide (Acz), a carbonic anhydrase inhibitor, is used to manage periodic breathing associated with altitude and with heart failure. We examined whether Acz would alter posthypoxic ventilatory behavior in the C57BL/6J (B6) mouse model of recurrent central apnea. Experiments were performed with unanesthetized, awake adult male B6 mice (n = 9), ventilatory behavior was measured using flow-through whole body plethysmography. Mice were given an intraperitoneal injection of either vehicle or Acz (40 mg/kg), and 1 h later they were exposed to 1 min of 8% O(2)-balance N(2) (poikilocapnic hypoxia) or 12% O(2)-3% CO(2)-balance N(2) (isocapnic hypoxia) followed by rapid reoxygenation (100% O(2)). Hypercapnic response (8% CO(2)-balance O(2)) was examined in six mice. With Acz, ventilation, including respiratory frequency, tidal volume, and minute ventilation, in room air was significantly higher and hyperoxic hypercapnic ventilatory responsiveness was generally lower compared with vehicle. Poikilocapnic and isocapnic hypoxic ventilatory responsiveness were similar among treatments. One minute after reoxygenation, animals given Acz exhibited posthypoxic frequency decline, a lower coefficient of variability for frequency, and no tendency toward periodic breathing, compared with vehicle treatment. We conclude that Acz improves unstable breathing in the B6 model, without altering hypoxic response or producing short-term potentiation, but with some blunting of hypercapnic responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号