首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Different models of gene family evolution have been proposed to explain the mechanism whereby gene copies created by gene duplications are maintained and diverge in function. Ohta proposed a model which predicts a burst of nonsynonymous substitutions following gene duplication and the preservation of duplicates through positive selection. An alternative model, the duplication–degeneration–complementation (DDC) model, does not explicitly require the action of positive Darwinian selection for the maintenance of duplicated gene copies, although purifying selection is assumed to continue to act on both copies. A potential outcome of the DDC model is heterogeneity in purifying selection among the gene copies, due to partitioning of subfunctions which complement each other. By using the dN/dS () rate ratio to measure selection pressure, we can distinguish between these two very different evolutionary scenarios. In this study we investigated these scenarios in the -globin family of genes, a textbook example of evolution by gene duplication. We assembled a comprehensive dataset of 72 vertebrate -globin sequences. The estimated phylogeny suggested multiple gene duplication and gene conversion events. By using different programs to detect recombination, we confirmed several cases of gene conversion and detected two new cases. We tested evolutionary scenarios derived from Ohtas model and the DDC model by examining selective pressures along lineages in a phylogeny of -globin genes in eutherian mammals. We did not find significant evidence for an increase in the ratio following major duplication events in this family. However, one exception to this pattern was the duplication of -globin in simian primates, after which a few sites were identified to be under positive selection. Overall, our results suggest that following gene duplications, paralogous copies of -globin genes evolved under a nonepisodic process of functional divergence.[Reviewing Editor: Martin Kreitman]  相似文献   

3.
Lectin and leghemoglobin in legumes play the important roles, respectively, in recognition of host plants to their rhizobial bacteria, and lowering the oxygen partial pressure around bacteroids and protecting nitrogenase from oxygen in symbiotic nitrogen-fixing nodules. In order to extend the host range of the rhizobial bacteria and to make them fix nitrogen in non-legumes, pea lectin gene ( pl ) and Parasponia hemoglobin gene ( phb ) have been constructed into a plant expression vector (pCBHUL) and the vector pCBHUL was introduced into rice calli from immature young embryos by particle bombardment. After the calli were regenerated into plantlets on the resistant-selecting media containing hygromycin, they were identified by PCR and Southern blot hybridization. It was indicated that the pl and phb genes were integrated into nucleic genome of the transformed rice plants. GUS activity and the product of the pl gene were determined by GUS staining, Western blot and in situ hybridization at translational level. Eighteen out of 40 plants resistant to hygromycin were positively identified by PCR analysis with the rate of 45%. The pl gene was expressed in 3 out of 18 plants with 17% and 7.5%in 40 plants. The results may provide a clue for exploring whether Rhizobium leguminosarum bv. viceae could extend its host range and make the transgenic rice plants have the possibility of being symbiotic, or associative to nitrogen fixation.  相似文献   

4.

Background

A series of studies have been conducted to evaluate the associations between vitamin D receptor (VDR) and aggrecan variable numbers of tandem repeat (VNTR) polymorphisms and the risk of intervertebral disc degeneration (IDD), but produced conflicting results.

Objective

we performed a meta-analysis to address a more accurate estimation of the associations between the above gene polymorphisms and the risk of IDD.

Methods

A comprehensive literature search was conducted to identify all the relevant studies. The fixed or random effect model was selected based on the heterogeneity test among studies evaluated using the I 2. Publication bias was estimated using Begg''s funnel plots and Egger''s regression test.

Results

A total of 9, 5, 3, and 7 studies were finally included in the analyses for the associations between the VDR TaqI (rs731236), FokI (rs2228570), ApaI (rs7975232), or aggrecan VNTR polymorphisms and the risk of IDD, respectively. The combined results showed that none of the VDR (TaqI, FokI, ApaI) polymorphisms were significantly associated with the risk of IDD. In contrast, the alleles with shorter VNTR length was found to significantly increase the risk of IDD (≦25 vs. >25: OR = 1.850, 95%CI 1.477–2.318; ≦23 vs. >23: OR = 1.955, 95%CI 1.41–2.703). Subgroup analysis confirmed the above results. After excluding studies deviated from Hardy-Weinberg equilibrium (HWE) in controls, no other studies were found to significantly influence the pooled effects in each genetic model. No potential publication bias was detected.

Conclusion

This meta-analysis suggested that the alleles with shorter VNTR length significantly increased the risk of IDD, while the VDR (TaqI, FokI, ApaI) gene polymorphisms were not significantly associated with the risk of IDD. Since potential confounders could not be ruled out completely, further studies are needed to confirm these results.  相似文献   

5.
One of the few commonly believed principles of molecular evolution is that functionally more important genes (or DNA sequences) evolve more slowly than less important ones. This principle is widely used by molecular biologists in daily practice. However, recent genomic analysis of a diverse array of organisms found only weak, negative correlations between the evolutionary rate of a gene and its functional importance, typically measured under a single benign lab condition. A frequently suggested cause of the above finding is that gene importance determined in the lab differs from that in an organism's natural environment. Here, we test this hypothesis in yeast using gene importance values experimentally determined in 418 lab conditions or computationally predicted for 10,000 nutritional conditions. In no single condition or combination of conditions did we find a much stronger negative correlation, which is explainable by our subsequent finding that always-essential (enzyme) genes do not evolve significantly more slowly than sometimes-essential or always-nonessential ones. Furthermore, we verified that functional density, approximated by the fraction of amino acid sites within protein domains, is uncorrelated with gene importance. Thus, neither the lab-nature mismatch nor a potentially biased among-gene distribution of functional density explains the observed weakness of the correlation between gene importance and evolutionary rate. We conclude that the weakness is factual, rather than artifactual. In addition to being weakened by population genetic reasons, the correlation is likely to have been further weakened by the presence of multiple nontrivial rate determinants that are independent from gene importance. These findings notwithstanding, we show that the principle of slower evolution of more important genes does have some predictive power when genes with vastly different evolutionary rates are compared, explaining why the principle can be practically useful despite the weakness of the correlation.  相似文献   

6.
7.
S. K. Kulkarni  F. W. Stahl 《Genetics》1989,123(2):249-253
gam mutants of phage lambda carrying long palindromes fail to form plaques on wild-type Escherichia coli but do grow on strains that are mutant in the sbcC gene. gam + lambda carrying the same palindrome grow on both hosts and on a host deleted for the recB, C and D genes. These results suggest that the Gam protein of lambda, known to interact also with E. coli's recBCD protein, can interact with the product of the sbcC gene.  相似文献   

8.
9.
We have cloned and characterized three distinct alpha-globin haplotypes obtained from inbred strains of the mouse, Mus domesticus. We report here the complete nucleotide sequence of the six alpha-globin genes that the haplotypes contain. Our analysis of these genes and those from one other previously described haplotype indicates that recurrent gene conversion events have played a major role in their history. The pattern of nucleotide substitutions suggests that conversions have occurred both within and between haplotypes. Limited segments of coding and noncoding DNA have been involved in these gene conversion events. In two of the haplotypes, the nonallelic genes of each maintain DNA sequence identity over discrete intervals and encode the same alpha-globin polypeptide. On the other hand, the coding regions of some genes have accumulated replacement changes that result in distinct alpha-globins. In one instance, these changes appear to reflect positive selection of advantageous mutations.  相似文献   

10.
11.
12.
Many statistical methods have been developed to screen for differentially expressed genes associated with specific phenotypes in the microarray data. However, it remains a major challenge to synthesize the observed expression patterns with abundant biological knowledge for more complete understanding of the biological functions among genes. Various methods including clustering analysis on genes, neural network, Bayesian network and pathway analysis have been developed toward this goal. In most of these procedures, the activation and inhibition relationships among genes have hardly been utilized in the modeling steps. We propose two novel Bayesian models to integrate the microarray data with the putative pathway structures obtained from the KEGG database and the directional gene–gene interactions in the medical literature. We define the symmetric Kullback–Leibler divergence of a pathway, and use it to identify the pathway(s) most supported by the microarray data. Monte Carlo Markov Chain sampling algorithm is given for posterior computation in the hierarchical model. The proposed method is shown to select the most supported pathway in an illustrative example. Finally, we apply the methodology to a real microarray data set to understand the gene expression profile of osteoblast lineage at defined stages of differentiation. We observe that our method correctly identifies the pathways that are reported to play essential roles in modulating bone mass.  相似文献   

13.
Accumulating data have suggested that small RNAs (sRNAs) have important functions in plant responses to pathogen invasion. However, it is largely unknown whether and how sRNAs are involved in the regulation of rice responses to the invasion of Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight, the most devastating bacterial disease of rice worldwide. We performed simultaneous genome-wide analyses of the expression of sRNAs and genes during early defense responses of rice to Xoo mediated by a major disease resistance gene, Xa3/Xa26, which confers durable and race-specific qualitative resistance. A large number of sRNAs and genes showed differential expression in Xa3/Xa26-mediated resistance. These differentially expressed sRNAs include known microRNAs (miRNAs), unreported miRNAs, and small interfering RNAs. The candidate genes, with expression that was negatively correlated with the expression of sRNAs, were identified, indicating that these genes may be regulated by sRNAs in disease resistance in rice. These results provide a new perspective regarding the putative roles of sRNA candidates and their putative target genes in durable disease resistance in rice.  相似文献   

14.
The 3111 C/T single nucleotide polymorphism (SNP) in the CLOCK gene and the 825C/T SNP in the G‐protein β3 subunit gene (GNB3) have been reported to influence diurnal preference. This study has attempted to characterize the association between the CLOCK gene and GNB3 polymorphisms and diurnal preference in healthy Korean college students. All subjects completed the 13‐item Composite Scale for Morningness (CSM). The interaction between the 3111 C/T SNP in the CLOCK gene and the 825 C/T SNP in the GNB3 gene significantly influenced diurnal preference, according to the CSM Performance subscore (F=10.94, p=0.001). However, when the different polymorphisms of the two genes were analyzed independently, no direct correlations with diurnal preference were detected. The CLOCK gene 3111 C/T SNP and GNB3 gene 825 C/T SNP were found to manifest a gene‐gene interaction that affects diurnal preference.  相似文献   

15.
Interactions between hosts and parasites provide an ongoing source of selection that promotes the evolution of a variety of features in the interacting species. Here, we use a genetically explicit mathematical model to explore how patterns of gene expression evolve at genetic loci responsible for host resistance and parasite infection. Our results reveal the striking yet intuitive conclusion that gene expression should evolve along very different trajectories in the two interacting species. Specifically, host resistance loci should frequently evolve to co-express alleles, whereas parasite infection loci should evolve to express only a single allele. This result arises because hosts that co-express resistance alleles are able to recognize and clear a greater diversity of parasite genotypes. By the same token, parasites that co-express antigen or elicitor alleles are more likely to be recognized and cleared by the host, and this favours the expression of only a single allele. Our model provides testable predictions that can help interpret accumulating data on expression levels for genes relevant to host−parasite interactions.  相似文献   

16.
17.
18.
Transformation and Functional Expression of the rFCA-RRM2 Gene in Rice   总被引:2,自引:0,他引:2  
The primary aim of the present study was to investigate the overexpression of the rice (Oryza sativa L. subsp, japonica var. Zhonghua 11) flowering control gene (rFCA-RRM2) in monocotyledonous model rice. Constitutive expression of rFCA-RRM2 from the Actl-5 rice promoter caused late flowering in transgenic rice and increased grain weight that was more than 50% higher than that of control plants, which is the first demonstration of rFCA-RRM2 being able to increase rice production. Late flowering was accompanied by strong phenotype and some morphological modifications. These observations suggest that rFCA-RRM2 is a useful tool for phenotype improvement and yield enhancement in cereal crops.  相似文献   

19.
20.
A gene of β-galactosidase from Bacillus circulans ATCC 31382 was cloned and sequenced on the basis of N-terminal and internal peptide sequences isolated from a commercial enzyme preparation, Biolacta®. Using the cloned gene, recombinant β-galactosidase and its deletion mutants were overexpressed as His-tagged proteins in Escherichia coli cells and the enzymes expressed were characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号