首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Attempts were made to synthesize seven analogs of µ-conotoxin GIIIA, a specific blocker of muscle sodium channels, by replacing the three Hyp residues (Hyp6, Hyp7, and Hyp17) with various amino acids. Replacement with Ala residue at these positions resulted in a very low isolation yield, suggesting that these three Hyp residues are essential for the folding of the molecule. CD spectra of the synthesized analogs suggest that, once synthesized, the replacement did not affect the three dimensional structure. The inhibitory effects on the twitch contractions of the rat diaphragm showed that the hydroxyl group at side chains of Hyp residues are not essential for the activity.  相似文献   

2.

This review discusses the development of studies that evaluated the essentiality and requirements of iron from the ancient to the present. The therapeutic effects of iron compounds were recognized by the ancient Greeks and Romans. The earliest recognition of the essentiality of iron was stated by Paracelsus, a distinguished physician alchemist, in the sixteenth century. Iron was included in the earliest nutritional standard prepared for the Royal Army by E. A. Parkes, the first professor of hygiene. The League of Nations Health Organisation determined average iron requirements based on literature review. In the first US Recommended Dietary Allowances (RDA), the RDA of iron was determined from the results of iron balance studies. In the current Dietary Reference Intakes, iron requirements were determined based on the factorial method with the aid of Monte Carlo simulation for combining basal and menstrual iron losses. Population data analysis is a recently developed alternative that does not use the pre-estimated iron absorption rate and requires the prevalence of inadequacy instead. Population data analysis uses the convolution integral for combining basal and menstrual iron losses to ensure the required accuracy. This review also provides new estimates of hair and nail iron losses.

  相似文献   

3.
Molecular Biology Reports - The neuromuscular junction underwent adaptations to meet the demands of muscles following increased muscle activity. This study aimed to investigate the effects of...  相似文献   

4.
《Molecular membrane biology》2013,30(1-2):131-157
α-Bungarotoxin (BuTX; 5 μg/ml) completely blocked the endplate potential and extrajunctional acetylcholine (ACh) sensitivity of surface fibers in normal and chronically denervated mammalian muscles, respectively, in about 35 min. A 0.72 ± 0.033 mV amplitude endplate potential returned in normal muscle fibers after 6.5 hr. of washout of α-BuTX, and an ACh sensitivity of 41.02 ± 3.95 mV/nC was recorded in denervated muscle after 6.5 hr of wash (control being 1215 ± 197 mV/nC). A two-step reaction of BuTX with binding sites which may allosterically interact is postulated.

Several pharmacologic differences were noted between the ACh receptors at the normal endplate and those appearing extrajunctionally following denervation. In normal innervated muscles exposed to BuTX in the presence of 20 μM carbamylcholine or decamethonium, washout of both drugs restored twitch to control levels within 2 hr. Endplate potentials large enough to initiate action potentials were also recorded in most surface fibers. In contrast, these agents, in much higher concentrations (50 μM), were almost ineffective in preventing BuTX blockade of ACh sensitivity in denervated muscle. Hexamethonium (10 and 50 mM) depressed neuromuscular transmission and blocked the action of BuTX in normal muscle in a dose-dependent fashion. On the extrajunctional receptors, hexamethonium (50 mM) was ineffective in protecting against BuTX. We may conclude that at the normal endplate region there are two distinct populations of ACh receptors, both of which react with cholinergic ligands and BuTX, but that a small population (representing ± 1% of the total) reacts with BuTX reversibly. Our findings further suggest a clear distinction between ACh receptors located at the normal endplate region and those of the extrajunctional region of the chronically denervated mammalian muscle.  相似文献   

5.
Deviation from proper muscle development or homeostasis results in various myopathic conditions. Employing genetic as well as chemical intervention, we provide evidence that a tight regulation of Wnt/β-catenin signaling is essential for muscle fiber growth and maintenance. In zebrafish embryos, gain-of-Wnt/β-catenin function results in unscheduled muscle progenitor proliferation, leading to slow and fast muscle hypertrophy accompanied by fast muscle degeneration. The effects of Wnt/β-catenin signaling on fast muscle hypertrophy were rescued by misexpression of Myostatin or p21CIP/WAF, establishing an in vivo regulation of myofibrillogenesis by Wnt/β-catenin signaling and Myostatin. Epistatic analyses suggest a possible genetic interaction between Wnt/β-catenin and Myostatin in regulation of slow and fast twitch muscle myofibrillogenesis.  相似文献   

6.
The aim of this study was to examine the time‐of‐day (TOD) effects in myoelectric and mechanical properties of muscle during a maximal and prolonged isokinetic exercise. Twelve male subjects were asked to perform 50 maximal voluntary contractions (MVC) of the knee extensor muscles at a constant angular velocity of 2.09 rad · sec?1, at 06∶00 and 18∶00 h. Torque and electromyographic (EMG) parameters were recorded for each contraction, and the ratio between these values was calculated to evaluate variations of the neuromuscular efficiency (NME) with fatigue and with TOD. The results indicated that maximal torque values (T45Max) was significantly higher (7.73%) in the evening than in the morning (p<0.003). The diurnal variation in torque decrease was used to define two phases. During the first phase (1st to the 26th repetition), torque values decreased fast and values were higher in the evening than in the morning, and during the second phase (27th to the 50th repetition), torque decreased slightly and reached a floor value that appeared constant with TOD. The EMG parameters (Root Mean Square; RMS) were modified with fatigue, but were not TOD dependent. The NME decrease–significantly with fatigue, showing that peripheral factors were mainly involved in the torque decrease. Furthermore, NME decrease was greater at 18∶00 than at 06∶00 h for the vastus medialis (p<0.05) and the vastus lateralis muscles (p<0.002), and this occurred during the first fatigue phase of the exercise. In conclusion, the diurnal variation of the muscle fatigue observed during a maximal and prolonged isokinetic exercise seems to reflect on the muscle, with a greater contractile capacity but a higher fatigability in the evening compared to the morning.  相似文献   

7.

Background

Airway wall remodelling is a key pathology of asthma. It includes thickening of the airway wall, hypertrophy and hyperplasia of bronchial smooth muscle cells (BSMC), as well as an increased vascularity of the sub-epithelial cell layer. BSMC are known to be the effector cells of bronchoconstriction, but they are increasingly recognized as an important source of inflammatory mediators and angiogenic factors.

Objective

To compare the angiogenic potential of BSMC of asthmatic and non-asthmatic patients and to identify asthma-specific angiogenic factors.

Methods

Primary BSMC were isolated from human airway tissue of asthmatic and non-asthmatic patients. Conditioned medium (CM) collected from BSMC isolates was tested for angiogenic capacity using the endothelial cell (EC)-spheroid in vitro angiogenesis assay. Angiogenic factors in CM were quantified using a human angiogenesis antibody array and enzyme linked immunosorbent assay.

Results

Induction of sprout outgrowth from EC-spheroids by CM of BSMC obtained from asthma patients was increased compared with CM of control BSMC (twofold, p < 0.001). Levels of ENA-78, GRO-α and IL-8 were significantly elevated in CM of BSMC from asthma patients (p < 0.05 vs. non-asthmatic patients). SB 265610, a competitive antagonist of chemokine (CXC-motif) receptor 2 (CXCR2), attenuated the increased sprout outgrowth induced by CM of asthma patient-derived BSMC.

Conclusions

BSMC isolated from asthma patients exhibit increased angiogenic potential. This effect is mediated through the CXCR2 ligands (ENA78, GRO-α and IL-8) produced by BSMC.

Implications

CXCR2 ligands may play a decisive role in directing the neovascularization in the sub-epithelial cell layers of the lungs of asthma patients. Counteracting the CXCR2-mediated neovascularization by pharmaceutical compounds may represent a novel strategy to reduce airway remodelling in asthma.  相似文献   

8.
Muscles have evolved to power a wide variety of movements. A protein component critical to varying power generation is the myosin isoform present in the muscle. However, how functional variation in muscle arises from myosin structure is not well understood. We studied the influence of the converter, a myosin structural region at the junction of the lever arm and catalytic domain, using Drosophila because its single myosin heavy chain gene expresses five alternative converter versions (11a–e). We created five transgenic fly lines, each forced to express one of the converter versions in their indirect flight muscle (IFM) fibers. Electron microscopy showed that the converter exchanges did not alter muscle ultrastructure. The four lines expressing converter versions (11b–e) other than the native IFM 11a converter displayed decreased flight ability. IFM fibers expressing converters normally found in the adult stage muscles generated up to 2.8-fold more power and displayed up to 2.2-fold faster muscle kinetics than fibers with converters found in the embryonic and larval stage muscles. Small changes to stretch-activated force generation only played a minor role in altering power output of IFM. Muscle apparent rate constants, derived from sinusoidal analysis of the chimeric converter fibers, showed a strong positive correlation between optimal muscle oscillation frequency and myosin attachment kinetics to actin, and an inverse correlation with detachment related cross-bridge kinetics. This suggests the myosin converter alters at least two rate constants of the cross-bridge cycle with changes to attachment and power stroke related kinetics having the most influence on setting muscle oscillatory power kinetics.  相似文献   

9.
γ-Sarcoglycan is a transmembrane, dystrophin-associated protein expressed in skeletal and cardiac muscle. The murine γ-sarcoglycan gene was disrupted using homologous recombination. Mice lacking γ-sarcoglycan showed pronounced dystrophic muscle changes in early life. By 20 wk of age, these mice developed cardiomyopathy and died prematurely. The loss of γ-sarcoglycan produced secondary reduction of β- and δ-sarcoglycan with partial retention of α- and ε-sarcoglycan, suggesting that β-, γ-, and δ-sarcoglycan function as a unit. Importantly, mice lacking γ-sarco- glycan showed normal dystrophin content and local- ization, demonstrating that myofiber degeneration occurred independently of dystrophin alteration. Furthermore, β-dystroglycan and laminin were left intact, implying that the dystrophin–dystroglycan–laminin mechanical link was unaffected by sarcoglycan deficiency. Apoptotic myonuclei were abundant in skeletal muscle lacking γ-sarcoglycan, suggesting that programmed cell death contributes to myofiber degeneration. Vital staining with Evans blue dye revealed that muscle lacking γ-sarcoglycan developed membrane disruptions like those seen in dystrophin-deficient muscle. Our data demonstrate that sarcoglycan loss was sufficient, and that dystrophin loss was not necessary to cause membrane defects and apoptosis. As a common molecular feature in a variety of muscular dystrophies, sarcoglycan loss is a likely mediator of pathology.  相似文献   

10.
The administration of exogenous β-hydroxybutyrate (β-HB), as well as fasting and caloric restriction, is a condition associated with β-HB abundance and decreased appetite in animals. Increased β-HB and decreased appetite exist simultaneously in some diseases, such as bovine left displaced abomasums (LDA) and human chronic gastritis. However, the effects of β-HB on stomach injuries have not been explored. To elucidate the possible effects of exogenous β-HB on the stomach, mice were injected intraperitoneally with β-HB, and bovine abomasum smooth muscle cells (BSMCs) were treated with different concentrations of β-HB. We found that β-HB induced BSMCs endoplasmic reticulum- and mitochondria-mediated apoptotic cell death. β-HB promoted Bax expression and caspase-12, -9, and -3 activation while blocking Bcl-2 expression. β-HB also promoted AIF, EndoG release and p53 expression. β-HB acted on key molecules in the apoptotic cell death pathway and increased p38 and c-June NH2-terminal kinase phosphorylation while inhibiting ERK phosphorylation and PCNA expression. β-HB upregulated P27 and P21 mRNA levels while downregulating cyclin and CDK mRNA levels, arresting the cell cycle. These results suggest that BSMCs treated with β-HB can induce oxidative stress, which can be prevented by intracellular calcium chelators BAPTA/AM but not antioxidant NAC. Additionally, these results suggest that β-HB causes ROS generation through a Ca2+-dependent mechanism and that intracellular Ca2+ levels play a critical role in β-HB -induced apoptotic cell death. The impact of β-HB on programmed cell death and oxidative stress in vivo was confirmed in murine experiments. For the first time, we show oxidative stress effects of β-HB on smooth muscle. We propose that β-HB is a possible cause of some stomach diseases, including bovine LDA.  相似文献   

11.
α-Dystrobrevin is both a dystrophin homologue and a component of the dystrophin protein complex. Alternative splicing yields five forms, of which two predominate in skeletal muscle: full-length α-dystrobrevin-1 (84 kD), and COOH-terminal truncated α-dystrobrevin-2 (65 kD). Using isoform-specific antibodies, we find that α-dystrobrevin-2 is localized on the sarcolemma and at the neuromuscular synapse, where, like dystrophin, it is most concentrated in the depths of the postjunctional folds. α-Dystrobrevin-2 preferentially copurifies with dystrophin from muscle extracts. In contrast, α-dystrobrevin-1 is more highly restricted to the synapse, like the dystrophin homologue utrophin, and preferentially copurifies with utrophin. In yeast two-hybrid experiments and coimmunoprecipitation of in vitro–translated proteins, α-dystrobrevin-2 binds dystrophin, whereas α-dystrobrevin-1 binds both dystrophin and utrophin. α-Dystrobrevin-2 was lost from the nonsynaptic sarcolemma of dystrophin-deficient mdx mice, but was retained on the perisynaptic sarcolemma even in mice lacking both utrophin and dystrophin. In contrast, α-dystrobrevin-1 remained synaptically localized in mdx and utrophin-negative muscle, but was absent in double mutants. Thus, the distinct distributions of α-dystrobrevin-1 and -2 can be partly explained by specific associations with utrophin and dystrophin, but other factors are also involved. These results show that alternative splicing confers distinct properties of association on the α-dystrobrevins.  相似文献   

12.

Objective

Fibromyalgia is associated with central hyperexcitability, but it is suggested that peripheral input is important to maintain central hyperexcitability. The primary aim was to investigate the levels of pro-inflammatory cytokines released in the vastus lateralis muscle during repetitive dynamic contractions of the quadriceps muscle in patients with fibromyalgia and healthy controls. Secondarily, to investigate if the levels of pro-inflammatory cytokines were correlated with pain or fatigue during these repetitive dynamic contractions.

Material and Methods

32 women with fibromyalgia and 32 healthy women (controls) participated in a 4 hour microdialysis session, to sample IL-1β, IL-6, IL-8, and TNF from the most painful point of the vastus lateralis muscle before, during and after 20 minutes of repeated dynamic contractions. Pain (visual analogue scale; 0–100) and fatigue Borg’s Rating of Perceived Exertion Scale; 6–20) were assessed before and during the entire microdialysis session.

Results

The repetitive dynamic contractions increased pain in the patients with fibromyalgia (P < .001) and induced fatigue in both groups (P < .001). Perceived fatigue was significantly higher among patients with fibromyalgia than controls (P < .001). The levels of IL-1β did not change during contractions in either group. The levels of TNF did not change during contractions in patients with fibromyalgia, but increased in controls (P < .001) and were significantly higher compared to patients with fibromyalgia (P = .033). The levels of IL-6 and IL-8 increased in both groups alike during and after contractions (P’s < .001). There were no correlations between pain or fatigue and cytokine levels after contractions.

Conclusion

There were no differences between patients with fibromyalgia and controls in release of pro-inflammatory cytokines, and no correlations between levels of pro-inflammatory cytokines and pain or fatigue. Thus, this study indicates that IL-1β, IL-6, IL-8, and TNF do not seem to play an important role in maintenance of muscle pain in fibromyalgia.  相似文献   

13.
A Kalyva  A Schmidtmann  MA Geeves 《Biochemistry》2012,51(32):6388-6399
Tropomyosin (Tm) is a dimer made of two alpha helical chains associated into a parallel coiled-coil. In mammalian skeletal and cardiac muscle, the Tm is expressed from two separate genes to give the α- and β-Tm isoforms. These associate in vivo to form homo- (α(2)) and heterodimers (α·β) with little β(2) normally observed. The proportion of α(2) vs α·β varies across species and across muscle types from almost 100% α(2)- to 50% α·β-Tm. The ratio can also vary during development and in disease. The functional significance of the presence of these two isoforms has not been defined because it is difficult to isolate or purify the α·β dimer for functional studies. Here we report an effective method for purifying bacterially expressed Tm as α·β dimers using a cleavable N-terminal tag on one of the two chains. The same method can be used to isolate Tm dimers in which one chain carries a mutation. We go on to show that the α·β dimers differ in key properties (actin affinity, thermal stability) from either the α(2)- or β(2)-Tm. However, the ability to regulate myosin binding when combined with cardiac troponin appears unaffected.  相似文献   

14.
Many mutations in the skeletal muscle α-actin gene (ACTA1) lead to muscle weakness and nemaline myopathy. Despite increasing clinical and scientific interest, the molecular and cellular pathogenesis of weakness remains unclear. Therefore, in the present study, we aimed at unraveling these mechanisms using muscles from a transgenic mouse model of nemaline myopathy expressing the ACTA1 Asp286Gly mutation. We recorded and analyzed the mechanics of membrane-permeabilized single muscle fibers. We also performed molecular energy state computations in the presence or absence of Asp286Gly. Results demonstrated that during contraction, the Asp286Gly acts as a “poison-protein” and according to the computational analysis it modifies the actin-actin interface. This phenomenon is likely to prevent proper myosin cross-bridge binding, limiting the fraction of actomyosin interactions in the strong binding state. At the cell level, this decreases the force-generating capacity, and, overall, induces muscle weakness. To counterbalance such negative events, future potential therapeutic strategies may focus on the inappropriate actin-actin interface or myosin binding.  相似文献   

15.
Patients with respiratory diseases or anxiety frequently complain about dyspnea, which may be partly related to chronic tension of respiratory muscles and/or dynamic hyperinflation. In two experiments we tested a biofeedback technique that recorded electromyographic (EMG) activity from a bipolar surface electrode placement over the right external intercostal muscles with visual signal feedback. Healthy participants were tested in their ability to alter the signal. Heart rate was measured continuously throughout training trials. In the second experiment, dyspnea was rated on a modified Borg scale after each trial. Participants were able to increase their EMG activity considerably while heart rate and dyspnea increased substantially. Changes in EMG activity were achieved mostly by manipulating accessory muscle tension and/or altering breathing pattern. Thus, the technique is capable of altering respiratory muscle tension and associated dyspnea. Further studies may test the procedure as a relaxation technique in patients with respiratory disease or anxiety.  相似文献   

16.
Actin purified from maize pollen grains like actin from other sources could considerably inhibit the activity of DNase Ⅰ . A linear relationship existed between inhibition and the concentration of actin. However, DNase Ⅰ was less inhibited by pollen actin than by rabbit muscle actin under the same conditions. The values of Kapp of inhibition were 1.25 μg/mL for pollen actin and 0.75 μg/mL for rabbit muscle actin. DNase Ⅰdepolymerized both pollen and rabbit muscle actin filaments. But the rate of depolymerization of pollen F-actin was higher than that of rabbit muscle F-actin under the same conditions.  相似文献   

17.
18.
The alteration in sinusoidal collagen type IV occurrence, and myofibroblastic (α-SMA-positive) Ito cellular transformation are described in the liver of patients with malignant gastric and colorectal tumors, using electron microscopy as well as light microscopical and ultrastructural immunohistochemistry. The ultrastructural finding revealed transformation of Ito cells mostly into transitional cells in highly differentiated primary tumors and into transitional and myofibroblast-like cells with expressed changes in the other sinusoidal cells in poorly differentiated tumors. Ito cell numbers increased significantly in the livers of cancer patients. A highly significant statistical association was obtained between Ito cell numbers on the one hand and collagen type IV and α-SMA immunoreactivity on the other hand in the pericentral zone of the liver lobule. Ultrastructural immunohistochemistry showed increased collagen IV immune deposits in the space of Disse, assembled for the most part around and inside transitional cells. α-SMA immunoreactivity was detected in activated Ito cells diffuse in the lobule, with stronger expression in the intermediate and pericentral zones. It is suggested that stimuli which can influence Ito cell transformation are produced by tumor cells from the primary tumor (TGF-β1, TNF-α, PDGF-β etc.) and from the metastasizing gastric or colorectal tumor cells – matrix metalloproteinase-2 (MMP-2). It is suggested that sinusoidal extracellular matrix deterioration creates a barrier for cancer invasion on the one hand, or possibly facilitates metastasizing by ensurance of matrix for adhesion on the other hand.  相似文献   

19.
Estrogen-related receptor γ (ERRγ) regulates the perinatal switch to oxidative metabolism in the myocardium. We wanted to understand the significance of induction of ERRγ expression in skeletal muscle by exercise. Muscle-specific VP16ERRγ transgenic mice demonstrated an increase in exercise capacity, mitochondrial enzyme activity, and enlarged mitochondria despite lower muscle weights. Furthermore, peak oxidative capacity was higher in the transgenics as compared with control littermates. In contrast, mice lacking one copy of ERRγ exhibited decreased exercise capacity and muscle mitochondrial function. Interestingly, we observed that increased ERRγ in muscle generates a gene expression profile that closely overlays that of red oxidative fiber-type muscle. We further demonstrated that a small molecule agonist of ERRβ/γ can increase mitochondrial function in mouse myotubes. Our data indicate that ERRγ plays an important role in causing a shift toward slow twitch muscle type and, concomitantly, a greater capacity for endurance exercise. Thus, the activation of this nuclear receptor provides a potential node for therapeutic intervention for diseases such as obesity, which is associated with reduced oxidative metabolism and a lower type I fiber content in skeletal muscle.  相似文献   

20.
1. Rates of entry and oxidation of a range of metabolites have been measured in tracheostomized sheep (diet, 800g. of lucerne chaff and 100g. of maize/day) by combining isotope-dilution techniques with the continuous measurement of total respiratory gas exchange, and 14CO2 production during the intravenous or intraruminal infusion of 14C-labelled substrates. 2. Mean entry rates in fed and starved (24hr.) sheep respectively, expressed as mg./min./kg. body wt.0·75, were: glucose, 5·0 (range 4·8–5·1, 2 observations) and 3·8 (3·2–4·2, 4); acetate, 10·8 (9·1–13·5, 4) and 5·8 (1); d(−)-β-hydroxybutyrate, 1·4 (1) and 1·5 (0·8–2·4, 4); palmitate, oleate and stearate (starved sheep only) 1·0 (0·6–1·9, 7), 0·9 (0·2–1·6, 10) and 0·9 (0·5–1·1, 11) respectively. 3. Production rates of propionate and butyrate in continuously feeding sheep were 6·4 (4·7–8·3, 4) and 4·3 (3·4–6·1, 4) mg./min./kg.0·75 respectively, and in starved (24hr.) sheep were 2·5 (2·2–2·9, 2) and 1·0 (0·8–1·2, 2) mg./min./kg.0·75 respectively. 4. Calculated terminal values for the specific radioactivity of respiratory 14CO2 during measurements of entry rates and production rates were used to calculate the contributions of individual substrates to overall oxidative metabolism. Mean values for fed and starved sheep respectively were: glucose, 9·1 (8·6–9·6, 2) and 11·2 (5·9–15·1, 4)%; acetate, 31·6 (26·8–38·1, 4) and 22·1 (1)%; d(−)-β-hydroxybutyrate, 10·4 (1) and 4·8 (1·9–7·7, 4)%; propionate, 23·0 (13·8–29·9, 4) and 7·1 (6·8–7·4, 2)%; butyrate, 16·5 (13·7–20·5, 4) and 5·3 (5·2–5·3, 2)%; palmitate, oleate and stearate (starved sheep only), 4·7 (2·0–7·7, 7), 4·0 (1·2–6·6, 10) and 4·4 (3·8–5·8, 9)% respectively. The sum of these values for individual substrates in fed and starved sheep, excluding that of β-hydroxybutyrate and after correction of the glucose value for the known interrelations of this substrate with propionate, accounted for 76% and 58% respectively of total production of carbon dioxide. 5. Calculations based on the proportion of substrate entry directly oxidized indicated that the substrates studied accounted for 63% (fed sheep) and 43% (starved sheep) of total energy expenditure measured by oxygen uptake. The contribution of β-hydroxybutyrate was excluded, and corrections were made for glucose–propionate interrelations, and for the different rates of oxidation of the methyl and carboxyl fragments of acetate. 6. The present results have been combined with those obtained earlier in this Laboratory to examine the relationships between rates of substrate entry and oxidation, and concentrations of substrate in blood. Rates of entry of acetate, glucose, d(−)-β-hydroxybutyrate, palmitate and oleate (but not stearate) were well correlated with concentration in blood, and substrate contribution to production of carbon dioxide showed a similar correlation to blood concentration, except with glucose. 7. It was concluded that the general technique is of potential value in providing valid quantitative parameters of animal metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号