首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The single copy Drosophila alpha-actinin gene is alternatively spliced to generate three different isoforms that are expressed in larval muscle, adult muscle and non-muscle cells, respectively. We have generated novel alpha-actinin alleles, which specifically remove the non-muscle isoform. Homozygous mutant flies are viable and fertile with no obvious defects. Using a monoclonal antibody that recognizes all three splice variants, we compared alpha-actinin distribution in wild type and mutant embryos and ovaries. We found that non-muscle alpha-actinin was present in young embryos and in the embryonic central nervous system. In ovaries, non-muscle alpha-actinin was localized in the nurse cell subcortical cytoskeleton, cytoplasmic actin cables and ring canals. In the mutant, alpha-actinin expression remained in muscle tissues, but also in a subpopulation of epithelial cells in both embryos and ovaries. This suggests that various populations of non-muscle cells regulate alpha-actinin expression in different ways. We also show that ectopically expressed adult muscle-specific alpha-actinin localizes to all F-actin containing structures in the nurse cells in the absence of endogenous non-muscle alpha-actinin.  相似文献   

2.
3.
4.
The Drosophila epidermal growth factor receptor (EGFR) is active in different tissues and is involved in diverse processes such as patterning of the embryonic ectoderm, growth and differentiation of imaginal discs and cell survival. During oogenesis, the EGFR is expressed in the somatic follicle cells that surround individual oocyte-nurse cell complexes. In response to germline signals, the follicle cells differentiate in a complex pattern, which in turn leads to the establishment of the egg axes. Two recent reports have shown that the strategies used to pattern posterior follicle cells are different from those used to pattern dorsal follicle cells. In posterior follicle cells, EGFR activity is translated into an on-off response, whereas, in dorsal follicle cells, patterning mechanisms are initiated and refined by feedback that modulates receptor activity over time.  相似文献   

5.
Expression of a muscle-type alpha-actinin cDNA clone in non-muscle cells   总被引:4,自引:0,他引:4  
We have previously isolated a chick smooth muscle-type alpha-actinin cDNA clone (C17) from a chick embryo fibroblast cDNA library. As part of an investigation into a possible role for a muscle isoform of alpha-actinin in non-muscle cells, we have cloned C17 into a eucaryotic expression vector, pKCR3, and examined the distribution of the expressed protein in non-muscle, monkey COS cells. We report here that the muscle isoform of chick alpha-actinin encoded by C17, was found in focal contacts and periodically distributed along actin filaments.  相似文献   

6.
Actin and spectrin were isolated from washed red blood cell membranes. Spectrin bound and polymerized erythrocyte actin in the absence of potassium. Spectrin coated into polystyrene latex particles bound 8--9 mol of erythrocyte actin per mol of spectrin when actin was in its depolymerized state. Spectrin enhanced the interaction of erythrocyte actin with muscle myosin as manifested by changes in Mg2+-ATPase activity. A similar enhancement also was observed with muscle alpha-actinin while muscle tropomyosin abolished these effects. The data suggest that spectrin may play the role of polymerizing factor as well as the anchoring site for erythrocyte actin just as alpha-actinin is the anchoring site for actin filaments in muscle and other non-muscle cells.  相似文献   

7.
8.
We have investigated accumulation of alpha-actinin, the principal cross-linker of actin filaments, in four Drosophila fliA mutants. A single gene is variably spliced to generate one nonmuscle and two muscle isoforms whose primary sequence differences are confined to a peptide spanning the actin binding domain and first central repeat. In fliA3 the synthesis of an adult muscle-specific isoform is blocked in flight and leg muscles, while in fliA4 the synthesis of nonmuscle and both muscle-specific isoforms is severely reduced. Affected muscles are weak or paralyzed, and, in the case of fliA3, atrophic. Their myofibrils, while structurally irregular, are remarkably normal considering that they are nearly devoid of a major contractile protein. Also surprising is that no obvious nonmuscle cell abnormalities can be discerned despite the fact that both the fliA1- and fliA4-associated mutations perturb the nonmuscle isoform. Our observations suggest that alpha-actinin stabilizes and anchors thin filament arrays, rather than orchestrating their assembly, and further imply that alpha-actinin function is redundant in both muscle and nonmuscle cells.  相似文献   

9.
Formation of actin stress fibers and the focal adhesion complex between cell and the substratum are crucial for nonmalignant cells to achieve anchorage-dependent growth. We show here that the adhesion complex formed in normal human mammary epithelial (HME) cells which adhered to type IV collagen, involved the EGF receptor (EGFR) and phospholipase Cgamma (PLCgamma) as signaling molecules, in addition to integrin beta1, alpha-actinin, and actin even before stimulation of the cells with EGF. Stimulation of cells with EGF induced tyrosine phosphorylation of EGFR and activation of PLCgamma, as assessed by the production of a second messenger diacylglycerol (DAG), without any significant increase in the amount of EGFR-bound PLCgamma. Disruption of either actin filaments by cytochalasin D (CD) or actin-myosin contractility by ML-7, an inhibitor of myosin light chain kinase (MLCK), altered the flattened morphology of quiescent cells to a retracted one, without affecting the association between EGFR and PLCgamma. Stimulation of CD- or ML-7-treated cells with EGF failed to inhibit tyrosine phosphorylation of EGFR and its association and colocalization with PLCgamma, but inhibited the PLCgamma activation. Phosphatidylinositol 4,5-bisphosphate (PtdInsP2), substrate of PLCgamma, was tightly associated with alpha-actinin and the content of alpha-actinin-bound PtdInsP2 was reduced by treatment of cells with ML-7 but not with CD. The amount of PtdInsP2 bound to alpha-actinin was increased by the addition of EGF and this EGF-induced increase was blocked by either CD or ML-7. The present results suggest that anchorage-dependent EGF signaling in HME cells may require both actin filament assembly and actin-myosin contractility for the PLCgamma activation.  相似文献   

10.
11.
12.
Many genetic cascades are conserved in evolution, yet they trigger different responses and hence determine different cell fates at specific times and positions in development. At stage 10 of oogenesis, mirror is expressed in anterior-dorsal follicle cells, and we show that this is dependent upon the Gurken signal from the oocyte. The fringe gene is expressed in a complementary pattern in posterior-ventral follicle cells at the same stage. Ectopic expression of mirror represses fringe expression, thus linking the epidermal growth factor receptor (EGFR) signalling pathway to the Fringe signalling pathway via Mirror. The EGFR pathway also triggers the cascade that leads to dorsal-ventral axis determination in the embryo. We used twist as an embryonic marker for ventral cells. Ectopic expression of mirror in the follicle cells during oogenesis ultimately represses twist expression in the embryo, and leads to similar phenotypes to the ectopic expression of the activated form of EGFR. Thus, mirror also controls the Toll signalling pathway, leading to Dorsal nuclear transport. In summary, we show that the Mirror homeodomain protein provides a link that coordinates the Gurken/EGFR signalling pathway (initiated in the oocyte) with the Fringe/Notch/Delta pathway (in follicle cells). This coordination is required for epithelial morphogenesis, and for producing the signal in ventral follicle cells that determines the dorsal/ventral axis of the embryo.  相似文献   

13.
The linking of integrin to cytoskeleton is a critical event for an effective cell migration. Previously, we have reported that a novel integrin-linked kinase (ILK)-binding protein, affixin, is closely involved in the linkage between integrin and cytoskeleton in combination with ILK. In the present work, we demonstrated that the second calponin homology domain of affixin directly interacts with alpha-actinin in an ILK kinase activity-dependent manner, suggesting that integrin-ILK signaling evoked by substrate adhesion induces affixin-alpha-actinin interaction. The overexpression of a peptide corresponding to the alpha-actinin-binding site of affixin as well as the knockdown of endogenous affixin by small interference RNA resulted in the blockade of cell spreading. Time-lapse observation revealed that in both experiments cells were round with small peripheral blebs and failed to develop lamellipodia, suggesting that the ILK-affixin complex serves as an integrin-anchoring site for alpha-actinin and thereby mediates integrin signaling to alpha-actinin, which has been shown to play a critical role in actin polymerization at focal adhesions.  相似文献   

14.
Filamentous actin and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. They can also play a critical role in disease; for example, mutations in α-actinin-4 (Actn4), a dynamic actin cross-linking protein, cause proteinuric disease in humans and mice. Amino acid substitutions strongly affect the binding affinity and protein structure of Actn4. To study the physical impact of such substitutions on the underlying cytoskeletal network, we examine the bulk mechanical behavior of in vitro actin networks cross-linked with wild-type and mutant Actn4. These networks exhibit a complex viscoelastic response and are characterized by fluid-like behavior at the longest timescales, a feature that can be quantitatively accounted for through a model governed by dynamic cross-linking. The elastic behavior of the network is highly nonlinear, becoming much stiffer with applied stress. This nonlinear elastic response is also highly sensitive to the mutations of Actn4. In particular, we observe that actin networks cross-linked with Actn4 bearing the disease-causing K255E mutation are more brittle, with a lower breaking stress in comparison to networks cross-linked with wild-type Actn4. Furthermore, a mutation that ablates the first actin binding site (ABS1) in Actn4 abrogates the network's ability to stress-stiffen is standard nomenclature. These changes in the mechanical properties of actin networks cross-linked with mutant Actn4 may represent physical determinants of the underlying disease mechanism in inherited focal segmental glomerulosclerosis.  相似文献   

15.
To define the actin-binding site within the NH2-terminal domain (residues 1-245) of chick smooth muscle alpha-actinin, we expressed a series of alpha-actinin deletion mutants in monkey Cos cells. Mutant alpha-actinins in which residues 2-19, 217-242, and 196-242 were deleted still retained the ability to target to actin filaments and filament ends, suggesting that the actin-binding site is located within residues 20-195. When a truncated alpha-actinin (residues 1-290) was expressed in Cos cells, the protein localized exclusively to filament ends. This activity was retained by a deletion mutant lacking residues 196-242, confirming that these are not essential for actin binding. The actin-binding site in alpha-actinin was further defined by expressing both wild-type and mutant actin-binding domains as fusion proteins in E. coli. Analysis of the ability of such proteins to bind to F-actin in vitro showed that the binding site was located between residues 108 and 189. Using both in vivo and in vitro assays, we have also shown that the sequence KTFT, which is conserved in several members of the alpha-actinin family of actin-binding proteins (residues 36-39 in the chick smooth muscle protein) is not essential for actin binding. Finally, we have established that the NH2-terminal domain of dystrophin is functionally as well as structurally homologous to that in alpha-actinin. Thus, a chimeric protein containing the NH2-terminal region of dystrophin (residues 1-233) fused to alpha-actinin residues 244-888 localized to actin-containing structures when expressed in Cos cells. Furthermore, an E. coli-expressed fusion protein containing dystrophin residues 1-233 was able to bind to F-actin in vitro.  相似文献   

16.
17.
18.
An interaction between zyxin and alpha-actinin   总被引:11,自引:0,他引:11       下载免费PDF全文
Zyxin is an 82-kD protein first identified as a component of adhesion plaques and the termini of stress fibers near where they associate with the cytoplasmic face of the adhesive membrane. We report here that zyxin interacts with the actin cross-linking protein alpha-actinin. Zyxin cosediments with filamentous actin in an alpha-actinin-dependent manner and an association between zyxin and alpha-actinin is observed in solution by analytical gel filtration. The specificity of the interaction between zyxin and alpha-actinin was demonstrated by blot overlay experiments in which 125I-zyxin recognizes most prominently alpha-actinin among a complex mixture of proteins extracted from avian smooth muscle. By these blot overlay binding studies, we determined that zyxin interacts with the NH2-terminal 27-kD domain of alpha-actinin, a region that also contains the actin binding site. Solid phase binding assays were performed to evaluate further the specificity of the binding and to determine the affinity of the zyxin-alpha-actinin interaction. By these approaches we have demonstrated a specific, saturable, moderate-affinity interaction between zyxin and alpha-actinin. Furthermore, double-label immunofluorescence reveals that zyxin and alpha-actinin exhibit extensive overlap in their subcellular distributions in both chicken embryo fibroblasts and pigmented retinal epithelial cells. The significant colocalization of the two proteins is consistent with the possibility that the interaction between zyxin and alpha-actinin has a biologically relevant role in coordinating membrane-cytoskeletal interactions.  相似文献   

19.
We address the controversy of whether mature myofibrils can form in the presence of taxol, a microtubule-stabilizing compound. Previous electron microscopic studies reported the absence of actin filaments and Z-bands in taxol-treated myocytes [Antin et al., 1981: J Cell Biol 90:300-308; Toyoma et al., 1982: Proc Natl Acad Sci USA 79:6556-6560]. Quail skeletal myoblasts were isolated from 10-day-old embryos and grown in the presence or absence of taxol. Taxol inhibited the formation of multinucleated elongated myotubes. Myocytes cultured in the continual presence of taxol progressed from rounded to stellate shapes. Groups of myocytes that were clustered together after the isolation procedure fused in the presence of taxol but did not form elongated myotubes. Actin filaments and actin-binding proteins were detected with several different fluorescent probes in all myofibrils that formed in the presence of taxol. The Z-bands contained both alpha-actinin and titin, and the typical arrays of A-Bands were always associated with actin filaments in the myofibrils. Myofibril formation was followed by fixing cells each day in culture and staining with probes for actin, muscle-specific alpha-actinin, myosin II, nebulin, troponin, tropomyosin, and non-muscle myosin II. Small linear aggregates of alpha-actinin or Z-bodies, premyofibrils, were detected at the edges of the myocytes and in the arms of the taxol-treated cells and were always associated with actin filaments. Non-muscle myosin II was detected at the edges of the taxol-treated cells. Removal of the taxol drug led to the cells assuming a normal compact elongated shape. During the recovery process, additional myofibrils formed at the spreading edges of these elongated and thicker myotubes. Staining of these taxol-recovering cells with specific fluorescent reagents reveals three different classes of actin fibers. These results are consistent with a model of myofibrillogenesis that involves the transition of premyofibrils to mature myofibrils.  相似文献   

20.
The proto-oncogenic kinase Abelson (Abl) regulates actin in response to cell signaling. Drosophila Abl is required in the nervous system, and also in epithelial cells, where it regulates adherens junction stability and actin organization. Abl acts at least in part via the actin regulator Enabled (Ena), but the mechanism by which Abl regulates Ena is unknown. We describe a novel role for Abl in early Drosophila development, where it regulates the site and type of actin structures produced. In Abl's absence, excess actin is polymerized in apical microvilli, whereas too little actin is assembled into pseudocleavage and cellularization furrows. These effects involve Ena misregulation. In abl mutants, Ena accumulates ectopically at the apical cortex where excess actin is observed, suggesting that Abl regulates Ena's subcellular localization. We also examined other actin regulators. Loss of Abl leads to changes in the localization of the Arp2/3 complex and the formin Diaphanous, and mutations in diaphanous or capping protein beta enhance abl phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号