首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many amphibian larvae a suite of morphological and behavioural characters varies together in an induced defence against predators, but it remains unclear which features are functionally related to defence. We independently manipulated behaviour and morphology in tadpoles of Hyla versicolor and assessed their consequences for swimming performance and predator escape. Data on burst swimming showed that tadpoles which accelerated rapidly were elongate, with shallow bodies and tails. Predator escape was measured by exposing tadpoles to predators (larval Anax dragonflies or larval Ambystoma salamanders) and recording time until death. Tadpoles were first reared for 30 days in ponds containing either caged Anax or no predators; individuals responded to predators by developing large brightly coloured tails and short bodies. We placed tadpoles of both morphological phenotypes into plastic tubs, and manipulated their behaviour using food and chemical cues from predators. Mortality risk experienced by the predator‐induced phenotype was about half that of the no‐predator phenotype, and risk increased with time spent swimming. An interaction between morphology and behaviour arose because increasing activity caused higher risk for tadpoles with deep tail fins but not shallow tail fins.  相似文献   

2.
A central issue in predator–prey interactions is how predator associated chemical cues affect the behaviour and life history of prey. In this study, we investigated how growth and behaviour during ontogeny of a damselfly larva (Coenagrion hastulatum) in high and low food environments was affected by the diet of a predator (Aeshna juncea). We reared larvae in three different predator treatments; no predator, predator feeding on conspecifics and predator feeding on heterospecifics. We found that, independent of food availability, larvae displayed the strongest anti-predator behaviours where predators consumed prey conspecifics. Interestingly, the effect of predator diet on prey activity was only present early in ontogeny, whereas late in ontogeny no difference in prey activity between treatments could be found. In contrast, the significant effect of predator diet on prey spatial distribution was unaffected by time. Larval size was affected by both food availability and predator diet. Larvae reared in the high food treatment grew larger than larvae in the low food treatment. Mean larval size was smallest in the treatment where predators consumed prey conspecifics, intermediate where predators consumed heterospecifics and largest in the treatment without predators. The difference in mean larval size between treatments is probably an effect of reduced larval feeding, due to behavioural responses to chemical cues associated with predator diet. Our study suggests that anti-predator responses can be specific for certain stages in ontogeny. This finding shows the importance of considering where in its ontogeny a study organism is before results are interpreted and generalisations are made. Furthermore, this finding accentuates the importance of long-term studies and may have implications for how results generated by short-term studies can be used.  相似文献   

3.
The ontogeny of kin recognition and influence of social environment on the development of kin recognition behaviour was experimentally investigated in tadpoles of Bufo melanostictus that lived in aggregations and showed low larval dispersion. Embryos and tadpoles of the toad were reared as (i) kin only, (ii) with kin and non-kin (separated by a mesh screen), and (iii) in isolation. They were tested for the ability to discriminate between (i) familiar siblings and unfamiliar non-siblings, (ii) familiar siblings and familiar non-siblings and, (iii) unfamiliar siblings and unfamiliar non-siblings. All tadpoles were fed on boiled spinach before conducting trials. Preference of test tadpoles to associate near the end compartments whether empty or containing members of specific stimulus groups was assessed using a rectangular choice tank. When tested in tanks with empty end compartments, the test tadpoles showed random distribution and thus no bias for the apparatus or the procedure. In the presence of kin/non-kin in the end compartments a significantly greater number of test tadpoles spent the majority of the time near familiar or unfamiliar kin rather than near familiar or unfamiliar non-kin. Kin discrimination ability persisted throughout larval development. Familiarity with siblings is not required for discriminating kin from non-kin, and kin discrimination ability is not modified following exposure to non-kin. Also, involvement of dietary cues is unlikely to be the prime mechanism of kin recognition inB. melanostictus unlike in some other anurans.  相似文献   

4.
Abstract.  1. An organism's growth parameters are expected to depend on environmental constraints, such as predation risk and food supply. However, antipredator responses, food intake, and thus growth of an animal may be mediated by behavioural traits, which are likely to differ among developmental stages. In this study, it was investigated how the relationship between growth and behavioural antipredator responses changes during ontogeny in the time-constrained dragonfly species Libellula depressa , and which factors influenced specific behavioural decisions at different points in ontogeny.
2. The results revealed that behavioural strategies differed between larval developmental sages, depending on associations between larval growth, food supply, and predation risk. Early in ontogeny, faster development was correlated with high larval activity and high food supply. This resulted in high activity levels under high food conditions irrespectively of predator presence, and under low food supply in predator absence only. In the intermediate stage of development, all larvae displayed a high activity level, which was correlated in general with fast development. However, growth later in ontogeny was not only influenced by the activity level, but also by predator presence and food supply, with larvae reared under high food supply and/or in presence of predators attaining a higher final mass. Thus, not only the way in which larval growth parameters and behaviour are related changed during development, but also whether the factors influenced larval growth and behaviour. Once the larvae reached the ultimate stage of development, in which they overwinter, behavioural patterns observed were consistent with model predictions.
3. It is advocated that behavioural plasticity of prey organisms in different developmental stages should be analysed in the context of associated growth variables.  相似文献   

5.
Where organisms undergo radical changes in habitat during ontogeny, dramatic phenotypic reshaping may be required. However, physiological and functional interrelationships may constrain the extent to which an individual's phenotype can be equally well adapted to their habitat throughout the life cycle. The phenotypic response of tadpoles to the presence of a predator has been reported for several species of anuran but the potential post-metamorphic consequences have rarely been considered. We reared common frog Rana temporaria tadpoles in the presence or absence of a larval odonate predator, Aeshna juncea , and examined the consequences of the resulting phenotypic adjustment in the aquatic larval stage of the life cycle for the terrestrial juvenile phenotype. In early development tadpoles developed deeper tail fins and muscles in response to the predator and, in experimental trials, swam further than those reared in the absence of a predator. While the difference in swimming ability remained significant throughout the larval period, by the onset of metamorphosis we could no longer detect any differences in the morphological parameters measured. The corresponding post-metamorphic phenotypes also did not initially differ in terms of morphology. At 12 weeks post-metamorphosis, however, froglets that developed from predator-exposed tadpoles swam more slowly and less far than those that developed from tadpoles reared in the absence of predators, the opposite trend to that observed in the larval stage of the life cycle, and had narrower femurs. These results suggest that there may be long-term costs for subsequent life-history stages of tailoring the larval phenotype to prevailing environmental conditions.  相似文献   

6.
Anssi Laurila 《Oikos》2000,88(1):159-168
Antipredator behaviour is an important factor influencing survival probability of prey animals, and it may evolve rapidly as a response to changes in predator regime. I studied antipredator behaviour of common frog ( Rana temporaria ) tadpoles from three populations that differ in predator regimes. In the first experiment, tadpoles obtained from four natural matings in each population were subjected to chemical cues from either European perch ( Perca fluviatilis ) or from larvae of the dragonfly Aeshna juncea . Tadpoles decreased their activity in response to both predators, but the spatial behaviour of tadpoles differed between the two predator treatments. In general, there were no differences in behaviours among the populations, but in three out of four studied behaviours there were differences between parentages within the populations suggesting that these behaviours may be genetically determined. The lack of a significant Predator×Population interaction suggests no differences in plastic antipredator behaviour among the populations, while the lack of significant Predator×Parentage interaction suggests no genetic variance within the populations for plastic antipredator behaviour. In the second experiment, tadpoles from the three populations were exposed to predation by a free-ranging A. juncea . In line with the first experiment, there were no differences in survival rate between the populations. R. temporaria tadpoles seem to rely heavily on plastic antipredator behaviour as their main response to predator chemical cues. There was very little indication of local behavioural differentiation and the possible reasons for the lack of divergence among populations are discussed.  相似文献   

7.
Many animals modify their behavior toward unfamiliar conspecifics as a function of their genetic relatedness. A fundamental problem of any kin recognition study is determining what is being recognized and why. For anuran tadpoles, the predominant view is that associating with relatives is kin-selected because these relatives may thereby accrue benefits through increased growth or predation avoidance. An alternative view is that kin associations are simply a side-effect of habitat selection and thus do not represent attempts to identify kin per se. In the laboratory, spadefoot toad tadpoles (Scaphiopus multiplicatus) preferentially associated with unfamiliar siblings over unfamiliar nonsiblings, as do other anurans. However, same age tadpoles also were more likely to orient toward unfamiliar nonsiblings reared on the same food (familiar food) than toward unfamiliar siblings that were reared on unfamiliar food. These results, together with the results of previous tadpole kin recognition studies, suggest that tadpoles orient toward cues learned early in ontogeny, regardless of the cues' source. Tadpoles that preferentially associated with cues learned from their environment at birth would tend to be philopatric. Censuses of 14 natural ponds revealed that tadpole density remained greatest near oviposition sites until four days before metamorphosis. Tadpole philopatry may be advantageous: tadpoles restricted to their natal site had greater growth and survivorship than did their siblings restricted to randomly selected sites elsewhere within the same pond. Thus kin affiliative tendency observed in the laboratory in this and perhaps other species of anurans may be a byproduct of habitat selection. Since kin discrimination in animals is most commonly assayed as orientation toward kin, it follows that many examples of “kin recognition” may not represent true attempts to identify kin as such, but rather may reflect some other recognition system that is under entirely different selective pressures.  相似文献   

8.
Animals often alter their behaviour, morphology and physiology in the presence of predators. These induced defences can be fine‐tuned by a variety of environmental factors such as predator species, acute predation risk or food availability. It has, however, remained unclear what cues influence the extent and quality of induced defences and how the information content of these cues interact to determine the development of antipredator defences. We performed an experiment to study the significance of direct chemical cues, originating from the predators themselves, and indirect cues, released by attacked or consumed prey, for phenotypic responses in Rana dalmatina tadpoles. We reared tadpoles in the presence of caged predators (Triturus vulgaris, Aeshna cyanea) fed either one or three tadpoles every other day outside the tadpole‐rearing tanks. Fifteen hours after food provisioning, predators were put back into the tanks containing focal tadpoles either after washing (direct + digestion‐released cues) or with the water containing remnants of the prey (direct + all types of indirect cues). Our results suggest that direct cues together with digestion‐released cues can be sufficient to induce strong antipredator responses. Induced defences depended on both direct cues, affecting predator‐specific responses, and the quantity of indirect cues, resulting in graded responses to differences in predation threat. Moreover, direct and indirect cues interacted in behaviour, resulting in predator‐specific graded responses. We also observed a decrease in the extent of predator‐induced responses in large tadpoles as compared to small ones. Our results, thus, suggest that prey integrate multiple cues about predators to optimize induced defences and that this process changes during ontogeny.  相似文献   

9.
1. Natural selection favours females who can correctly assess the predation risk and hence avoid high‐risk oviposition sites and reduce the mortality rate of their offspring. In spite of the potential significance of such behaviour, relatively few studies have assessed the relationship between oviposition behaviour and predation risk. 2. The present study aimed to determine the sublethal effects of predators on oviposition site selection by gravid females, the foraging activity of larvae, and the life history traits of two mosquito species that breed in different habitats, Aedes albopictus Skuse (container breeder) and Culex tritaeniorhynchus Giles (wetland breeder). 3. Female C. tritaeniorhynchus avoided laying eggs at oviposition sites in the presence of a predator cue. In contrast, female A. albopictus laid eggs in both the absence and presence of the predator cue. 4. To examine the effects of predator cues on larval behaviour, experiments were conducted in the absence and presence of a predator cue. Although larval activity was lower in the presence of the predator cue than that in its absence in both species, C. tritaeniorhynchus responded to the predator cue more strongly than A. albopictus. Female A. albopictus that had been reared with caged predators exhibited an extended larval development period, whereas the adult C. tritaeniorhynchus reared in the presence of predators were smaller than those reared in their absence. 5. This finding might explain why C. tritaeniorhynchus avoid laying eggs in predator‐conditioned water, for example to increase the fitness of their offspring, but A. albopictus either cannot detect predator cues or are not sensitive to them.  相似文献   

10.
Temporal variation in predation risk may be an important determinant of prey antipredator behaviours. According to the risk allocation hypothesis, the strongest antipredator behaviours are expected when periods of high risk are short and infrequent. We tested this prediction in a laboratory experiment where common frog Rana temporaria tadpoles were raised form early larval stages until metamorphosis. We manipulated the time a predatory Aeshna dragonfly larva was present and recorded behavioural responses (activity) of the tadpoles at three different time points during the tadpoles' development. We also investigated how tadpole shape, size and age at metamorphosis were affected by temporal variation in predation risk. We found that during the two first time points activity was always lowest in the constant high-risk situation. However, antipredator response in the two treatments with brief high-risk situation increased as tadpoles developed, and by the third time point, when the tadpoles were close to metamorphosis, activity was as low as in the constant high-risk situation. Exposure to chemical cues of a predation event tended to reduce activity during the first time period, but caused no response later on. Induced morphological changes (deeper tail and shorter relative body length) were graded the response being stronger as the time spent in the proximity of predator increased. Tadpoles in the brief risk and chemical cue treatments showed intermediate responses. Modification of life history was only found in the constant high-risk treatment in which tadpoles had longer larval period and larger metamorphic size. Our results indicate that both behavioural and morphological defences were sensitive to temporal variation in predation risk, but behaviour did not respond in the manner predicted by the risk allocation model. We discuss the roles of concentration of predator chemical cues and prey stage-dependency in determining these responses.  相似文献   

11.
Previous investigations have demonstrated the importance of predator diet in chemically mediated antipredator behaviour. However, there are few data on responses to life-stage-specific predator diets, which could be important for animals like amphibians that undergo metamorphosis and must respond to different suites of predators at different life-history stages. In laboratory choice tests, we investigated the chemically mediated avoidance response of juvenile western toads, Bufo boreas, to four different chemical stimuli: (1) live conspecific juveniles; (2) live earthworms; (3) snakes fed juvenile conspecifics; and (4) snakes fed larval conspecifics (tadpoles). Juvenile toads avoided chemical cues from snakes that had eaten juvenile conspecifics, but did not respond to the other three stimuli, including chemical cues from snakes fed larval conspecifics. In addition, the response to cues from snakes fed juveniles differed significantly from that of snakes fed larvae. To our knowledge, this is the first study to demonstrate the importance of diet in predator avoidance of juvenile anurans and the ability of juvenile toads to distinguish between chemical cues from predators that have consumed larval versus juvenile conspecifics. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

12.
Relyea RA  Hoverman JT 《Oecologia》2003,134(4):596-604
Studies of phenotypic plasticity typically focus on traits in single ontogenetic stages. However, plastic responses can be induced in multiple ontogenetic stages and traits induced early in ontogeny may have lasting effects. We examined how gray treefrog larvae altered their morphology in four different larval environments and whether different larval environments affected the survival, growth, development, and morphology of juvenile frogs at metamorphosis. We then reared these juveniles in terrestrial environments under high and low intraspecific competition to determine whether the initial differences in traits at metamorphosis affected subsequent survival and growth, whether the initial phenotypic differences converged over time, and whether competition in the terrestrial environment induced further phenotypic changes. Larval and juvenile environments both affected treefrog traits. Larval predators induced relatively deep tail fins and short bodies, but there was no impact on larval development. In contrast, larval competitors induced relatively short tails and long bodies, reduced larval growth, and slowed larval development. At metamorphosis, larval predators had no effect on juvenile growth or relative morphology while larval competitors produced juveniles that were smaller and possessed relatively shorter limbs and shorter bodies. After 1 month of terrestrial competition among the juvenile frogs, the initial differences in juvenile morphology did not converge. There were no differences in growth due to larval treatment but there were differences in survival. Individuals that experienced low competition as tadpoles experienced near perfect survival as juvenile frogs but individuals that experienced high competition as tadpoles suffered an 18% decrease in survival as juvenile frogs. There were also morphological responses to juvenile competition, but these changes appear to be due, at least in part, to allometric effects. Collectively, these results demonstrate that larval environments can have profound impacts on the traits and fitness of organisms later in ontogeny.  相似文献   

13.
While deploying immune defences early in ontogeny can trade‐off with the production and maintenance of other important traits across the entire life cycle, it remains largely unexplored how features of the environment shape the magnitude or presence of these lifetime costs. Greater predation risk during the juvenile stage may particularly influence such costs by (1) magnifying the survival costs that arise from any handicap of juvenile avoidance traits and/or (2) intensifying allocation trade‐offs with important adult traits. Here, we tested for predator‐dependent costs of immune deployment within and across life stages using the dragonfly, Pachydiplax longipennis. We first examined how larval immune deployment affected two traits associated with larval vulnerability to predators: escape distance and foraging under predation risk. Larvae that were induced to mount an immune response had shorter escape distances but lower foraging activity in the presence of predator cues. We also induced immune responses in larvae and reared them through emergence in mesocosms that differed in the presence of large predatory dragonfly larvae (Aeshnidae spp.). Immune‐challenged larvae had later emergence overall and lower survival in pools with predators. Immune‐challenged males were also smaller at emergence and developed less sexually selected melanin wing coloration, but these effects were independent of predator treatment. Overall, these results highlight how mounting an immune defence early in ontogeny can have substantial ecological and physiological costs that manifest both within and across life stages.  相似文献   

14.
Adaptive phenotypic plasticity is widespread and involves diverse phenotypes. Key environmental stressors, such as predation risk, can simultaneously induce changes in multiple traits, but the magnitude of response is dependent upon the environmental conditions. Species that utilize temporary ponds are expected to exhibit stronger predator‐induced responses in the form of morphology than behaviour (i.e. reduced activity) to meet the demands of rapid development by maintaining high foraging activity while reducing predation risk via morphologically plastic traits. In a laboratory experiment, I examined the effects of predator chemical cues and conspecific alarm cues on activity, development and morphology on Leptodactylus bufonius tadpoles. This species has terrestrial oviposition and completes the early part of its development outside of ephemeral and temporary ponds in the Gran Chaco ecoregion of South America. Tadpoles in the predator treatments exhibited both behavioural and morphological predator‐induced plastic responses. Tadpoles tended to possess shorter, deeper tails when exposed to predators. The greatest reduction in activity was observed in tadpoles exposed to both predator and conspecific alarm cues, which subsequently resulted in the slowest development. Temporary and ephemeral pond adapted species with terrestrial oviposition may capitalize on a head start in development by being able to afford reduced growth rates via a reduction in activity. This may occur when the constraints imposed by pond hydroperiod (e.g. risk of pond drying) are relaxed when compared with species with aquatic oviposition, which must undergo all stages of development during the pond's hydroperiod. Thus, in addition to the predator and hydroperiod gradients, examining phenotypically plastic responses along a ‘terrestriality gradient’ in a comparative framework would provide insights as to the costs and benefits of increasing terrestriality in anuran reproductive modes to environmental stressors.  相似文献   

15.
The diverse benefits of group living include protection against predators through dilution effects and greater group vigilance. However, intraspecific aggregation can decrease developmental rates and survival in prey species. We investigated the impact on tadpole development and behaviour of the interaction between population density and predation risk. Spotted tree frog (Litoria spenceri: Hylidae, Dubois 1984) tadpoles were kept at one of three different densities (two tadpoles per litre, five tadpoles per litre or 10 tadpoles per litre) until metamorphosis in the presence or absence of predatory cues. We aimed to determine the influence of population density, predation and the interaction of both factors in determining growth rates in tadpoles. Tadpoles were measured weekly to assess growth and development and filmed to quantify differences in activity and feeding frequency between groups. Generally, tadpoles housed without predators had longer developmental periods when housed with a predator, but there was no effect on tail length or total length. There was no effect of either predation cues or density on percentage of individuals feeding or moving. Although the effects of the presence of predators alone may appear to be less than the effects of the presence of competitors, the prioritisation of competitiveness over predator avoidance may increase vulnerability of tadpoles to the lethal threat of predators. This is particularly important in species such as L. spenceri, which is at risk from introduced fish predators.  相似文献   

16.
Activity is a key behavioral trait that often mediates a trade-off between finding food for growth and evading predation. We investigated how activity of the damselfly Lestes congener is affected by larval state and predator presence and if larval behavioral type (BT) can be used to predict larval emergence behavior. Activity level of individual larvae was studied without predators at two different physiological states (hungry, fed) and in two predator treatments (familiar or unfamiliar predator cues). Larvae did not adjust their activity depending on state or when subjected to unfamiliar predator cues but a general reduction in activity was seen in the familiar predator treatment. Hence, active individuals remained active compared to their conspecifics, independent of state or predator treatment illustrating the presence of a behavioral syndrome. However, we found no correlation between larval BT and emergence behavior. Active individuals did not differ from less active individuals in any emergence characteristics. The results illustrate that the larval BT occurs in many situations keeping active larvae active even in maladaptive situations. Furthermore, we show that damselfly emergence behavior can be completely decoupled from larval BT, indicating a loss of stability in individual BT during critical stages in ontogeny.  相似文献   

17.
When captured by predators, the tadpoles of some species of frogs and toads may release an alarm substance that alters the behaviour of conspecifics. Such ‘alarm response’ behaviour has been proposed as a potential mechanism whereby related conspecifics may ‘warn’ relatives of a predator's presence and thus, improve their inclusive fitness. We examined predator avoidance and alarm response behaviour in tadpoles of the Cascades frog (Rana cascadae) and tested whether such behaviour is influenced by kinship factors. Tadpoles reduced activity when in the presence of a predatory newt (Taricha granulosa). Individuals in sibling groups were more active than both solitary tadpoles and individuals in mixed groups of siblings and nonsiblings. However, we found no evidence of an alarm response in R. cascadae. Behaviour of tadpoles in groups exposed only to predators was not different from that of tadpoles in groups exposed to predators plus crushed conspecifics. Tadpoles in groups exposed to crushed tadpoles were as active as tadpoles in groups exposed to water controls, and some test individuals fed upon the dead tadpoles. Thus, while R. cascadae tadpoles reduce activity in response to newt predators, crushed tadpoles appear to initiate a feeding response rather than an alarm response as has been previously proposed.  相似文献   

18.
Predators have documented post-encounter (density-mediated) effects on prey but their pre-encounter impacts, including behavioural alterations, can be substantial as well. While it is increasingly evident that this “ecology of fear” is important to understand for natural enemy-victim relationships, fear responses of hosts to the threat of infection by a parasite are relatively unknown. We examined larval amphibian (Lithobates pipiens) foraging choices by experimentally manipulating the presence of cues relating to predator (larval odonate) or parasite (the trematode Ribeiroia ondatrae) threats. Tadpoles avoided foraging where predator or parasite cues were present; however, they did not treat these as equal hazards. When both threats were simultaneously present, tadpoles strongly preferred to forage under the threat of parasitism compared to predation, likely driven by their relative lethality in our study. Our results indicate that altered spatial use is an important anti-parasite behaviour, and demonstrate that parasite avoidance can affect foraging in a manner similar to predators, warranting greater study of the pre-encounter effects of this enemy type.  相似文献   

19.
Abstract.  1. Predators may affect prey populations by direct consumption, and by inducing defensive reactions of prey to the predation risk. Food scarcity frequently has effects on the inducible defences of prey, but no consistent pattern of food–predation risk interaction is known.
2. In this study the combined effect of food shortage and predation-risk perception in larvae of the mosquito Culex pipiens was investigated. Water exposed to the aquatic predator bug Notonecta glauca was used as a source of predation intimidation. Mosquito larvae were reared in three different media containing either no predator cues or the cues of N. glauca that had been fed on either C. pipiens larvae or on Daphnia magna . Food was provided in favourable or limited amount for these set-ups.
3. The results showed that chemical cues from the predators fed with prey's conspecifics caused a decreased survival, delayed pre-imaginal development, and reduction in body size of emerged mosquitoes, whereas chemical cues from predators fed with D. magna caused only delayed development. Food scarcity significantly exacerbates the negative effect of the predator cues on pre-imaginal development of C. pipiens . Effects of the cues on larval development and body size of imagoes are significantly stronger for females than for males.
4. The present study suggests that when food is limited, predators can affect population dynamics of prey not only by direct predation, but also by inducing lethal and sublethal effects due to perception of risk imposed by chemical cues. To understand the effects of predators on mosquito population dynamics, environmental parameters such as food deficiency should be considered.  相似文献   

20.
Interaction between insect larvae and tadpoles in tropical rain pools   总被引:2,自引:0,他引:2  
Abstract. 1. Ephemeral rain pools on rock surfaces are common in Africa and are inhabited by dense populations of aquatic dipteran larvae. About 30% of the pools also support large numbers of tadpoles of the frog Ptychadena anchietae .
2. Experiments reveal that the presence of tadpoles suppress eclosion of the rock pool dwelling midge Chironomus imicola .
3. However, the presence of tadpoles also shortens the larval life-span of C. imicola by speeding up growth rates. Since the larval stages must be completed before the pool dries tadpoles may help 'fine-tune' the dipteran to the rock pool habitat.
4. A change in the diet of Cimicola larvae is associated with the accelerated development. Grazing by tadpoles results in algae, growing on the water surface, reaching the mud in tadpole faeces. These algae represent a high protein and energy food not otherwise accessible to mud dwelling dipteran larvae.
5. When pools dry tadpoles are killed, but a second species of dipteran Dasyhelea thompsoni have larvae able to survive to dry phase in situ . These larvae are scavengers so that on reflooding dead tadpoles are available as food. Experiments show that the presence of tadpoles again increase larval growth rates.
6. Both alive and dead tadpoles therefore are responsible for increasing the quality and quantity of food available to dipteran larvae and are thus among the mechanisms ensuring an abundance of food for rock pool dwelling insect larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号