首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
The notion of absence of the frontal sinuses in human individuals presenting a persistence of the metopic suture is considered as classical in many treatises of reference; however, precise studies are very rare and even controversial. The purpose of this study was thus to provide original data to confirm or refute this classical affirmation with the perspective of some original insights into biological significance of the frontal sinuses and the factors influencing their exceptional polymorphism. The material consisted of 143 dry skulls of adult individuals (European Homo sapiens), distributed in two groups: 80 skulls presenting a complete frontal closure with total disappearance of the metopic suture, and 63 skulls presenting a complete persistence of the metopic suture. Each skull was radiographed in oblique projection using the occipitomental view. A simple morphological quantification of the sinus size was defined with four categories: (1) aplasia, (2) hypoplasia, (3) medium size, (4) hyperplasia. Statistically significant difference in frontal sinusal size was found between both groups of skulls. Absent and small sinuses were considerably more frequent in skulls with persistence of the metopic suture (57.9 vs. 11.9%): small frontal sinuses (hypoplasia) were much more frequent (50.8 vs. 9.4%), although the frequency of absence of frontal sinuses (aplasia) was only slightly higher (7.1 vs. 2.5%). Am J Phys Anthropol 154:621–627, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
4.
    
The Msx and Dlx families of homeobox proteins are important regulators for embryogenesis. Loss of Msx1 in mice results in multiple developmental defects including craniofacial malformations. Although Dlx5 is widely expressed during embryonic development, targeted null mutation of Dlx5 mainly affects the development of craniofacial bones. Msx1 and Dlx5 show overlapping expression patterns during frontal bone development. To investigate the functional significance of Msx1/Dlx5 interaction in regulating frontal bone development, we generated Msx1 and Dlx5 double null mutant mice. In Msx1?/?;Dlx5?/? mice, the frontal bones defect was more severe than that of either Msx1?/? or Dlx5?/? mice. This aggravated frontal bone defect suggests that Msx1 and Dlx5 function synergistically to regulate osteogenesis. This synergistic effect of Msx1 and Dlx5 on the frontal bone represents a tissue specific mode of interaction of the Msx and Dlx genes. Furthermore, Dlx5 requires Msx1 for its expression in the context of frontal bone development. Our study shows that Msx1/Dlx5 interaction is crucial for osteogenic induction during frontal bone development. genesis 48:645–655, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
7.
8.
Tissue origins and interactions in the mammalian skull vault.   总被引:19,自引:0,他引:19  
During mammalian evolution, expansion of the cerebral hemispheres was accompanied by expansion of the frontal and parietal bones of the skull vault and deployment of the coronal (fronto-parietal) and sagittal (parietal-parietal) sutures as major growth centres. Using a transgenic mouse with a permanent neural crest cell lineage marker, Wnt1-Cre/R26R, we show that both sutures are formed at a neural crest-mesoderm interface: the frontal bones are neural crest-derived and the parietal bones mesodermal, with a tongue of neural crest between the two parietal bones. By detailed analysis of neural crest migration pathways using X-gal staining, and mesodermal tracing by DiI labelling, we show that the neural crest-mesodermal tissue juxtaposition that later forms the coronal suture is established at E9.5 as the caudal boundary of the frontonasal mesenchyme. As the cerebral hemispheres expand, they extend caudally, passing beneath the neural crest-mesodermal interface within the dermis, carrying with them a layer of neural crest cells that forms their meningeal covering. Exposure of embryos to retinoic acid at E10.0 reduces this meningeal neural crest and inhibits parietal ossification, suggesting that intramembranous ossification of this mesodermal bone requires interaction with neural crest-derived meninges, whereas ossification of the neural crest-derived frontal bone is autonomous. These observations provide new perspectives on skull evolution and on human genetic abnormalities of skull growth and ossification.  相似文献   

9.
    
Protocadherins represent the biggest subgroup within the cadherin superfamily of transmembrane glycoproteins. In contrast to classical type I cadherins, protocadherins in general exhibit only moderate adhesive activity. During embryogenesis, they are involved in cell signaling and regulate diverse morphogenetic processes, including morphogenetic movements during gastrulation and neural crest migration. The two protocadherins paraxial protocadherin (PAPC) and axial protocadherin (AXPC) are indispensable for proper gastrulation movements in Xenopus and zebrafish. The closest relative PCNS instead, is required for neural crest and somite formation. Here, we show that cranial neural crest (CNC) cells in addition to PCNS express PAPC, but not AXPC. Overexpression of PAPC resulted in comparable migration defects as knockdown of PCNS. Moreover, reconstitution experiments revealed that PAPC is able to replace PCNS in CNC cells, indicating that both protocadherins can regulate CNC migration. genesis 52:120–126. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
  总被引:1,自引:0,他引:1  
Endonuclease-mediated mRNA decay appears to be a common mode of mRNA degradation in mammalian cells, but yet only a few mRNA endonucleases have been described. Here, we report the existence of a second mammalian endonuclease that is capable of cleaving c-myc mRNA within the coding region in vitro. This study describes the partial purification and biochemical characterization of this enzyme. Five major proteins of approximately 10-35 kDa size co-purified with the endonuclease activity, a finding supported by gel filtration and glycerol gradient centrifugation analysis. The enzyme is an RNA-specific endonuclease that degrades single-stranded RNA, but not double-stranded RNA, DNA or DNA-RNA duplexes. It preferentially cleaves RNA in between the pyrimidine and purine dinucleotides UA, UG, and CA, at the coding region determinant (CRD) of c-myc RNA. The enzyme generates products with a 3'hydroxyl group, and it appears to be a protein-only endonuclease. It does not possess RNase A-like activity. The enzyme is capable of cleaving RNAs other than c-myc CRD RNA in vitro. It is Mg(2+)-independent and is resistant to EDTA. The endonuclease is inactivated at and above 70 degrees C. These properties distinguished the enzyme from other previously described vertebrate endonucleases.  相似文献   

11.
    
Infection of rats with Friend murine leukemia virus (Fr-MLV) clone A8 causes thymoma in all the animals within 7 weeks. The rapid induction of thymoma is associated with a unique enhancer structure in the U3 region of the A8-LTR. Our Southern blot analyses showed that the thymomas were oligo clonal. The A8-induced thymomas showed 3-to 11-fold overexpression of c-myc mRNA. These results suggest that provirus insertion into particular positions of the host genome is correlated with tumorigenesis after A8 infection and that up-regulation of c-myc plays an important role in the induction of thymoma.  相似文献   

12.
13.
14.
Skull anatomy and development have been extensively studied due to their significance in evolutionary biology, forensic anthropology, and clinical medicine. Bone collections are an indispensable resource for conducting such anthropological and anatomical studies. However, worldwide there are only few skull collections containing specimens covering the entire fetal and postnatal period. Herein we describe the Zagreb Skull Collection, an identified collection comprising more than 1100 skulls and skull bone sets from the early fetal period to centenarians. The Zagreb Skull Collection consists of two main parts: the unique Collection of Skull Bones containing 386 sets of separated skull bones from the early fetal period to adulthood and the Collection of Skulls containing 742 skulls (age range 4–101 years). The collection was the core source for numerous anatomical studies on the development, postnatal changes, and anatomical variations of the skull. However, the Zagreb Skull Collection is still an underexploited resource for anthropological, forensic, and anatomical studies with translatability to contemporary clinical practice.  相似文献   

15.
16.
    
  相似文献   

17.
    
Melanocytes are mainly found in the skin and more rarely in other parts of the body, including the heart. We analyzed the localization of heart melanocytes and their levels of pigmentation in a series of mutant mice presenting different numbers of melanocytes and pigmentation in the skin. We found that melanocytes were localized in the valves (mitral, tricuspid, and aortic) and septa (ventricular and atrial). Moreover, the numbers of melanocytes in the heart appears to reflect that of the skin. Mice having a high or low level of pigmented cells and/or melanin in valves and septa have similar lifespan. In this respect, melanocytes found in the valves and septa of the heart are probably not essential in a healthy and non-stressful environment.  相似文献   

18.
    
After tail amputation in lizard, a regenerative response is elicited leading to the formation of a new tail. The stimulation of the proliferation process may involve the proto‐oncogene c‐myc. The immunocytochemical analysis detects the c‐myc protein few days after wound in free cells accumulating over the injured tissues of the tail stump. Western blot detects a protein band at 68–70 kDa that is more intense in the regenerating blastema than in normal tail tissues. Nuclei positive for the c‐myc protein are seen in mesenchymal‐like cells located among muscles, connectives and fat tissues of the tail stump 4 days postamputation. Proliferating cells labelled for 5BrdU are seen at 4 days postamputation and are sparse in the mesenchyme of the regenerating blastema formed at 12 days postamputation. Fine immunolocalization of the c‐myc protein shows it is mainly located over euchromatin or poorly condensed chromatin to indicate gene activation. The study correlates the detection of the c‐myc protein with activation of cell division in the injured tissues leading to the formation of the regenerative blastema. The lizard c‐myc protein probably activates a controlled proliferation process through a mechanism that can give information on the uncontrolled process occurring in cancer.  相似文献   

19.
    
A recent burst of findings has shown that neural crest‐derived stem cells (NCSCs) can be found in diverse mammalian tissues. In addition to their identification in tissues that are known to be derived from the neural crest, recent studies have revealed NCSCs in tissues that are not specifically derived from the neural crest, such as bone marrow. NCSCs can express a wide range of characteristics, and which properties are expressed mainly depends on their tissue sources and the ontogenic stage of the animal. The identification of NCSCs in various tissues opens an entirely new avenue of approach to developing autologous cell replacement therapies for use in regenerative medicine. In this review, we discuss the origin, migration, and lineage potential of NCSCs from various mammalian tissue sources. J. Cell. Biochem. 107: 1046–1052, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
  总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号