首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this study we have demonstrated that the rat sperm acrosomal beta-d-galactosidase is expressed in late spermatocytes and spermatids (round, elongated/condensed) during spermatogenesis. The enzyme is an exoglycohydrolase which, along with other exoglycohydrolases and proteases, is thought to aid in penetration of the zona pellucida, the extracellular glycocalyx that surrounds the mammalian egg. The presence of the enzyme in spermatocytes was confirmed by multiple approaches using biochemical, biosynthetic, and immunohistochemical protocols. The germ cells (spermatocytes, round spermatids, and elongated/condensed spermatids), purified from rat testis, were found to contain beta-galactosidase and four other glycohydrolases (beta-d-glucuronidase, alpha-d-mannosidase, alpha-l-fucosidase, and beta-N-acetylglucosaminidase). With the exception of alpha-l-fucosidase, the other enzymes assayed demonstrated a two- to threefold higher activity per cell in spermatocytes than in round spermatids. Immunoblotting approaches of affinity-purified germ cell extracts demonstrated several molecular forms of beta-galactosidase in spermatocytes and round spermatids; one of these forms (62 kDa) was seen only in round spermatids. The biosynthetic approach demonstrated that the enzyme is synthesized in spermatocytes and round spermatids in culture in high-molecular-weight precursor forms (90/88 kDa) which undergo processing to lower molecular weight mature forms in a cell-specific manner. The net result is the formation of predominantly 64- and 62-kDa forms in spermatocytes and round spermatids, respectively. The conversion of precursor forms to mature forms in the diploid and haploid cells in culture is rapid with t(1/2) of 6.5 and 9.0 h, respectively. Immunohistochemical approaches revealed an immunopositive reaction in the Golgi membranes, Golgi-associated vesicles, and lysosome-like structures in the late spermatocytes and early round spermatids. The forming/formed acrosome in round and elongated spermatids was also immunoreactive.  相似文献   

2.
Calmodulin level and cAMP-dependent protein kinase activity of ram germ cells at different stages of spermatogenesis have been determined. Calmodulin levels decrease during maturation. Simultaneously, calmodulin localization changes during cell differentiation. In round, elongating, and elongated spermatids, calmodulin is closely associated with the developing acrosome; in spermatozoa, it becomes present in the postacrosome, the neck region and the tail. Protein kinase activity is relatively low in testicular cells but increases dramatically during epididymal maturation of spermatozoa. A concerted regulation by cAMP and Ca2+ of biochemical events in spermatogenic cells and spermatozoa is suggested.  相似文献   

3.
4.
5.
The purpose of this study was to determine the localization of calmodulin in the developing mouse testis by the indirect immunoperoxidase method. In addition, the amount of calmodulin in pachytene spermatocytes, spermatids, and residual bodies isolated from the mouse testis and epididymal spermatozoa was quantitated by the adenylate cyclase activation assay and by enzyme immunoassay. The relative levels of calmodulin in the developing mouse testis and in the isolated testicular germ cells were confirmed by western transfer staining. The level of immunoreactive calmodulin was very low in the testes from immature animals. In testes from the mature mouse, calmodulin was found to be localized in spermatocytes and spermatids, but was not found in spermatogonia, Sertoli cells, and interstitial cells. By contrast, immunochemical staining of tubulin was extremely intense in Sertoli cells. Biochemical determinations also showed that pachytene spermatocytes, round spermatids, spermatozoa, and residual bodies contained 14.9 micrograms, 15.8 micrograms, 2.3 micrograms and 5.2 micrograms of calmodulin per mg of protein, respectively. Both the immunochemical and the biochemical studies revealed that levels of calmodulin were high in the spermatocytes and in the round spermatids, as compared to the level in spermatozoa. This fact strongly suggests that the large amount of calmodulin in mammalian testes may be associated primarily with meiotic divisions and/or spermatogenesis.  相似文献   

6.
7.
Histamine synthesis in male reproductive tissues remains largely unknown. The interaction between stem cell factor and its receptor, c-Kit, has been found to be essential for the maturation of male germ cells and peripheral mast cells. Based on this analogy, we investigated the expression of histidine decarboxylase (HDC), the rate-limiting enzyme of histamine synthesis, in mouse male germ cells. Immunohistochemical analyses revealed that HDC is localized in the acrosomes of spermatids and spermatozoa. In the testis, epididymis, and spermatozoa, a significant amount of histamine and HDC activity were detected. W/W(V) mice, known to lack most of their germ cells in the seminiferous tubules, were found to lack HDC protein expression as well as HDC activity in the testis. An in vitro acrosome reaction induced by a calcium ionophore, caused the release of histamine from epididymal spermatozoa. Our observations indicate that histamine is produced in and released from the acrosomes.  相似文献   

8.
9.
We have employed a monospecific, polyclonal antibody to ornithine decarboxylase (ODC) for the immunocytochemical localization of ODC in freshly isolated testicular cells, epididymal spermatozoa, and cultured Sertoli cells. Antigenically detectable material was present in the cytoplasm of all cell types tested and was highly concentrated in the acrosomal vesicle of round spermatids and in the acrosome region of epididymal spermatozoa. The specific enzymatic activity of ODC, as measured biochemically, was much higher in the interstitial cells than in the other testicular cell types, and no ODC activity was detected in the epididymal spermatozoa or in the Sertoli cells after 5 days in culture. These studies showed that, while all testicular cell types studied contained ODC-like immunoreactive molecules, only testicular germ cells and interstitial cells exhibited detectable ODC activity.  相似文献   

10.
Mammalian sperm acrosomes contain several glycohydrolases that are thought to aid in the dispersion and digestion of vestments surrounding the egg. In this study, we have used multiple approaches to examine the origin of acrosome-associated glycohdyrdolases. Mixed spermatogenic cells, prepared from rat testis, were separated by unit gravity sedimentation. The purified germ cells (spermatocytes [SC], round spermatids [RS], and elongated/condensed spermatids [E/CS]) contained several glycohydrolase activities. Metabolic labeling in the cell culture, immunoprecipitation, and autoradiographic approaches revealed that β-D-galactosidase was synthesized in SC and RS in 88/90 kDa forms which undergo processing in a cell-specific manner. Immunohistochemical approaches demonstrated that the enzyme was localized in Golgi membranes/vesicles, and lysosome-like structures in SC and RS, and forming/formed acrosome of E/CS. Published December 3, 2001  相似文献   

11.
We assessed the levels and localization of the actin filament-severing protein scinderin, in fetal and adult bovine testes, and in spermatozoa during and following the epididymal transit. We performed immunoblots on seminiferous tubules and interstitial cells isolated by enzymatic digestion, and on bovine chromaffin cells, spermatozoa, aorta, and vena cava. Immunoperoxidase labeling was done on Bouin's perfusion-fixed testes and epididymis tissue sections, and on spermatozoa. In addition, immunofluorescence labeling was done on spermatozoa. Immunoblots showed one 80-kDa band in chromaffin cells, fetal and adult tubules, interstitial cells, spermatozoa, aorta, and vena cava. Scinderin levels were higher in fetal than in adult seminiferous tubules but showed no difference between fetal and adult interstitial cells. Scinderin levels were higher in epididymal than in ejaculated spermatozoa. Scinderin was detected in a region corresponding with the subacrosomal space in the round spermatids and with the acrosome in the elongated spermatids. In epididymal spermatozoa, scinderin was localized to the anterior acrosome and the equatorial segment, but in ejaculated spermatozoa, the protein appeared in the acrosome and the post-equatorial segment of the head. In Sertoli cells, scinderin was detected near the cell surface and within the cytoplasm, where it accumulated near the base in a stage-specific manner. In the epididymis, scinderin was localized next to the surface of the cells; in the tail, it collected near the base of the principal cells. In Sertoli cells and epididymal cells, scinderin may contribute to the regulation of tight junctional permeability and to the release of the elongated spermatids by controlling the state of perijunctional actin. In germ cells, scinderin may assist in the shaping of the developing acrosome and influence the fertility of the spermatozoa.  相似文献   

12.
13.
14.
The selective partitioning of cell membrane components during mouse spermatogenesis has been examined using a heterologous antibody raised against isolated type B spermatogonia. The anti-type B spermatogonia rabbit IgG (ATBS) binds to isolated populations of mouse primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene spermatocytes, leptotene/zygotene spermatocytes, pachytene spermatocytes, round spermatids, residual bodies, and mature spermatozoa. Although immunofluorescent labeling is uniformly distributed on the cell surface of early spermatogenic cells, a discrete topographical localization of IgG is observed on testicular, epididymal, and vas deferens spermatozoa. The convex surface of the acrosome, postacrosomal region, and tail are labeled. Antibody does not bind to a broad area corresponding to the concave region of the acrosome. The antibody also binds to mouse somatic cells including Sertoli cells, Leydig cells, thymocytes, and splenocytes, but not to mature spermatozoa of the vole, rat, hamster, guinea pig, rabbit, or human. ATBS, after absorption with mouse splenocytes or thymocytes, does not react with any somatic cells examined by fluorescence except with Sertoli cells. In addition, all reactivity with testicular, epididymal, and was deferens spermatozoa is abolished. However, spermatogenic cells at earlier stages of differentiation, including residual bodies, still react strongly with the absorbed antibody. The number of surface receptor sites per cell for absorbed ATBS ranges from approximately 3 million on primitive type A spermatogonia to 1 million on round spermatids and on residual bodies. Spermatozoa, however, have only 0.003 million binding sites for absorbed ATBS, in contrast to 10 million sites for the unabsorbed antibody. It appears that receptor sites for absorbed ATBS are not masked by components of epididymal secretions. These data imply, therefore, that specific mechanisms operate at the level of the cell membrane during spermiogenesis to insure that some surface components, not required in the mature spermatozoon, are removed selectively by partitioning to that portion of the spermatid membrane destined for the residual body.  相似文献   

15.
Microinsemination is the technique of delivering male germ cells directly into oocytes. The efficiency of fertilization after microinsemination and subsequent embryo development may vary with the animal species and male germ cells used. The present study was undertaken to observe the in vitro and in vivo developmental ability of rabbit embryos following microinsemination with male germ cells at different stages. First, we assessed their oocyte-activating capacity by injecting them into mouse and rabbit oocytes. The majority of mouse oocytes were activated irrespective of the type of rabbit male germ cell injected (61-77%), whereas rabbit oocytes were activated differently according to the type of male germ cells (89%, 75%, and 29% were activated by spermatozoa, elongated spermatids, and round spermatids, respectively; P < 0.05). After 120 hr in culture, 66%, 45%, and 13%, respectively, of these activated rabbit oocytes (pronuclear eggs) developed into blastocysts (P < 0.05). Additional electric pulse stimulation of round spermatid-injected oocytes increased the blastocyst rate to 43%. After 24 hr in culture, some four to eight cell embryos were transferred into the oviducts of pseudopregnant females. Normal pups were born from spermatozoa and elongated spermatids, but not from round spermatids. Karyotypic analysis at the morula/blastocyst stage revealed that the majority of round spermatid-derived embryos had abnormal ploidy (8 out of 12 embryos). Our study indicates that rabbit male germ cells acquire the ability to activate oocytes and to support subsequent embryo development as they undergo spermiogenesis. As these differential developmental patterns are similar to those reported for humans in vitro and in vivo, rabbits may provide an alternative small animal model for studying the biological nature and molecular basis of human microinsemination techniques, especially those using immature male germ cells.  相似文献   

16.
Highly homogeneous populations of human pachytene spetmatocytes and round spermatids have been obtained from normal adult testis using unit gravity (STA-PUT) sedimentation. Contaminating Leydig cells have been removed by density centrifugation in discontinuous Percoll gradients to yield resultant germ cell purities of 90–95% for pachytene spermatocytes and 89–96% for round spermatids. The total cellular polypeptide composition of separated human germ cells has been analyzed by two-dimensional polyacrylamide gel electrophoresis to compare 1) human and mouse pachytene spermatocytes (species specificity), 2) samples of human spermatocytes obtained from different individuals (allo specificity), and 3) pachytene spermatocytes and round spermatids from the same patients (stage specificity). Mouse and human germ cells have been found to exhibit extensive homology, but identified marker proteins limited to human spermatocytes include a group of polypeptides at p45/5.9 as well as a protein at p67/5.2. Proteins unique to mouse germ cells include component p65/5.5. Comparisons between different preparations of human pachytene spermatocytes have revealed about 90% electrophoretic homology, but some striking allotypic variations have been noted including the proteins at p45/5.9. Finally, presumptive stage-specific spermatogenic cell markers have been identified including the p45/5.9 polypeptides that are present only in human spermatocytes. Although the physiological roles of particular marker proteins have not yet been determined, the present findings indicate that purified spermatogenic cell populations may be analyzed biochemically to identify constituents important in the regulation of sperm development in man.  相似文献   

17.
A tetraspanin family protein, CD9, has not previously been identified in sperm cells. Here, we characterize sperm CD9 in the mouse, including its unique localization in sperm, appearance during spermatogenesis, and behavior and fate during mouse fertilization. In sperm, CD9 is an inner acrosomal membrane-associated protein, not a plasma membrane-associated protein. Its molecular weight is approximately 24 kDa throughout its processing, from testicular germ cells to acrosome-reacted sperm. A temporal difference was found between mRNA and protein expression; CD9 mRNA was detected in the stages from spermatogonia through round spermatids showing the strongest levels in midpachytene spermatocytes. CD9 protein was detected in the cytoplasm throughout the stages from spermatogonia to spermatocytes. While CD9 was weakly expressed in the spermatids from step 1 through step 14, the signals became clearly positive at the marginal region of the anterior acrosome in elongated spermatids. After the acrosome reaction, the majority of sperm CD9 was retained in the inner acrosomal membrane, but some quantity of CD9 was found on the plasma membrane covering the equatorial segment as detected by immunogold electron microscopy using anti-CD9 antibody. CD9 was maintained on the sperm head after reaching the perivitelline space of CD9-deficient eggs that were recovered after natural mating with wild males. Thus, this study characterizes CD9 in sperm development and fertilization.  相似文献   

18.
F Liu  H Huang  ZL Xu  XJ Qian  WY Qiu 《Tissue & cell》2012,44(5):281-287
Cryptorchidism is associated with male infertility due to germ cell loss in response to elevated temperature. However, there is a great deal of contradictory information prevalent on the status of germ cells and their process of removal in the cryptorchid testis. In the present study, we investigate the cell removal from cryptorchid rat testis by the methods of morphology and stereology. The testis weight is reduced according to previous reports after surgical induction of cryptorchidism. Interestingly, the epididymal weight is significantly increased in 7 days after surgery, and the caput epididymis tubules show filling with countless round germ cells. We found that the elongating spermatids (steps 10-13), newborn spermatids (step 1) and the dividing spermatocytes are the most susceptible cells to elevated temperature, and are the first disappeared cells from the seminiferous tubules after surgery. Germ cell removal followed the order, starting first with elongating spermatids and newborn spermatids, followed by round spermatids and elongated spermatids and later extending to spermatocytes.  相似文献   

19.
Spermatogenic cells isolated from adult and prepubertal mice by unit gravity sedimentation were used to examine enzyme activities and synthesis of the lactate dehydrogenase (LDH) isozymes during spermatogenesis. The synthesis and activity of LDH-C4, the germ cell-specific isozyme, was detected earliest in isolated preleptotene and leptotene/zygotene spermatocytes prior to the mid-pachytene stage of meiosis reported previously. The LDH-C4 isozyme was prominent in pachytene spermatocytes, round spermatids, and condensing spermatids, whereas spermatozoa contained only the LDH-C4 isozyme. In addition, somatic-type LDH isozymes consisting primarily of LDH-B subunits were present in germ cells throughout spermatogenesis. This is in contrast to a previous report that the LDH-B subunit was not synthesized in germ cells. Sertoli cells were further shown to exhibit comparable amounts of five tetrameric LDH isozymes formed by combination of muscle-type LDH-A and heart-type LDH-B subunits.  相似文献   

20.
A monoclonal antibody (13D3) has been developed that recognizes a 71 kilodalton (71 kDa) protein on two-dimensional immunoblots of proteins extracted from a mixture of mouse spermatogenic cells (mainly pachytene spermatocytes and spermatids). This protein was shown by immunoblotting and adenosine triphosphate (ATP)-binding characteristics to be identical to a 71 kDa mouse heat-shock cognate (hsc) protein, hsc71, present in 3T3 cells. Along with a 70 kDa heat-shock inducible protein (hsp70), and a 74 kDa heat-shock cognate protein (hsc74), hsc71 is a product of the mouse HSP70 multigene family. Although antibody 13D3 reacted strongly with hsc71, it reacted only faintly with hsp70 in 3T3 cells, and not at all with hsc74 or a germ cell-specific hsp70-like protein (P70) on immunoblots of mixed germ cells. Antibody 13D3 is unique among known antibodies in its pattern of reaction with these heat-shock proteins. In immunofluorescence studies on isolated germ cells, 13D3 reacted uniformly with the cytoplasm of pachytene spermatocytes, round spermatids, and residual bodies, but only with the midpiece of spermatozoa. Antibody 13D3 recognizes other proteins in addition to hsc71 on two-dimensional immunoblots of condensing spermatids and spermatozoa. Two of the proteins (70 kDa/pI 6.4 and 70 kDa/pI 6.5) were present in condensing spermatids and spermatozoa, and another protein (69 kDa/pI 7.0) was detected only in spermatozoa. The new proteins also were recognized by monoclonal antibody 7.10, which reacts specifically with hsp70, hsc71, hsc74, and P70. Although [35S]methionine was incorporated into the new proteins in condensing spermatids, hsc71, hsc74, and P70 were not labeled. These results suggest that unique heat-shock proteins are synthesized late in spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号