首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
By immunohistochemistry, CGRP-like immunoreactive (CGRP-LI) nerve fibres were found in the lamina propria along small vessels and in the lamina muscularis mucosae in the porcine ileum. Immunoreactive nerve cell bodies were found in the submucous and myenteric plexus. Upon HPLC-analysis of ileal extracts, CGRP-LI corresponded entirely to porcine CGRP plus smaller amounts of oxidised CGRP. Using isolated vascularly perfused segments of the ileum, we studied the release of CGRP-LI in response to electrical stimulation of the mixed extrinsic periarterial nerves and to infusion of different neuroblockers. In addition, the effect of infusion of capsaicin was studied. The basal output of CGRP-LI was 2.9+/-0.7 pmol/5 min (mean+/-S.D.). Electrical nerve stimulation (8 Hz) significantly increased the release of CGRP-LI to 167+/-16% (mean+/-S.E.M.) of the basal output (n=13). This response was unaffected by the addition of atropine (10(-6) M). Nerve stimulation during infusion of phentolamine (10(-5) M) with and without additional infusion of atropine resulted in a significant further increase in the release of CGRP-LI to 261+/-134% (n=5) and 240+/-80% (n=9), respectively. This response was abolished by infusion of hexamethonium (3x10(-5) M). Infusion of capsaicin (10(-5) M) caused a significant increase in the release of CGRP-LI to 485+/-82% of basal output (n=5). Our results suggest a dual origin of CGRP innervation of the porcine ileum (intrinsic and extrinsic). The intrinsic CGRP neurons receive excitatory input by parasympathetic, possibly vagal, preganglionic fibres, via release of acetylcholine acting on nicotinic receptors. The stimulatory effect of capsaicin suggests that CGRP is also released from extrinsic sensory neurons.  相似文献   

2.
The concentration of PACAP 1-38 in porcine antrum amounted to 15.4+/-7.9 and 20.3+/-8 pmol/g tissue in the mucosal and muscular layers. PACAP immunoreactive (IR) fibres innervated the muscular (co-localised with VIP) and submucosal/mucosal layers (some co-storing VIP and CGRP) including myenteric and submucosal plexus and blood vessels. Only myenteric nerve cell bodies contained PACAP-IR (co-storing VIP). In isolated perfused antrum, vagus nerve stimulation (8 Hz) and capsaicin (10(-5) M) increased PACAP 1-38 release. PACAP 1-38 (10(-9) M) increased substance P (SP), gastrin releasing peptide (GRP) and VIP release. PACAP 1-38 (10(-8) M) inhibited gastrin secretion and stimulated somatostatin secretion and motility dose-dependently. PACAP-induced motility was strongly inhibited by the antagonist PACAP 6-38 but also by atropine and substance P-antagonists (CP99994/SR48968) but PACAP 6-38 had no effect on vagus-induced secretion or motility. Conclusion: PACAP 1-38 may be involved in antral motility and secretion by interacting with cholinergic, SP-ergic, GRP-ergic and/or VIP-ergic neurones, and may also be involved in afferent reflex pathways.  相似文献   

3.
The effect and mode of action of vasoactive intestinal polypeptide (VIP), a peptidergic neuromodulator in the gastrointestinal nervous system, were investigated in isolated muscle strips of the guinea-pig ileum. VIP induced concentration-dependent (20 nM-1 microM) contractions of longitudinal ileal strips. TTX (1 microM), a mixture of atropine (3 microM) and spantide (30 microM), a mixture of atropine (3 microM) and omega-conotoxin GVIA (100 nM), somatostatin (60 nM) and dynorphin (100 nM) abolished the effect of VIP. In most cases a small relaxation became evident. Desensitization to substance P in the presence of atropine prevented VIP-induced contraction. A partial inhibition was observed in the presence of atropine (3 microM), spantide (30 microM), omega-conotoxin GVIA (100 nM), beta-endorphin (265 nM), met-enkephalin (1100 nM) and a mixture of spantide (30 microM) and omega-conotoxin GVIA (100 nM). The action of VIP was not significantly modified by guanethidine (3 microM) or hexamethonium (150 microM). In circular ileal strips VIP (10-300 nM) caused concentration-dependent relaxations through a direct myogenic effect. These results indicate that the VIP produced contractions of the guinea-pig ileum are exclusively neurally mediated and involve a cholinergic as well as a noncholinergic-nonadrenergic (NANC) pathway. It is concluded that besides acetylcholine (Ach) VIP releases the peptidergic transmitter substance P from postganglionic nerve fibers of myenteric plexus. Opioid peptides and somatostatin modulate the activity of cholinergic and peptidegic nerves in the guinea-pig ileum. The release of substance P appears to depend completely on N-type voltage sensitive calcium channels.  相似文献   

4.
We investigated the distribution and function of cannabinoid (CB)(1) receptors in the submucosal plexus of the guinea pig ileum. CB(1) receptors were found on both types of submucosal secretomotor neurons, colocalizing with VIP and neuropeptide Y (NPY), the noncholinergic and cholinergic secretomotor neurons, respectively. CB(1) receptors colocalized with transient receptor potential vanilloid-1 receptors on paravascular nerves and fibers in the submucosal plexus. In the submucosal ganglia, these nerves were preferentially localized at the periphery of the ganglia. In denervated ileal segments, CB(1) receptor immunoreactivity in submucosal neurons was not modified, but paravascular and intraganglionic fiber staining was absent. Short-circuit current (I(sc)) was measured as an indicator of net electrogenic ion transport in Ussing chambers. In the ion-transport studies, I(sc) responses to capsaicin, which activates extrinsic primary afferents, and to electrical field stimulation (EFS) were reduced by pretreatment with the muscarinic antagonist atropine, abolished by tetrodotoxin, but were unaffected by VIP receptor desensitization, hexamethonium, alpha-amino-3-hydroxy-5-methlisoxazole-4-proprionic acid, or N-methyl-d-aspartate glutamate receptor antagonists. The responses to capsaicin and EFS were reduced by 47 +/- 12 and 30 +/- 14%, respectively, by the CB(1) receptor agonist WIN 55,212-2. This inhibitory effect was blocked by the CB(1) receptor antagonist, SR 141716A. I(sc) responses to forskolin or carbachol, which act directly on the epithelium, were not affected by WIN 55,212-2. The inhibitory effect of WIN 55,212-2 on EFS-evoked secretion was not observed in extrinsically denervated segments of ileum. Taken together, these data show cannabinoids act at CB(1) receptors on extrinsic primary afferent nerves, inhibiting the release of transmitters that act on cholinergic secretomotor pathways.  相似文献   

5.
We studied the role of enteric opioid neurons in the spontaneous motility of the longitudinal muscle in the isolated puppy ileum. Regular fluctuations in tone that rose above and returned to the basal level occurred at an interval of 4.7 +/- 0.3 min. Naloxone (10(-8) and 10(-7) M) reduced the spontaneous tonic contraction by 42.6 +/- 11.6% (p less than 0.02) and 77.0 +/- 3.6% (p less than 0.001), respectively. Tetrodotoxin (3.1 X 10(-7) M) and atropine (10(-7) M) terminated the fluctuations. Met- and Leu-enkephalins (10(-9)-10(-8) M) caused tonic contraction which was abolished by tetrodotoxin and atropine. The contractile response produced by transmural electrical stimulation was reduced by naloxone (10(-7) M). This response was also abolished by atropine and tetrodotoxin. These results suggest that enteric opioid neurons are spontaneously active and might operate, at least in part, to raise the basal tone of the longitudinal muscle in the puppy ileum through a cholinergic excitatory mechanism.  相似文献   

6.
Naloxone-dependent effects of Met-enkephalin (10(-8) M) on the spontaneous and electrically induced mechanical activities were studied in longitudinal and circular preparations isolated from the cat duodenum, jejunum and ileum. Met-Enkephalin changed the spontaneous activity of all preparations tested with the exception of the circular preparations from the ileum. Met-Enkephalin-induced responses of the longitudinal preparations from the ileum were abolished by treatment with tetrodotoxin (10(-7) M), while the responses of both longitudinal and circular preparations from the duodenum and jejunum were only partially depressed, being resistant to tetrodotoxin components. The latter were most pronounced in the duodenum. The neurogenic electrically induced (0.5 msec, 5 Hz, 150 pulses) responses of all the preparations consisted mainly of contractile components which were significantly and naloxone-dependently reduced by Met-enkephalin (10(-8) M). The contractile components of the responses, which were reduced by Met-enkephalin, were entirely abolished by atropine (3 x 10(-6) M). Both Met-enkephalin and atropine inhibitory effects on the neurogenic responses were more pronounced in the ileum. Met-Enkephalin was found in nerve fibers of the myenteric plexus distributed mainly among the circular muscle. Single immunoreactive nerve fibers were observed in the longitudinal muscle layer of the duodenum but not in the jejunum and ileum. The distribution of Met-enkephalin-like immunoreactivity along the small intestine did not show significant differences among the three intestinal regions tested. The results obtained suggest that Met-enkephalin can modulate the mechanical activity of the cat small intestine, inhibiting cholinergic transmission and/or activating smooth muscle opioid receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Summary The guinea-pig taenia coli is rich in peptide-containing nerves. Nerve fibres containing substance P (SP), vasoactive intestinal peptide (VIP), or enkephalin, were numerous in the smooth muscle while somatostatin fibres were very few. Nerve fibres displaying SP or VIP immunoreactivity were numerous in the myenteric plexus. Enkephalin nerve fibres were fairly numerous in the plexus while somatostatin nerve fibres were sparse. Nerve cell bodies containing immunoreactive SP or VIP were regularly seen in the plexus. Delicate varicose elements of the different types of nerve fibres were found to ramify around nerve cell bodies in a manner suggestive of innervation.In the electron microscope the various peptide-storing nerve fibres (i.e., elements containing SP, VIP or enkephalin) were found to contain a varying number of fairly large, electron-opaque vesicles in the varicose swellings. These vesicles represent the storage site of the neuropeptides.The isolated taenia coli responded to electrical nerve stimulation with a contraction. After cholinergic and adrenergic blockade the contractile response was replaced by a relaxation followed by a contraction upon cessation of stimulation. SP contracted the taenia while VIP caused a relaxation. The enkephalins raised the resting tension slightly while somatostatin had no effect. These observations are compatible with a role for SP as an excitatory neurotransmitter and for VIP as an inhibitory one, and with the view that both SP neurones and VIP neurones act as motor neurones. In preparations contracted by SP the electrically induced contractions were reduced in amplitude while the electrically induced relaxations seen after adrenergic and cholinergic blockade were enhanced in amplitude. In preparations relaxed by VIP there was an increased contractile response to electrical stimulation, while in the atropine + guanethidine-treated preparation the electrically induce relaxations were reduced in amplitude. The enkephalins reduced the contractile response to electrical stimulation, while somatostatin induced a very small reduction in the amplitude of such responses. These observations suggest that SP neurones and VIP neurones may play additional roles as interneurones. Somatostatin neurones probably act as interneurones. Enkephalin-containing fibres may serve to modify the release of transmitter from other nerves in the smooth muscle, perhaps through axo-axonal arrangements. Alternatively, the enkephalin nerve fibres in the smooth muscle are afferent elements involved in mediating sensory impulses to the myenteric plexus.  相似文献   

8.
Partially purified nerve varicosities (PV) prepared from guinea pig ileal myenteric plexus were found to contain, by radioimmunoassay, gastrin-releasing polypeptide (GRP), substance P (SP), galanin, Leu-enkephalin (LE), Met-enkephalin (ME), and vasoactive intestinal polypeptide (VIP). SP was present in the highest concentration followed by, in descending order, ME, LE, VIP, GRP and galanin. On reverse-phase HPLC, SP-, LE- and ME-like immunoreactivity in the PV preparation eluted at retention times similar to their synthetic analogues, galanin-like immunoreactivity eluted at a retention time different from that of synthetic porcine galanin and VIP-like immunoreactivity eluted at the retention time of synthetic guinea pig VIP. GRP-like immunoreactivity, on reverse-phase HPLC, eluted at retention times close to that of synthetic porcine GRP-(1-27) and its major oxidized form. Evidence was obtained for the presence of an alpha-neurokinin-like immunoreactive entity and an unidentified SP-like immunoreactive entity in guinea pig myenteric plexus.  相似文献   

9.
Glucagon-like peptide (GLP)-1 is secreted rapidly from the intestine postprandially. We therefore investigated its possible neural regulation. With the use of isolated perfused porcine ileum, GLP-1 secretion was measured in response to electrical stimulation of the mixed, perivascular nerve supply and infusions of neuroactive agents alone and in combination with different blocking agents. Electrical nerve stimulation inhibited GLP-1 secretion, an effect abolished by phentolamine. Norepinephrine inhibited secretion, and phentolamine abolished this effect. GLP-1 secretion was stimulated by isoproterenol (abolished by propranolol). Acetylcholine stimulated GLP-1 secretion, and atropine blocked this effect. Dimethylphenylpiperazine stimulated GLP-1 secretion. In chloralose-anesthetized pigs, however, electrical stimulation of the vagal trunks at the level of the diaphragm had no effect on GLP-1 or GLP-2 and weak effects on glucose-dependent insulinotropic peptide and somatostatin secretion, although this elicited a marked atropine-resistant release of the neuropeptide vasoactive intestinal polypeptide to the portal circulation. Thus GLP-1 secretion is inhibited by the sympathetic nerves to the gut and may be stimulated by intrinsic cholinergic nerves, whereas the extrinsic vagal supply has no effect.  相似文献   

10.
The neuropeptide galanin has species-dependent effects on intestinal motility. It has a contractile effect on rat jejunal muscle while it relaxes guinea-pig ileum by inhibiting cholinergic transmission. Its effect on human gut motility has been unknown. Extensive work led to the discovery of selective galanin analogues such as M15 [galanin(1-12)-Pro-substance-P(5-11)], M35 [galanin(1-12)-Pro-bradykinin(2-9)-amide] that competitively inhibit various actions of galanin in the central nervous system. The present study was designed to examine the effect of galanin, M15 and M35 on longitudinal jejunal smooth muscle strips isolated from humans and rats, and to localize galanin-immunoreactivity in human jejunum. Galanin and ACh were equally effective in stimulating contractions of the isolated jejunal muscle: sigmoid curve fitting showed that maximal contractile response to galanin and ACh were 25.7+/-11.1 mN and 23.7+/-9.7 in humans, while 8.0+/-0.6 and 8.1+/-0.3 mN in rats, respectively. These effects of galanin were not inhibited by either atropine (5 x 10(-6) M) or tetrodotoxin (3 x 10(-6) M). The potency of galanin inducing the contractile actions were similar in humans and rats. Interestingly, neither M15 nor M35 (up to 10(-7) M) were able to inhibit the responses of the smooth muscle to galanin. However, both putative galanin receptor antagonists showed agonist effects in our experimental models. In accordance with the functional studies, both the longitudinal and the circular muscle layers were abundant in nerve fibers and varicosities showing galanin immunoreactivity. Our data suggest that galanin is a potent physiological regulator of jejunal contractions in humans. Its action on the jejunum, however, is mediated by galanin receptors that are different from those located in the central nervous system.  相似文献   

11.
Cholinergic nerves are identified by labelling molecules in the ACh synthesis, release and destruction pathway. Recently, antibodies against another molecule in this pathway have been developed. Choline reuptake at the synapse occurs via the high-affinity choline transporter (CHT1). CHT1 immunoreactivity is present in cholinergic nerve fibres containing vesicular acetylcholine transporter (VAChT) in the human and rat central nervous system and rat enteric nervous system. We have examined whether CHT1 immunoreactivity is present in nerve fibres in human intestine and whether it is colocalised with markers of cholinergic, tachykinergic or nitrergic circuitry. Human ileum and colon were fixed, sectioned and processed for fluorescence immunohistochemistry with antibodies against CHT1, class III beta-tubulin (TUJ1), synaptophysin, common choline acetyl-transferase (cChAT), VAChT, nitric oxide synthase (NOS), substance P (SP) and vasoactive intestinal peptide (VIP). CHT1 immunoreactivity was present in many nerve fibres in the circular and longitudinal muscle, myenteric and submucosal ganglia, submucosa and mucosa in human colon and ileum and colocalised with immunoreactivity for TUJ1 and synaptophysin confirming its presence in nerve fibres. In nerve fibres in myenteric ganglia and muscle, CHT1 immunoreactivity colocalised with immunoreactivity for VAChT and cChAT. Some colocalisation occurred with SP immunoreactivity, but little with immunoreactivity for VIP or NOS. In the mucosa, CHT1 immunoreactivity colocalised with that for VIP and SP in nerve fibres and was also present in vascular nerve fibres in the submucosa and on epithelial cells on the luminal border of crypts. The colocalisation of CHT1 immunoreactivity with VAChT immunoreactivity in cholinergic enteric nerves in the human bowel thus suggests that CHT1 represents another marker of cholinergic nerves.  相似文献   

12.
Enteric neuronal plasticity is probably fundamental in order to withstand injury or changes in intestinal activity. The role of the neuropeptides in neuroprotection is still enigmatic. The expression of galanin and vasoactive intestinal peptide (VIP) and the effects of the two peptides on survival of small intestinal porcine myenteric neurons cultured for 6 days were studied. Immunocytochemistry and cell counting were used to evaluate the numbers of surviving neurons and their expression of galanin and VIP. To reflect the in vivo situation, cryostat sections of porcine mid-jejunum were used. A concentration-dependent and marked increase in neuronal survival was noted when neurons were grown in the presence of VIP (10(-8)-10(-6) M), whereas addition of galanin (10(-8)-10(-6) M) slightly decreased neuronal survival. A dramatic increase in the proportions of myenteric neurons containing VIP or galanin immunoreactivity occurred during culturing. The presence of VIP further increased the number of galanin-expressing neurons. A majority of the galanin-immunoreactive neurons lacked VIP, while all VIP-immunoreactive neurons contained galanin. In conclusion, culturing porcine myenteric neurons in the presence of VIP increases, while the presence of galanin reduces, survival. Culturing significantly increased the proportion of neurons expressing VIP and/or galanin; the presence of VIP further increased the number of galanin-expressing neurons.  相似文献   

13.
VIP and noncholinergic vasodilatation in rabbit submandibular gland   总被引:1,自引:0,他引:1  
The effect of parasympathetic nerve activation on rabbit submandibular gland (SMG) blood flow and saliva secretion were studied before and after systemic administration of atropine or hexamethonium. The parasympathetic fibers were stimulated electrically (2 and 15 Hz, 10 V, 1 msec) at the plexus around the submandibular salivary duct or at the chorda lingual nerve. In untreated animals, stimulation of parasympathetic fibers caused a frequency-dependent increase of salivary secretion and blood flow in the SMG. Atropine treatment completely abolished saliva secretion at 2 Hz and 15 Hz and the increase in SMG blood flow during stimulation at 2 Hz. Although atropine significantly reduced the vasodilatory response at 15 Hz, the highest blood flow measured under such circumstances was still about 2.5 times the prestimulation value. After hexamethonium administration no blood flow increase or saliva secretion was seen upon chorda lingual stimulation. The concentration of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in the venous effluent of the SMG increased during nerve stimulation. Atropine significantly reduced, and hexamethonium abolished this VIP-output elicited by parasympathetic nerve stimulation. Local infusion of VIP, peptide histidine isoleucine (PHI) and substance P all caused atropine-resistant vasodilation but no salivation. The present data suggest that VIP and possibly PHI play a role in the atropine-resistant vasodilatation in rabbit submandibular gland elicited by parasympathetic nerve stimulation. The contribution of sensory mediators such as substance P released by stimulation of afferent nerves in the chorda lingual nerve to the salivary and vasodilatory responses seems to be of minor importance in the rabbit submandibular gland.  相似文献   

14.
Using isolated submucosal glands from feline trachea, we examined the effect of vasoactive intestinal peptide (VIP) on mucus glycoprotein secretion and glandular contraction by measuring released radiolabeled glycoconjugates and induced tension, respectively. VIP (10(-10) to 10(-6) M) produced a dose-dependent increase in [3H]glycoconjugate release of up to 300% of controls, which was inhibited by VIP antiserum and not inhibited by atropine, propranolol, or phentolamine. VIP at a low concentration (10(-9) M), which did not produce any significant increases over controls, produced a 2.4- to 5-fold augmentation of the glycoconjugate release induced by 10(-9) to 10(-7) M methacholine (MCh). Atropine or VIP antiserum abolished the augmentation. VIP did not produce any alteration in isoproterenol- or phenylephrine-evoked glycoconjugate secretion. VIP (up to 10(-5) M) did not produce any alteration in the tension, even when the gland had contracted with MCh, or any augmentation of contraction induced by MCh (10(-9) to 10(-7) M). These results indicate that VIP induces mucus glycoprotein release from secretory cells and also that it potentiates the secretion induced by cholinergic stimulation.  相似文献   

15.
Recently we have shown the release of bombesin-like immunoreactivity (BLI) from the isolated perfused rat stomach. In these experiments we have shown that BLI secretion is stimulated by acetylcholine. Gastric inhibitory peptide (GIP) exerts an inhibitory effect which is dependent on the intraluminal pH. The present study was designed to examine further the exact cholinergic mechanisms and to study the interaction between cholinergic and histaminergic mechanisms as well as the effect of the intraluminal pH. Acetylcholine elicited a dose-dependent increase in BLI and gastrin secretion (10(-6) M and 2 X 10(-6)M), whereas somatostatin release was suppressed at luminal pH 7. Blockade of muscarinic cholinergic receptors by atropine (10(-5)M) and nicotinic cholinergic receptors by hexamethonium (10(-5) M) abolished the effect of acetylcholine on all three peptides. Reduction of the intraluminal pH to 2 also abolished acetylcholine-induced stimulation of BLI and gastrin secretion and the inhibition of somatostatin secretion. Changes of intraluminal pH per se had no effect on the secretion of either peptide. Somatostatin (10(-7) M) reduced both BLI and gastrin secretion during stimulation with acetylcholine. The addition of the H2-receptor antagonist cimetidine (10(-5) M) abolished the effect of both doses of acetylcholine on BLI and somatostatin secretion and also the effect of the lower dose of acetylcholine (10(-6) M) on gastrin secretion during luminal pH 7. At luminal pH 2 cimetidine did not alter BLI and somatostatin secretion in response to acetylcholine, however, gastrin release was augmented in the presence of cimetidine. These data demonstrate that the effect of acetylcholine on BLI, gastrin, and somatostatin secretion is mediated by muscarinic and nicotinic cholinergic receptors and also by histamine H2-receptors. Somatostatin inhibits cholinergically induced BLI secretion. The cholinergic effects on BLI, somatostatin and gastrin secretion are abolished during an acidic intragastric pH. In this isolated perfused rat stomach model the inhibitory effect of intraluminal acid on gastrin secretion is, at least in part, mediated by H2-receptors. This suggests that the secretion of bombesin, a potential peptidergic neurotransmitter is modulated by neural, endocrine and local tissue factors and also by alterations of intragastric pH.  相似文献   

16.
The mechanism of cholinergic stimulation of alanine and glutamine formation and release from skeletal muscle was studied using rat epitrochlaris preparations. The increased alanine and glutamine release produced by carbamylcholine (10(-6) M) was reproduced by tetramethylammonium (10(-6) M) but not by pilocarpine (10(-6) M) and was blocked by hexamethonium (10(-4) M) but not by atropine (10(-7) M). This increased alanine and glutamine release was not associated with altered muscle cAMP levels. However, carbamylcholine (10(-6) M) and tetramethylammonium (10(-6) M) did not increase levels of cGMP, 134% and 101%, respectively, and these increments in cGMP were blocked by hexamethonium but not by atropine. Carbamylcholine produced a concentration-dependent increase in cGMP levels. Methylisobutylxanthine and theophylline augmented the increased amino acid release and increased cGMP levels produced by carbamylcholine. Neither xanthine derivative alone altered alanine and glutamine release or cyclic nucleotide levels. Added cGMP increased amino acid release and the uptake of [U-14C]alanine and alpha-amino[14C]isobutyric acid. Carbamylcholine did not alter muscle phosphorylase a activity, glycogen levels, or basal adenylate cyclase activity. These data indicate that cholinergic stimulation of muscle alanine and glutamine formation and release involves a nicotinic cholinergic receptor and may be mediated by increased levels of cGMP, which in turn may result from a cholinergic stimulation of muscle guanylyl cyclase.  相似文献   

17.
A Botella  M Delvaux  J Frexinos  L Bueno 《Life sciences》1992,50(17):1253-1261
Effect of galanin and CCK8 were studied on isolated smooth muscle cells obtained from pig, guinea-pig, rat, rabbit and dog ileum circular muscle layer. Galanin as well as CCK8 induced a concentration-dependent contraction of pig, rat, rabbit and guinea-pig ileum smooth muscle cells. Maximal contraction ranged between 23.7 +/- 1.9% and 26.1 +/- 3.1% decrease in cell length from control in the presence of both peptides. This maximal contraction was obtained at 1 nM galanin in pig, rat, rabbit, 1 nM CCK8 in rat, rabbit, guinea-pig, at 10 nM galanin in guinea-pig and 10 nM CCK8 in pig. Concentrations of galanin inducing a half maximal contraction (EC50) ranged between 8 pM and 80 pM in these species. In dog, CCK8 induced a concentration-dependent contraction of ileum smooth muscle cells, with a maximal contraction (24.5 +/- 2.3%) at 1nM and an EC50 of 50 pM while galanin inhibited cell contraction induced by CCK8. The CCK-induced contraction was abolished at 10 nM galanin and 10 nM VIP. Concentrations of galanin and VIP inducing a half-maximal relaxation of contracted cells were 2 pM and 3 pM respectively. It is concluded that galanin may induce cell contraction of pig, guinea-pig, rat and rabbit ileum circular muscle layer and cell relaxation of dog ileum by a direct myogenic effect.  相似文献   

18.
Intrinsic reflexes of the lower esophageal sphincter (LES) are mediated by specific arrangements of excitatory and inhibitory nerves. We have previously described an excitatory reflex at the feline LES mediated by a bombesin-like peptide (BN) which causes release of substance P (SP) to directly contract the LES. Galanin is a neurotransmitter in the enteric nervous system which colocalizes in neurons containing vasoactive intestinal peptide (VIP). The aims of this study were to determine: (1) the distribution of galanin at the feline LES; (2) the effect of galanin on basal LES tone; (3) the effect of galanin on agonist-induced LES contractions by BN, SP and bethanechol; and (4) the effect of galanin on LES relaxation induced by esophageal distension and exogenous VIP. Galanin-like immunoreactivity (galanin-LI) was localized in neurons that were widely distributed throughout the LES and adjacent organs. Galanin-LI was most abundant in the circular muscle, muscularis mucosa and myenteric plexus of the LES. In anesthetized cats, intra-arterial galanin had no effect on basal LES pressure in a dose range of 10−11 to 10−6 g/kg. Galanin (5 10−7 g/kg) reduced the LES contractile response to SP by 65 ± 8% (P = 0.0001). This galanin-mediated inhibition of SP was not blocked by tetrodotoxin. Galanin similarly decreased the LES contractile response to BN (63 ± 7%, P = 0.005) and bethanechol (55 ± 17%, P = 0.012). Galanin had no effect on the LES relaxation induced by esophageal distension or exogenous VIP. We conclude: (1) galanin-LI is present in neurons at the feline LES; (2) galanin has no effect on basal sphincter tone, but inhibits contractions of the LES by both direct and indirect agonists; and (3) galanin does not effect the LES relaxation induced by esophageal distension or VIP.  相似文献   

19.
VIP release from enteric nerves is independent of extracellular calcium   总被引:4,自引:0,他引:4  
The release of endogenous vasoactive intestinal polypeptide (VIP) from enteric nerves of isolated rat ileum and the role of extracellular calcium on the release mechanism have been investigated. Evaluation of simultaneous release of endogenous acetylcholine (ACh) and adenosine 5'-triphosphate (ATP) from enteric nerves was used to establish the reliability of the technique. Electrical field stimulation of the ileal preparation induced an increase in the release of endogenous ACh, ATP and VIP. The evoked, but not the basal, release of these substances was blocked by tetrodotoxin (TTX), indicating that the release was a result of nerve stimulation. However, while increase in release of ACh and ATP during nerve stimulation was suppressed in Ca2+-free medium and by the addition of the Ca2+ channel blocker cadmium, nerve-mediated VIP release was unaffected. Further, while K+-depolarization induced release of ACh and ATP from the ileal preparations, it did not lead to an increase in the release of VIP. These results demonstrate that, unlike ACh and ATP release, release of endogenous VIP from enteric nerves is independent of extracellular calcium. The implications of these results in terms of the mechanism of transmitter release in the gastrointestinal tract are discussed.  相似文献   

20.
The rat myenteric plexus was used as a peripheral model for studying muscarinic modulation of acetylcholine (ACh) release from presynaptic muscarinic neurons during development of tolerance to the anticholinesterase agent, diisopropylfluorophosphate (DFP). DFP in arachis oil was administered subcutaneously to intact animals according to both acute and chronic regimens, with arachis oil injections serving as controls. Post-mortem analyses showed that the mean AChE activity level in whole brain was reduced under all DFP conditions to 18.0 +/- 1.4% when compared with the control level. After 10 days of DFP treatment, the AChE level was 22.3 +/- 2.1% of control in the myenteric plexus. There were no significant differences among the treatment groups in resting ACh release. Release evoked by electrical stimulation (difference between stimulated and resting release) in the absence of atropine, i.e., "basal rate," for strips taken at various times after a single injection of DFP did not differ from that for strips from animals receiving arachis oil only. However, basal release for strips from chronically treated subjects was significantly greater than that of controls (p less than 10(-3), although not different from each other. Analysis of variance (ANOVA) for repeated measures showed that there existed a highly significant atropine dependency in strips from all treatments when they were stimulated in concentrations of atropine from 10(-9) to 10(-5) M (p less than 10(-10). Further analyses established that the increases in rates of evoked ACh release as concentrations of atropine increased were similar for strips from chronically treated DFP and arachis oil animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号