首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Tumor necrosis factor (TNF) is a cytokine produced by macrophages and T lymphocytes that acts through two distinct receptors, TNFR1 (60 kD, CD120a) and TNFR2 (80 kD, CD120b), to affect cellular proliferation, differentiation, survival, and cell death. In addition to its proinflammatory actions in mucosal tissue, TNF is important for liver regeneration. Keratin 8 (K8) and keratin 18 (K18) form intermediate filaments characteristic of liver and other single cell layered, internal epithelia and their derivative cancers. K8-deficient (K8(-)) mice, which escape embryonic lethality, develop inflammatory colorectal hyperplasia, mild liver abnormalities, and tolerate hepatectomy poorly. We show that normal and malignant epithelial cells deficient in K8 and K18 are approximately 100 times more sensitive to TNF-induced death. K8 and K18 both bind the cytoplasmic domain of TNFR2 and moderate TNF-induced, Jun NH(2)-terminal kinase (JNK) intracellular signaling and NFkappaB activation. Furthermore, K8(-) and K18(-) mice are much more sensitive to TNF dependent, apoptotic liver damage induced by the injection of concanavalin A. This moderation of the effects of TNF may be the fundamental function of K8 and K18 common to liver regeneration, inflammatory bowel disease, hepatotoxin sensitivity, and the diagnostic, persistent expression of these keratins in many carcinomas.  相似文献   

2.
Keratin 8 and 18 are simple epithelial intermediate filament (IF) proteins, whose expression is differentiation- and tissue-specific, and is maintained during tumorigenesis. Vimentin IF is often co-expressed with keratins in cancer cells. Recently, IF have been proposed to be involved in signaling pathways regulating cell growth, death and motility. The PI3K/Akt pathway plays a pivotal role in these processes. Thus, we investigated the role of Akt (1 and 2) in regulating IF expression in different epithelial cancer cell lines. Over-expression of Akt1 increases K8/18 proteins. Akt2 up-regulates K18 and vimentin expression by an increased mRNA stability. To our knowledge, these results represent the first indication that Akt isoforms regulate IF expression and support the hypothesis that IFs are involved in PI3K/Akt pathway.  相似文献   

3.
The bullous pemphigoid antigen 1 (BP230) and desmoplakin (DP) are members of the plakin protein family of cytolinkers. Despite their homology, their COOH termini selectively bind distinct intermediate filaments (IFs). We studied sequences within their COOH termini required for their interaction with the epidermal keratins K5/K14, the simple epithelial keratins K8/K18, and type III IF vimentin by yeast three-hybrid, cell transfection, and overlay assays. The results indicate that BP230 interacts with K5/K14 but not with K8/K18 or vimentin via a region encompassing both the B and C subdomains and the COOH extremity, including a COOH-terminal eight-amino-acid stretch. In contrast, the C subdomain with the COOH-terminal extremity of DP interacts with K5/K14 and K8/K18, and its linker region is able to associate with K8/K18 and vimentin. Furthermore, the potential of DP to interact with IF proteins in yeast seems to be regulated by phosphorylation of Ser 2849 within its COOH terminus. Strikingly, BP230 and DP interacted with cytokeratins only when both type I and type II keratins were present. The head and tail domains of K5/K14 keratins were dispensable for their interaction with BP230 or DP. On the basis of our findings, we postulate that (1) the binding specificity of plakins for various IF proteins depends on their linker region between the highly homologous B and C subdomains and their COOH extremity and (2) the association of DP and BP230 with both epidermal and simple keratins is critically affected by the tertiary structure induced by heterodimerization and involves recognition sites located primarily in the rod domain of these keratins.  相似文献   

4.
TRADD is a multifunctional signaling adaptor protein that is recruited to TNFR1 upon ligand binding. The C-terminal of TRADD comprises the "death domain" that is responsible for association of TNFR1 and other death domain-containing proteins such as FADD and RIP. The N-terminal domain (N-TRADD) promotes the recruitment of TRAF2 to TNFR1 by binding to the C-terminal of TRAF2, leading to the activation of JNK/AP1 and NF-kappa B. The solution structure of N-TRADD was determined, revealing a novel protein fold. A combination of NMR, BIAcore, and mutagenesis experiments was used to help identify the site of interaction of N-TRADD with C-TRAF2, providing a framework for future attempts to selectively inhibit the TNF signaling pathways.  相似文献   

5.
Stimulation of tumor necrosis factor receptor 1 (TNFR1) can initiate several cellular responses, including apoptosis, which relies on caspases, necrotic cell death, which depends on receptor-interacting protein kinase 1 (RIP1), and NF-kappaB activation, which induces survival and inflammatory responses. The TNFR-associated death domain (TRADD) protein has been suggested to be a crucial signal adaptor that mediates all intracellular responses from TNFR1. However, cells with a genetic deficiency of TRADD are unavailable, precluding analysis with mature immune cell types. We circumvented this problem by silencing TRADD expression with small interfering RNA. We found that TRADD is required for TNFR1 to induce NF-kappaB activation and caspase-8-dependent apoptosis but is dispensable for TNFR1-initiated, RIP1-dependent necrosis. Our data also show that TRADD and RIP1 compete for recruitment to the TNFR1 signaling complex and the distinct programs of cell death. Thus, TNFR1-initiated intracellular signals diverge at a very proximal level by the independent association of two death domain-containing proteins, RIP1 and TRADD. These single transducers determine cell fate by triggering NF-kappaB activation, apoptosis, and nonapoptotic death signals through separate and competing signaling pathways.  相似文献   

6.
In TNF-treated cells, TNFR1, TNFR-associated death domain protein (TRADD), Fas-associated death domain protein, and receptor-interacting protein kinase proteins form the signaling complex via modular interaction within their C-terminal death domains. In this paper, we report that the death domain SXXE/D motifs (i.e., S381DHE motif of TNFR1-death domain as well as S215LKD and S296LAE motifs of TRADD-death domain) are phosphorylated, and this is required for stable TNFR1-TRADD complex formation and subsequent activation of NF-κB. Phospho-S215LKD and phospho-S296LAE motifs are also critical to TRADD for recruiting Fas-associated death domain protein and receptor-interacting protein kinase. IκB kinase β plays a critical role in TNFR1 phosphorylation of S381, which leads to subsequent T cell migration and accumulation. Consistently, we observed in inflammatory bowel disease specimens that TNFR1 was constitutively phosphorylated on S381 in those inflammatory T cells, which had accumulated in high numbers in the inflamed mucosa. Therefore, SXXE/D motifs found in the cytoplasmic domains of many TNFR family members and their adaptor proteins may serve to function as a specific interaction module for the α-helical death domain signal transduction.  相似文献   

7.
Kieser A 《Biological chemistry》2008,389(10):1261-1271
The pro-apoptotic tumor necrosis factor (TNF)-receptor 1-associated death domain protein (TRADD) was initially identified as the central signaling adapter molecule of TNF-receptor 1 (TNFR1). Upon stimulation with the pro-inflammatory cytokine TNFalpha, TRADD is recruited to the activated TNFR1 by direct interaction between the death domains of both molecules. TRADD mediates TNFR1 activation of NF-kappaB and c-Jun N-terminal kinase (JNK), as well as caspase-dependent apoptosis. Surprisingly, TRADD is also recruited by latent membrane protein 1 (LMP1), the major oncoprotein of the human Epstein-Barr tumor virus. By mimicking a constitutively active receptor, LMP1 is essential for B-cell transformation by the virus, activating NF-kappaB, phosphatidylinositol 3-kinase, JAK/STAT and mitogen-activated protein kinase signaling. In contrast to TNFR1, LMP1's interaction with TRADD is independent of a functional death domain. The unique structure of the LMP1-TRADD complex dictates an unusual type of TRADD-dependent NF-kappaB signaling and subverts TRADD's potential to induce apoptosis. This article provides an overview of TNFR1 and LMP1 signal transduction with a focus on TRADD's functions in apoptotic and transforming signaling, incorporating recent results from TRADD RNAi and knockout studies.  相似文献   

8.
The tumor necrosis factor (TNF)-receptor 1–associated death domain protein (TRADD) mediates induction of apoptosis as well as activation of NF-κB by cellular TNF-receptor 1 (TNFR1). TRADD is also recruited by the latent membrane protein 1 (LMP1) oncoprotein of Epstein-Barr virus, but its role in LMP1 signaling has remained enigmatic. In human B lymphocytes, we have generated, to our knowledge, the first genetic knockout of TRADD to investigate TRADD's role in LMP1 signal transduction. Our data from TRADD-deficient cells demonstrate that TRADD is a critical signaling mediator of LMP1 that is required for LMP1 to recruit and activate I-κB kinase β (IKKβ). However, in contrast to TNFR1, LMP1-induced TRADD signaling does not induce apoptosis. Searching for the molecular basis for this observation, we characterized the 16 C-terminal amino acids of LMP1 as an autonomous and unique virus-derived TRADD-binding domain. Replacing the death domain of TNFR1 by LMP1′s TRADD-binding domain converts TNFR1 into a nonapoptotic receptor that activates NF-κB through a TRAF6-dependent pathway, like LMP1 but unlike wild-type TNFR1. Thus, the unique interaction of LMP1 with TRADD encodes the transforming phenotype of viral TRADD signaling and masks TRADD's pro-apoptotic function.  相似文献   

9.
Several chemical compounds not known to interact with tumor necrosis factor (TNF) signal transducing proteins inhibit TNF-mediated activation of vascular endothelial cells (EC). Four structurally diverse agents, arachidonyl trifluoromethylketone, staurosporine, sodium salicylate, and C6-ceramide, were studied. All four agents caused EC apoptosis at concentrations that inhibited TNF-induced IkappaBalpha degradation. However, evidence of apoptosis was not evident until after several (e.g. 3-12) hours of treatment, whereas 2 h of treatment was sufficient to inhibit TNF responses. IL-1-induced IkappaBalpha degradation was unaffected by these treatments. Inhibition of TNF signaling could not be prevented with either of the broad spectrum caspase inhibitors zVADfmk or yVADcmk. The inhibition of p38 kinase with SB203580 prevented the inhibition of TNF signaling by all agents except arachidonyl trifluoromethylketone. No changes in the levels or molecular weights of the adaptor proteins TRADD (TNF receptor-associated death domain), RIP (receptor-interacting protein), or TRAF2 (TNF receptor-associated factor-2) were caused by apoptogenic drugs. However, TNF receptor 1 (TNFR1) surface expression was significantly reduced by all four agents. Furthermore, TNF-dependent recruitment of TRADD to surface TNFR1 was also inhibited. These data suggest that several putative inhibitors of TNF signaling work by triggering apoptosis and that an early event coincident with the initiation of apoptosis, preceding evidence of injury, is loss of TNFR1. Consistent with this hypothesis, cotreatment of EC with the metalloproteinase inhibitor Tapi (TNF-alpha proteinase inhibitor) blocked the reduction in surface TNFR1 by apoptogenic drugs and prevented inhibition of TNF-induced IkappaBalpha degradation without blocking apoptosis. TNFR1 loss could be a mechanism to limit inflammation in response to apoptotic cell death.  相似文献   

10.
We speculated that focal adhesion kinase (FAK) might play a critical role in the TNFα-induced cell death. In this study, we found that FAK−/− cells are more sensitive to TNFα-induced apoptosis in the presence of actinomycin D (Act D) compared to FAK+/− cells. Prosurvival pathways are activated by the rapid recruitment of complex I, comprising TNFR1, TRADD, RIP and TRAF2, which leads to the activation of the NF-κB pathway. On the other hand, proapoptotic pathways are activated by complex II, the death-inducing signaling complex (DISC), which contains TNFR1, TRADD, RIP, and FADD, and procaspase-8 proteins. As TNFR1, TRADD, and RIP are included in both Complex I and DISC, we speculated that RIP might be a key protein. Coimmunoprecipitation assays revealed that RIP is included in complex I in FAK+/− cells, and FAK was associated with RIP. On the other hand, RIP is included in DISC in FAK−/− cells. FAK might be a key protein in the formation of complex I and the activation of NF-κB. Furthermore, Akt was activated in FAK+/− cells, but not FAK−/− cells. In conclusion, we first demonstrated that FAK determines the pathway leading to death or survival in TNFα/ActD-stimulated fibroblasts.  相似文献   

11.
Cell mechanical activity generated from the interplay between the extracellular matrix (ECM) and the actin cytoskeleton is essential for the regulation of cell adhesion, spreading and migration during normal and cancer development. Keratins are the intermediate filament (IF) proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatic epithelial cell IFs are made solely of keratins 8/18 (K8/K18), hallmarks of all simple epithelia. Notably, our recent work on these epithelial cells has revealed a key regulatory function for K8/K18 IFs in adhesion/migration, through modulation of integrin interactions with ECM, actin adaptors and signaling molecules at focal adhesions. Here, using K8-knockdown rat H4 hepatoma cells and their K8/K18-containing counterparts seeded on fibronectin-coated substrata of different rigidities, we show that the K8/K18 IF-lacking cells lose their ability to spread and exhibit an altered actin fiber organization, upon seeding on a low-rigidity substratum. We also demonstrate a concomitant reduction in local cell stiffness at focal adhesions generated by fibronectin-coated microbeads attached to the dorsal cell surface. In addition, we find that this K8/K18 IF modulation of cell stiffness and actin fiber organization occurs through RhoA-ROCK signaling. Together, the results uncover a K8/K18 IF contribution to the cell stiffness-ECM rigidity interplay through a modulation of Rho-dependent actin organization and dynamics in simple epithelial cells.  相似文献   

12.
13.
Trimeric tumor necrosis factor (TNF) binding leads to recruitment of TRADD to TNFR1. In current models, TRADD recruits RIP, TRAF2, and FADD to activate NF-kappaB, Jun N-terminal protein kinase (JNK), and apoptosis. Using stable short-hairpin RNA (shRNA) knockdown (KD) cells targeting these adaptors, TNF death-inducing signaling complex immunoprecipitation demonstrates competitive binding of TRADD and RIP to TNFR1, whereas TRAF2 recruitment requires TRADD. Analysis of KD cells indicates that FADD is necessary for Fas-L- or TRAIL- but not TNF-induced apoptosis. Interestingly, TRADD is dispensable, while RIP is required for TNF-induced apoptosis in human tumor cells. TRADD is required for c-Jun phosphorylation upon TNF exposure. RIP KD abrogates formation of complex II following TNF exposure, whereas TRADD KD allows efficient RIP-caspase 8 association. Treatment with TRAIL also induces formation of a complex II containing FADD, RIP, IKKalpha, and caspase 8 and 10, leading to activation of caspase 8. Our data suggest that TNF triggers apoptosis in a manner distinct from that of Fas-L or TRAIL.  相似文献   

14.
Keratin 8 protection of placental barrier function   总被引:2,自引:0,他引:2  
The intermediate filament protein keratin 8 (K8) is critical for the development of most mouse embryos beyond midgestation. We find that 68% of K8-/- embryos, in a sensitive genetic background, are rescued from placental bleeding and subsequent death by cellular complementation with wild-type tetraploid extraembryonic cells. This indicates that the primary defect responsible for K8-/- lethality is trophoblast giant cell layer failure. Furthermore, the genetic absence of maternal but not paternal TNF doubles the number of viable K8-/- embryos. Finally, we show that K8-/- concepti are more sensitive to a TNF-dependent epithelial apoptosis induced by the administration of concanavalin A (ConA) to pregnant mothers. The ConA-induced failure of the trophoblast giant cell barrier results in hematoma formation between the trophoblast giant cell layer and the embryonic yolk sac in a phenocopy of dying K8-deficient concepti in a sensitive genetic background. We conclude the lethality of K8-/- embryos is due to a TNF-sensitive failure of trophoblast giant cell barrier function. The keratin-dependent protection of trophoblast giant cells from a maternal TNF-dependent apoptotic challenge may be a key function of simple epithelial keratins.  相似文献   

15.
Tumor necrosis factor (TNF) and epidermal growth factor (EGF) are key regulators in the intricate balance maintaining intestinal homeostasis. Previous work from our laboratory shows that TNF attenuates ligand-driven EGF receptor (EGFR) phosphorylation in intestinal epithelial cells. To identify the mechanisms underlying this effect, we examined EGFR phosphorylation in cells lacking individual TNF receptors. TNF attenuated EGF-stimulated EGFR phosphorylation in wild-type and TNFR2(-/-), but not TNFR1(-/-), mouse colon epithelial (MCE) cells. Reexpression of wild-type TNFR1 in TNFR1(-/-) MCE cells rescued TNF-induced EGFR inhibition, but expression of TNFR1 deletion mutant constructs lacking the death domain (DD) of TNFR1 did not, implicating this domain in EGFR downregulation. Blockade of p38 MAPK, but not MEK, activation of ERK rescued EGF-stimulated phosphorylation in the presence of TNF, consistent with the ability of TNFR1 to stimulate p38 phosphorylation. TNF promoted p38-dependent EGFR internalization in MCE cells, suggesting that desensitization is achieved by reducing receptor accessible to ligand. Taken together, these data indicate that TNF activates TNFR1 by DD- and p38-dependent mechanisms to promote EGFR internalization, with potential impact on EGF-induced proliferation and migration key processes that promote healing in inflammatory intestinal diseases.  相似文献   

16.
The Epstein-Barr virus latent membrane protein 1 (LMP1) binds tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) and the TNFR-associated death domain protein (TRADD). Moreover, it induces NF-kappaB and the c-Jun N-terminal kinase 1 (JNK1) pathway. Thus, LMP1 appears to mimick the molecular functions of TNFR1. However, TNFR1 elicits a wide range of cellular responses including apoptosis, whereas LMP1 constitutes a transforming protein. Here we mapped the JNK1 activator region (JAR) of the LMP1 molecule. JAR overlaps with the TRADD-binding domain of LMP1. In contrast to TNFR1, LMP1 recruits TRADD via the TRADD N-terminus but not the TRADD death domain. Consequently, the molecular function of TRADD in LMP1 signaling differs from its role in TNFR1 signal transduction. Whereas NF-kappaB activation by LMP1 was blocked by a dominant-negative TRADD mutant, LMP1 induces JNK1 independently of the TRADD death domain and TRAF2, which binds to TRADD. Further downstream, JNK1 activation by TNFR1 involves Cdc42, whereas LMP1 signaling to JNK1 is independent of p21 Rho-like GTPases. Although both LMP1 and TNFR1 interact with TRADD and TRAF2, the different topologies of the signaling complexes correlate with substantial differences between LMP1 and TNFR1 signal transduction to JNK1.  相似文献   

17.
18.
Activated tumor necrosis factor alpha (TNF-alpha) receptor 1 (TNFR1) recruits TNFR1-associated death domain protein (TRADD), which in turn triggers two opposite signaling pathways leading to caspase activation for apoptosis induction and NF-kappaB activation for antiapoptosis gene upregulation. Here we show that Stat1 is involved in the TNFR1-TRADD signaling complex, as determined by employing a novel antibody array screening method. In HeLa cells, Stat1 was associated with TNFR1 and this association was increased with TNF-alpha treatment. TNFR1 signaling factors TRADD and Fas-associated death domain protein (FADD) were also found to interact with Stat1 in a TNF-alpha-dependent process. Our in vitro recombinant protein-protein interaction studies demonstrated that Stat1 could directly interact with TNFR1 and TRADD but not with FADD. Interaction between Stat1 and receptor-interacting protein (RIP) or TNFR-associated factor 2 (TRAF2) was not detected. Examination of Stat1-deficient cells showed an apparent increase in TNF-alpha-induced TRADD-RIP and TRADD-TRAF2 complex formation, while interaction between TRADD and FADD was unaffected. As a consequence, TNF-alpha-mediated I-kappaB degradation and NF-kappaB activation were markedly enhanced in Stat1-deficient cells, whereas overexpression of Stat1 in 293T cells blocked NF-kappaB activation by TNF-alpha. Thus, Stat1 acts as a TNFR1-signaling molecule to suppress NF-kappaB activation.  相似文献   

19.
Saito K  Meyer K  Warner R  Basu A  Ray RB  Ray R 《Journal of virology》2006,80(9):4372-4379
We have previously shown that hepatitis C virus (HCV) core protein modulates multiple cellular processes, including those that inhibit tumor necrosis factor alpha (TNF-alpha)-mediated apoptosis. In this study, we have investigated the signaling mechanism for inhibition of TNF-alpha-mediated apoptosis in human hepatoma (HepG2) cells expressing core protein alone or in context with other HCV proteins. Activation of caspase-3 and the cleavage of DNA repair enzyme poly(ADP-ribose) polymerase were inhibited upon TNF-alpha exposure in HCV core protein-expressing HepG2 cells. In vivo protein-protein interaction studies displayed an association between TNF receptor 1 (TNFR1) and TNFR1-associated death domain protein (TRADD), suggesting that the core protein does not perturb this interaction. A coimmunoprecipitation assay also suggested that HCV core protein does not interfere with the TRADD-Fas-associated death domain protein (FADD)-procaspase-8 interaction. Further studies indicated that HCV core protein expression inhibits caspase-8 activation by sustaining the expression of cellular FLICE (FADD-like interleukin-1beta-converting enzyme)-like inhibitory protein (c-FLIP). Similar observations were also noted upon expression of core protein in context to other HCV proteins expressed from HCV full-length plasmid DNA or a replicon. A decrease in endogenous c-FLIP by specific small interfering RNA induced TNF-alpha-mediated apoptotic cell death and caspase-8 activation. Taken together, our results suggested that the TNF-alpha-induced apoptotic pathway is inhibited by a sustained c-FLIP expression associated with the expression of HCV core protein, which may play a role in HCV-mediated pathogenesis.  相似文献   

20.
Regulatory roles and molecular signaling of TNF family members in osteoclasts   总被引:12,自引:0,他引:12  
Feng X 《Gene》2005,350(1):1-13
The tumor necrosis factor (TNF) family has been one of the most intensively studied families of proteins in the past two decades. The TNF family constitutes 19 members that mediate diverse biological functions in a variety of cellular systems. The TNF family members regulate cellular functions through binding to membrane-bound receptors belonging to the TNF receptor (TNFR) family. Members of the TNFR family lack intrinsic kinase activity and thus they initiate signaling by interacting intracellular signaling molecules such as TNFR associated factor (TRAF), TNFR associated death domain (TRADD) and Fas-associated death domain (FADD). In bone metabolism, it has been shown that numerous TNF family members including receptor activator of nuclear factor kappaB ligand (RANKL), TNF-alpha, Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) play pivotal roles in the differentiation, function, survival and/or apoptosis of osteoclasts, the principal bone-resorbing cells. These TNF family members not only regulate physiological bone remodeling but they are also implicated in the pathogenesis of various bone diseases such as osteoporosis and bone loss in inflammatory conditions. This review will focus on our current understanding of the regulatory roles and molecular signaling of these TNF family members in osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号