首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The assembly of hybrid core particles onto long chicken DNA with histone H2B in the chicken histone octamer replaced with either wheat histone H2B(2) or sea urchin sperm histone H2B(1) or H2B(2) is described. All these histone H2B variants have N-terminal extensions of between 18 and 20 amino acids, although only those from sea urchin sperm have S(T)PXX motifs present. Whereas chicken histone octamers protected 167 base pairs (bp) (representing two full turns) of DNA against micrococcal nuclease digestion (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813), all the hybrid histone octamers protected an additional 17-bp DNA against nuclease digestion. This protection was more marked in the case of hybrid octamers containing sea urchin sperm histone H2B variants and similar to that described previously (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813) for hybrid histone octamers containing wheat histone H2A variants all of which also have S(T)PXX motifs present. Continued micrococcal nuclease digestion reduced the length of DNA associated with the core particle via 172-, 162-, and 152-bp intermediates until the 146-bp core particle was obtained. These DNA lengths were approximately 5 bp or half a helical turn longer than those reported previously for stripped chicken chromatin and for core particles containing histone octamers reconstituted using "normal" length histone H2B variants. This protection pattern was also found in stripped sea urchin sperm chromatin, demonstrating that the assembly/digestion methodology reflects the in vivo situation. The interaction between the N-terminal histone H2B extension and DNA of the "linker" region was confirmed by demonstrating that stripped sea urchin sperm chromatin precipitated between 120 and 500 mM NaCl in a manner analogous to unstripped chromatin whereas stripped chicken chromatin did not. Tryptic digestion to remove all the histone tails abolished this precipitation as well as the protection of DNA outside of the 167-bp core particle against nuclease digestion.  相似文献   

2.
Two mouse monoclonal IgM antibodies have been isolated which bind to histone 2B (H2B), as shown by protein blotting and immunostaining and by solid-phase radioimmunoassay (RIA). One of these (HBC-7) was specific for H2B by both techniques whereas the other (2F8) cross-reacted with histone H1 by RIA. Both antibodies failed to recognize H2B limit peptides from trypsin-digested chromatin and did not bind to Drosophila H2B, which differs extensively from vertebrate H2B only in the N-terminal region. These findings indicate that both antibodies recognize epitopes within the trypsin-sensitive, N-terminal region comprising residues 1-20. Binding of antibody HBC-7 was inhibited by in vitro ADP-ribosylation of H2B at glutamic acid residue 2. This strongly suggests that the epitope recognized by HBC-7 is located at the N-terminus of H2B, probably between residues 1 and 8. We have used solid-phase radioimmunoassay to investigate factors which influence the accessibility of this epitope in chromatin. Removal of H1 ('stripping') from high-molecular-mass chromatin had no effect on HBC-7 binding, nor was any difference observed between binding to stripped chromatin and to 146-base-pair (bp) core particles derived from it by nuclease digestion. These results suggest that accessibility of the N-terminal region of H2B is not influenced by H1 itself or by the size or conformation of linker DNA. In contrast, binding of antibody HBC-7 to 146-bp core particles derived from unstripped chromatin was reduced by up to 70%. Binding was restored by exposure of these core particles to the conditions used for stripping. Analysis of the protein content of core particle preparations from stripped and unstripped chromatin suggests that these findings may be attributable to redistribution of non-histone proteins during nuclease digestion. Pre-treatment of high-molecular-mass chromatin or 146-bp core particles with the intercalating dye ethidium bromide resulted in a severalfold increase in binding of HBC-7. The major changes in nucleosome morphology induced by ethidium are therefore accompanied by an increase in accessibility of the N-terminal region of H2B, possibly as a direct result of changes in the spatial relationship between H2B and core DNA.  相似文献   

3.
The tetrameric (H3/H4)2 146 base pair (bp) DNA and hexameric (H3/H4)2(H2A/H2B)1 146 bp DNA subnucleosomal particles have been prepared by depletion of chicken erythrocyte core particles using 3 or 4 M urea, 250 mM sodium chloride, and a cation-exchange resin. The particles have been characterized by cross-linking and sedimentation equilibrium. The structures of the particles, particularly the tetrameric, have been studied by sedimentation velocity, low-angle neutron scattering, circular dichroism, optical melting, and nuclease digestion with DNase I, micrococcal nuclease, and exonuclease III. It is concluded that since the radius of gyration of the DNA in the tetramer particle and its maximum dimension are very close to those of the core particle, no expansion occurs on removal of all the H2A and H2B. Nuclease digestion results indicate that histones H3/H4 in the tetramer particle protect a total of 70 bp of DNA that are centrally located within the 146 bp. Within the 70 bp DNA length, the two terminal regions of 10 bp are, however, not strongly protected from digestion. The optical melting profile of both particles can be resolved into three components and is consistent with the model of histone protection of DNA proposed from nuclease digestion. The structure proposed for the tetrameric histone complex bound to DNA is that of a compact particle containing 1.75 superhelical turns of DNA, in which the H3 and H4 histone location is the same as found for the core particle in chromatin by histone/DNA cross-linking [Shick, V. V., Belyavsky, A. V., Bavykin, S. G., & Mirzabekov, A. D. (1980) J. Mol. Biol. 139, 491-517]. Optical melting of the hexamer particle shows that each (H2A/H2B)1 dimer of the core particle protects about 22 base pairs of DNA.  相似文献   

4.
Chicken erythrocyte chromatin was depleted of histones H1, H5, H2A and H2B. The resulting (H3/H4)-containing chromatin was digested with micrococcal nuclease to yield monomer, dimer, trimer etc. units, irregularly spaced on the DNA, with even-number multimers being more prominent. Sucrose density gradient centrifugation separated monomers and dimers (7.7 S and 10.5 S). Sodium dodecyl sulphate gel electrophoresis and cross-linking indicated: the monomer contains 50-base-pair (bp), 60-bp and 70-bp DNA and the dimer 125-bp DNA; the monomer contains a tetramer and the dimer an octamer of H3 and H4. Partial association of monomer units to dimers inhibits structural studies of monomers. The internal structure of the dimer, i.e. and (H3/H4)4-125-bp-DNA particle, was studied using circular dichroism, thermal denaturation and nuclease digestion. Both micrococcal nuclease and DNase I digestion indicate that, unlike core particles, accessible sites occur in the centre of the particle and it is concluded that the (H3/H4)4-125-bp-DNA particle is not a 'pseudo-core particle' in which the 'extra' H3 and H4 replace H2A and H2B. It is proposed that the octamer particle is formed by the sliding together of two 'monomer' units, each containing the (H3/H4)2 tetramer and 70 bp of DNA. Excision of this dimer unit with micrococcal nuclease results in the loss of 10 readily digestible base pairs at each end, leaving 125 bp.  相似文献   

5.
Self-assembly of DNA with the four core histones but in the absence of H1 generates nucleosome core particles which are spaced randomly over large distances. Closely spaced core particles, however, exhibit a preferred short linkage which is not a multiple of 10 base pairs. They bind about 140 base pairs whereas apparently shorter DNA lengths per nucleosome observed after digestion with micrococcal nuclease are the result of degradation from the ends. The DNA length of one superhelical turn in the core particle is 83 +/- 4 base pairs. Single core particles may bind more DNA than closely spaced core particles but probably less than two full turns of 168 base pairs. The internal structures of single and of native core particles are very similar as judged by their amount of DNA, sedimentation coefficient, appearance in the electron microscope, and digestion with DNase I. In addition to core particles, a particle is described which sediments at 9 S and consists of 108 base pairs of DNA bound to the histone octamer. It appears to be the smallest stable "core particle" but it is not a degradation product of the 146-base-pair core particle. Digestion of end-labeled 9 S and nucleosome core particles with DNase I shows distinct differences.  相似文献   

6.
Structure of nucleosomes and organization of internucleosomal DNA in chromatin   总被引:16,自引:0,他引:16  
We have compared the mononucleosomal pattern produced by micrococcal nuclease digestion of condensed and unfolded chromatin and chromatin in nuclei from various sources with the repeat length varying from 165 to 240 base-pairs (bp). Upon digestion of isolated H1-containing chromatin of every tested type in a low ionic strength solution (unfolded chromatin), a standard series of mononucleosomes (MN) was formed: the core particle, MN145, and H1-containing, MN165, MN175, MN185, MN195, MN205 and MN215 (the indexes give an approximate length of the nucleosomal DNA that differs in these particles by an integral number of 10 bp). In addition to the pattern of unfolded chromatin, digestion of whole nuclei or condensed chromatin (high ionic strength of Ca2+) gave rise to nuclei-specific, H1-lacking MN155. Digestion of H1-lacking chromatin produced only MN145, MN155 and MN165 particles, indicating that the histone octamer can organize up to 165 bp of nucleosomal DNA. Although digestion of isolated sea urchin sperm chromatin (repeat length of about 240 bp) at a low ionic strength gave a typical "unfolded chromatin pattern", digests of spermal nuclei contained primarily MN145, MN155, MN235 and MN245 particles. A linear arrangement of histones along DNA (primary organization) of the core particle was found to be preserved in the mononucleosomes, with the spacer DNA length from 10 to 90 bp on one (in MN155) or both sides of core DNA being a multiple of about 10 bp. In MN235, the core particle occupies preferentially a central position with the length of the spacer DNA on both sides of the core DNA being usually about 30 + 60 or 40 + 50 bp. Histone H1 is localized at the ends of these particles, i.e. close to the centre of the spacer DNA. The finding that globular part of histones H3 and sea urchin sperm H2B can covalently bind to spacer DNA suggests their involvement in the organization of chromatin superstructure. Our data indicate that decondensation of chromatin is accompanied by rearrangement of histone H1 on the spacer DNA sites adjacent to the core particle and thus support a solenoid model for the chromatin superstructure in nuclei in which the core DNA together with the spacer DNA form a continuous superhelix.  相似文献   

7.
Histone-DNA contacts in the 167 bp 2-turn core particle.   总被引:1,自引:0,他引:1  
The histone-DNA contacts in the 167 bp 2-turn core particle have been compared with those in the 146 bp 1.75-turn core particle by the methodology developed by Mirzabekov and his colleagues. The contacts in the 167 bp 2-turn core particle retain the essential features of those in the 146 bp 1.75-turn core particle but contacts for histones H3 and H2A were found in the 10 bp extension that discriminates the two particles. In addition the contact for histone H2A near the dyad axis was far more pronounced in the case of the 146 bp core particle.  相似文献   

8.
The preparation of hybrid histone octamers with wheat histone H2A variants replacing chicken H2A in the chicken octamer is described. The fidelity of the reconstituted hybrid octamers was confirmed by dimethyl suberimidate cross-linking. Polyglutamic-acid-mediated assembly of these octamers on long DNA and subsequent micrococcal nuclease (MNase) digestion demonstrated that, whereas chicken octamers protected 167 base-pairs (representing 2 full turns of DNA), hybrid histone octamers containing wheat histone H2A(1) with its 19 amino acid residue C-terminal extension protected an additional 16 base pairs of DNA against nuclease digestion. The protection observed by hybrid histone octamers containing wheat histone H2A(3) with both a 15 residue N-terminal and a 19 residue C-terminal extension was identical with that observed with H2A(1)-containing hybrid histone octamers with only the 19 residue C-terminal extension. These results suggest that the role of the C-terminal extension is to bind to DNA of the "linker" region. The thermal denaturation of chicken and hybrid core particles was identical in 10 mM-Tris.HCl.20 mM-NaCl, 0.1 mM-EDTA, confirming that there was no interaction between the basic C-terminal extension and DNA of the core particle. Denaturation in EDTA, however, showed that hybrid core particles had enhanced stability, suggesting that the known conformational change of core particles at very low ionic strength allows the C-terminal extension to bind to core particle DNA under these conditions. A model accounting for the observed MNase protection is presented.  相似文献   

9.
Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.  相似文献   

10.
Mononucleosomes released from Dictyostelium discoideum chromatin by micrococcal nuclease contained two distinctive DNA sizes (166-180 and 146 bp). Two dimensional gel electrophoresis suggested a lysine-rich protein protected the larger mononucleosomes from nuclease digestion. This was confirmed by stripping the protein from chromatin with Dowex resin. Subsequently, only the 146 bp mononucleosome was produced by nuclease digestion. Reconstitution of the stripped chromatin with the purified lysine-rich protein resulted in the reappearance of the larger mononucleosomes. Two-dimensional gel electrophoresis showed the protein was associated with mononucleosomes. Hence, the protein functions as an H1 histone in bringing the two DNA strands together at their exit point from the nucleosome. Trypsin digestion of the lysine-rich protein in nuclei resulted in a limiting peptide of approx. 10 kilodaltons. Trypsin concentrations which degraded the protein to peptides of 12-14 kilodaltons and partially degraded the core histones did not change the DNA digestion patterns obtained with micrococcal nuclease. Thus, the trypsin-resistant domain of the lysine-rich protein is able to maintain chromatosome structure.  相似文献   

11.
Zhao H  Zhang Y  Zhang SB  Jiang C  He QY  Li MQ  Qian RL 《Cell research》1999,9(4):255-260
The structure of the nuclosome core particle of chromatin in chicken erythrocytes has been examined by using AFM.The 146 bp of DNA wrapped twice around the core histone octamer are clearly visualized.Both the ends of entry/exit of linker DNA are also demonstrated.The dimension of the nucleosome core particles is - 1-4 nm in height and - 13-22 nm in width.In addition,superbeads (width of - 48-57 nm,height of - 2-3 nm )are occasionally revealed,two turns of DNA around the core particles are also detected.  相似文献   

12.
A novel nucleohistone particle is generated in high yield when a complex of DNA with the four core histones formed under conditions that are close to physiological (0.15 M NaCl, pH 8) is treated with micrococcal nuclease. The particle was found to contain 102 base pairs of DNA in association with six molecules of histones in the ratio 2H2A:2H2B:1H3:1H4 after relatively brief nuclease treatment. Prolonged nuclease digestion resulted in a reduction in the DNA length to a sharply defined 92-base pair fragment that was resistant to further degradation. Apparently normal nucleosome core particles containing two molecules each of the four core histones in association with 145 base pairs of DNA and a particle containing one molecule each of histones H2A and H2B in association with approximately 40 base pairs of DNA were also generated during nuclease treatment of the histone-DNA complexes formed under physiological ionic strength conditions. Kinetic studies have shown that the hexamer particle is not a subnucleosomal fragment produced by the degradation of nucleosome core particles. Furthermore, the hexamer particle was not found among the products of nuclease digestion when histones and DNA were previously assembled in 0.6 M NaCl. The high sedimentation coefficient of the hexameric complex (8 S) suggests that the DNA component of the particle has a folded conformation.  相似文献   

13.
Labelling hybrid histone octamers (the Cys variant of histone H4 replaced histone H4 in the chicken erythrocyte octamer) with the fluorescent probe 5-(2(iodoacetyl)aminoethyl)aminonapthalene- 1-sulfonic acid, IAEDANS, resulted in significant non-specific incorporation of label. Fluorescently labelled hybrid histone octamers were prepared by reconstitution methodology after labelling the isolated histone Cys-H4 and separation of specifically and non-specifically labelled histone. Core particles prepared from these octamers have identical thermal denaturation to unlabelled core particles demonstrating that the incorporation of a fluorescent probe at this site has no overall effect on either histone-histone or histone-DNA interactions. DNase 1 digestion of 32P end-labelled fluorescent core particles yielded the anticipated asymmetric cutting pattern with a 10 bp interval between fragments. Comparison of the cutting pattern with those previously obtained in these laboratories for both polyglutamic acid reconstituted and 'native' core particles demonstrated that fluorescent core particles had an enhanced susceptibility to digestion at site 7.  相似文献   

14.
Raman spectra have been observed of nucleosome core particles (I) prepared from chicken erythrocyte chromatin, its isolated 146 bp DNA (II), and its isolated histone octamer (H2A+H2B+H3+H4)2 (III). By examining the difference Raman spectra, (I)-(II), (I)-(III), and (I)-(II)-(III), several pieces of information have been obtained on the conformation of the DNA moiety, the conformation of the histone moiety, and the DNA-histone interaction in the nucleosome core particles. In the nucleosome core particles, about 15 bp (A.T rich) portions of the whole 146 bp DNA are considered to take an A-form conformation. These are considered to correspond to its bent portions which appear at intervals of 10 bp.  相似文献   

15.
The effects of VirTis shearing on chromatin subunit structure were investigated by enzymatic digestion, thermal denaturation, and electron microscopy. While initial rates of micrococcal nuclease and DNase I digestion were greater postshearing, limit digest values were similar to those for unsheared chromatin. Fractionated chromatin digestion kinetics varied with sedimentation. Digestion of all chromatins produced monomer and dimer DNA fragment lengths, but only unsheared chromatins exhibited higher order nucleosome oligomer lengths. Mononucleosomes and core particles were resolved in digests of sheared and gradient fractions analyzed by electrophoresis. All chromatins exposed to DNase I showed discrete 10-base pair nicking patterns. The presence of nucleosomes was confirmed by electron microscopy. Electron microscopy and histone content of gradient fractions showed that nucleosome density along the chromatin axis increased in rapidly sedimenting fractions. Thermal denaturation detected no appreciable generation of protein-free DNA fragments as a result of shearing. The results indicate that VirTis blending conserves subunit structure with loss of less than 12–15% of nucleosome structure.  相似文献   

16.
The circular dichroism spectra and the thermal denaturation profiles of the nucleosome core particles isolated by micrococcal nuclease digestion from nuclei of calf thymus and the protozoan Tetrahymena pyriformis were compared with those of the homogeneous and hybrid core particles reconstituted from calf core DNA and either calf or Tetrahymena histone octamer. The core DNA was obtained from the calf core particle, and both the histone octamers were reconstituted from the acid-extracted four core histones of calf thymus or Tetrahymena, whose amino acid sequences show the largest differences hitherto known. The reconstituted homogeneous core particle was identical in both the physical properties with the isolated calf core particle, showing that the correct reconstitution was achieved. The circular dichroism spectra of the calf and Tetrahymena core particles and the hybrid core particle showed no essential differences, indicating that the three core particles have the same overall structure. The derivative thermal-denaturation profiles, however, clearly differed; the calf core particle showed two melting transitions at 60 degrees C and 72 degrees C, while the Tetrahymena and hybrid core particles showed the same three transitions at 48-50 degrees C, 60-61 degrees C, and 72 degrees C. Thus, the thermal denaturation properties of nucleosome core particles do not reflect the nature of DNA, but rather that of the histone octamer bound to the DNA. We conclude that the Tetrahymena histones are more weakly bound to the DNA than the calf thymus histones in the same overall structure of nucleosomes.  相似文献   

17.
Cleavage of DNA in nuclei and chromatin with staphylococcal nuclease.   总被引:53,自引:0,他引:53  
R Axel 《Biochemistry》1975,14(13):2921-2925
Treatment of either rat liver chromatin or intact nuclei with the enzyme staphylococcal nuclease results in the conversion of about half of the DNA to acid-soluble oligonucleotides. As previously described, mild digestion of nuclei results in the liberation of a series of nucleoprotein particles containing DNA fragments which are all integral multiples of a unit length DNA 185 base pairs in length. Analysis of the kinetics of appearance of these fragments suggests that at least 85% of the nuclear DNA is involved in the formation of the repeating subunit profile. More extensive digestion of nuclei however results in the generation of a series of eight unique DNA fragments containing 160 to 50 base pairs. The series of smaller molecular weight DNA is virtually identical with the profile obtained upon limit digestion of isolated chromatin. By velocity centrifugation we have obtained highly purified preparations of the monomeric nucleoprotein particle. Digestion of this monomeric subunit results in the solubilization of 46% of the DNA and analysis of the resistant DNA again reveals the set of eight lower molecular weight fragments. These data suggest that the initial site of nuclease cleavage in chromatin resides within the DNA bridging the repeating monomeric subunits. Further attack results in cleavage at a set of sites within the monomer liberating a pattern of smaller DNA fragments which probably represents the points of intimate contact between the histones and DNA.  相似文献   

18.
DNA stretching in chromatin may facilitate its compaction and influence site recognition by nuclear factors. In vivo, stretching has been estimated to occur at the equivalent of one to two base-pairs (bp) per nucleosome. We have determined the crystal structure of a nucleosome core particle containing 145 bp of DNA (NCP145). Compared to the structure with 147 bp, the NCP145 displays two incidences of stretching one to two double-helical turns from the particle dyad axis. The stretching illustrates clearly a mechanism for shifting DNA position by displacement of a single base-pair while maintaining nearly identical histone-DNA interactions. Increased DNA twist localized to a short section between adjacent histone-DNA binding sites advances the rotational setting, while a translational component involves DNA kinking at a flanking region that initiates elongation by unstacking bases. Furthermore, one stretched region of the NCP145 displays an extraordinary 55° kink into the minor groove situated 1.5 double-helical turns from the particle dyad axis, a hot spot for gene insertion by HIV-integrase, which prefers highly distorted substrate. This suggests that nucleosome position and context within chromatin could promote extreme DNA kinking that may influence genomic processes.  相似文献   

19.
We have removed histone H1 specifically from calf thymus nuclei by low pH treatment, and studied the digestion of such nuclei in comparison with undepleted nuclei. By a number of criteria the nuclei do not appear damaged. The DNA repeat-length in nuclear chromatin is found to be the same (192 +/- 4 bp) in the presence or absence of H1. These experiments demonstrate that the core histone complex of H2A, H2B, H3, and H4 can itself protect DNA sequences as long as 168 bp from nuclease. Our interpretation is that this represents an important structural element in chromatin, carrying two full turns of superhelical DNA. Depending on conditions of digestion this 168 bp fragment may be metastable and is normally rapidly converted by exonucleolytic trimming to the well-known "core-particle" containing 145 bp. Larger stable DNA fragments observed indigestion of H-1 depleted nuclei appear to arise from oligomers assembled from 168 bp cores in close contact exhibiting trimming of 0-20 bp at the ends. Electrophorograms of undepleted nuclear digests reveal oligomer bands in several size classes, each corresponding to one or more combinations of 168 bp particles, H1-protected spacers of about 20 bp length, and particles with ends trimmed to varying degrees.  相似文献   

20.
The chromatin structure of morphologically-similar, but increasingly-malignant erythroleukemia cells was investigated using milk micrococcal nuclease digestion of isolated nuclei. The maximum solubilization of chromatin was unique for each of the three cell types: the least malignant (our Stage II) released 61% of its chromatin DNA, the most malignant (Stage IV), 46%, and the intermediate (Stage III) released 36%. An analysis of the nucleosome oligomers liberated by digestion also demonstrated differences. After 15 minutes of digestion when release was reaching its maximum, a greater proportion of large nucleosomal oligomers (sizes > trinucleosome) was released from Stage II nuclei than from Stage III or IV nuclei. The cell types also differed in the relative amount of H1-depleted mononucleosomes released. Analysis of the size of the double-stranded DNA associated with mononucleosomal particles showed that Stage III mononucleosomes were smaller (148 bp) than Stage IV (167 bp) or Stage II (190 bp). In addition, while the DNA of mononucleosomes depleted in H1 was smaller than that in the H1-containing species, relative size differences among the different cell types were retained. These data suggested that the difference in the mononuocleosome particle size resistant to nuclease digestion was independent of histone H1. Differences in nucleosome repeat length were also noted among the cell types. These studies have demonstrated dramatic differences in chromatin structure associated with malignant potential of an otherwise morphologically identical cell type. These findings may reflect changes in the relative amounts of H2a variants which we have previously described among the different malignant cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号