首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial Utilization of Ether Glycols   总被引:9,自引:8,他引:1       下载免费PDF全文
A soil bacterium capable of using oligo- and polyethylene glycols and ether alcohols as sole sources of carbon for aerobic growth was isolated. The effects of substituent groups added to the ether bonds on the acceptability of the compounds as substrates were studied. Mechanisms for the incorporation of two-carbon compounds were demonstrated by the observation that acetate, glyoxylate, ethylene glycol, and a number of the tricarboxylic acid cycle intermediates served as growth substrates in minimal media. The rate of oxidation of the short-chained ethylene glycols by adapted resting cells varied directly with increasing numbers of two-carbon units in the chains from one to four. The amount of oxygen consumed per carbon atom of oligo- and polyethylene glycols was 100% of theoretical, but only 67% of theoretical for ethylene glycol. Resting cells oxidized oligo- and polyethylene glycols with 2 to 600 two-carbon units in the chains. Longer chained polyethylene glycols (up to 6,000) were oxidized at a very slow rate by these cells. Dehydrogenation of triethylene glycol by adapted cells was observed, coupling the reaction with methylene blue reduction.  相似文献   

2.
Azotobacter chroococcum MAL-201 (MTCC 3853), a free-living nitrogen-fixing bacterium accumulates poly(3-hydroxybutyric acid) [PHB, 69% of cell dry weight (CDW)] when grown on glucose and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [PHBV with 19.2 mol% 3HV] when grown on glucose and valerate. Use of ethylene glycol (EG) and/or polyethylene glycols (PEGs) of low molecular weight as sole carbon source were detrimental to A. chroococcum growth and polymer yields. PEG-200, however, in the presence of glucose was incorporated into the polyhydroxyalkanoate (PHA) polymer. Addition of PEG-200 (150 mM) to culture medium during mid-log phase growth favored increased incorporation of EG units (12.48 mol%) into the PHB polymer. In two-step culture experiments, where valerate and PEG simultaneously were used in fresh medium, EG was incorporated most effectively in the absence of glucose, leading to the formation of a copolymer containing 18.05 mol% 3HV and 14.78 mol% EG. The physico-mechanical properties of PEG-containing copolymer (PHBV–PEG) were compared with those of the PHB homopolymer and the PHBV copolymer. The PHBV–PEG copolymer appeared to have less crystallinity and greater flexibility than the short-chain-length (SCL) PHA polymers.  相似文献   

3.
Piñar G  Ramos JL 《Biodegradation》1997,8(6):393-399
A gram-positive strain identified as Arthrobacter globiformis CECT 4500, tolerant to up to 1 M nitrate, was isolated from the grounds of a munitions factory. Under strict aerobic conditions, this bacterium used a wide variety of C-sources to obtain the energy required for growth, which took place when the nitrate concentration in the medium was below150 mM. Cells of this bacterium growing in the absence of nitrate were seen as individual cells or forming pairs,whereas cells grown in the presence of nitrate formed short filaments. With ethylene glycol as the C-source, optimal conditions for the full nitrate removal by Arthrobacter were established under laboratory conditions with wastewaters from the synthesis of dinitroethylene glycol. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Biodegradation of ethylene glycol was tested in a laboratory-scale, steady-state infiltration system of two arid region soil types by monitoring indigenous microbial growth after the infiltration of three concentrations of ethylene glycol. Microorganisms in the soils were able to adapt to the ethylene glycol in several cases, resulting in higher numbers of microorganisms and lower pHs in the effluents. These microorganisms were identified and were able to use ethylene glycol as a sole carbon source. The adaptation was seen best with high-moisture-content soils when the ethylene glycol concentrations were 1% or 10%. However, acclimation to 0.1% and 10% ethylene glycol did not occur in low-moisture-content clay soil, but did occur in low-moisture-content silt soil, indicating that soil type and moisture content are important factors. In all cases, microbial diversity decreased over time. Received: 23 June 1997 / Accepted: 11 August 1997  相似文献   

5.
The photosynthetic bacterium Rhodobacter sphaeroides is capable of producing H2 via nitrogenase when grown photoheterotrophically in the absence of N2. By using 14C-labeled malate, it was found that greater than 95% of this substrate was catabolized completely to CO2 during H2 production. About 60% of this catabolism was associated with H2 biosynthesis, while almost 40% provided reductant for other cellular purposes. Thus, only a small fraction of malate provided carbon skeletons. The addition of ammonium, which inhibited nitrogenase activity, increased substrate conversion into carbon skeletons threefold. Catabolism of malate occurred primarily via the tricarboxylic acid cycle, but gluconeogenesis was also observed. The wild-type organism grew poorly on glucose, accumulated gluconate and 2-keto-3-deoxygluconate, and did not produce H2. More than 50% of metabolized glucose appeared in carbon skeletons or in storage compounds. A glucose-utilizing mutant was five times more effective in utilizing this substrate. This mutant produced H2 from glucose, using 74% of metabolized substrate for this purpose. Glucose converted to storage products or to other carbon skeletons was reduced to 8%. Fixation of CO2 competed directly with H2 production for reducing equivalents and ATP. Refixation of CO2 released from these substrates under H2-producing conditions was, at most, 10 to 12%. Addition of ammonium increased refixation of respired CO2 to 83%. Patterns of carbon flow of fixation products were associated with the particular strains and culture conditions.  相似文献   

6.
The photosynthetic bacterium Rhodobacter sphaeroides is capable of producing H2 via nitrogenase when grown photoheterotrophically in the absence of N2. By using 14C-labeled malate, it was found that greater than 95% of this substrate was catabolized completely to CO2 during H2 production. About 60% of this catabolism was associated with H2 biosynthesis, while almost 40% provided reductant for other cellular purposes. Thus, only a small fraction of malate provided carbon skeletons. The addition of ammonium, which inhibited nitrogenase activity, increased substrate conversion into carbon skeletons threefold. Catabolism of malate occurred primarily via the tricarboxylic acid cycle, but gluconeogenesis was also observed. The wild-type organism grew poorly on glucose, accumulated gluconate and 2-keto-3-deoxygluconate, and did not produce H2. More than 50% of metabolized glucose appeared in carbon skeletons or in storage compounds. A glucose-utilizing mutant was five times more effective in utilizing this substrate. This mutant produced H2 from glucose, using 74% of metabolized substrate for this purpose. Glucose converted to storage products or to other carbon skeletons was reduced to 8%. Fixation of CO2 competed directly with H2 production for reducing equivalents and ATP. Refixation of CO2 released from these substrates under H2-producing conditions was, at most, 10 to 12%. Addition of ammonium increased refixation of respired CO2 to 83%. Patterns of carbon flow of fixation products were associated with the particular strains and culture conditions.  相似文献   

7.
Phytoremediation at contaminated sites is often complicated by the presence of more than one chemical However, the effects of common co-contaminants such as ethylene glycol on the phytoremediation of other chemicals, e.g., 1,4-dioxane, is not well understood. Field studies with DN34 poplar trees revealed a 28% decline in growth rate in response to 10 g/L ethylene glycol in the groundwater, thus indicating a significant and deleterious effect on tree viability, and likely, the plants' utility for phytoremediation. Thorough investigations using Arabidopsis thaliana, with its small size and rapid life cycle, indicated significant growth reduction at 10 g/L and complete inhibition of germination at 40 g/L ethylene glycol Ethylene glycol was almost as severe a stressor as the well characterized osmotic inhibitor, sorbitoL Watering potted trees with 10 g/L ethylene glycol reduced their growth by more than 50%, and similar results were observed in hydroponically grown poplar and willow trees. Under hydroponic conditions, 60 g/L ethylene glycol inhibited the phytovolatilization of l,4-dioxane by more than 80%, and all trees evapo-transpired 1,4-dioxane less efficiently than water. In fact, this efficiency differed between trees and the difference became more pronounced in the presence of ethylene glycol.  相似文献   

8.
A strictly anaerobic, homoacetogenic bacterium was enriched and isolated from anoxic sewage sludge with polyethylene glycol (PEG) 1000 as sole source of carbon and energy, and was assigned to the genus Acetobacterium on the basis of morphological and physiological properties. The new isolate fermented ethylene glycol and PEG's with molecular masses of 106 to 1000 to acetate and small amounts of ethanol. The PEG-degrading activity was not destroyed by proteinase K treatment of whole cells. In cell-free extracts, a diol dehydratase and a PEG-degrading (ether-cleaving) enzyme activity were detected which both formed acetaldehyde as reaction product. The diol dehydratase enzyme was oxygen-sensitive and was stimulated 10–14 fold by added adenosylcobalamine. This enzyme was found mainly in the cytoplasmic fraction (65%) and to some extent (35%) in the membrane fraction. The ether-cleaving enzyme activity reacted with PEG's of molecular masses of 106 to more than 20000. The enzyme was measurable optimally in buffers of high ionic strength (4.0), was extremely oxygen-sensitive, and was inhibited by various corrinoids (adenosylcobalamine, cyanocobalamine, hydroxocobalamine, methylcobalamine). This enzyme was found exclusively in the cytoplasmic fraction. It is concluded that PEG is degraded by this bacterium inside the cytoplasm by a hydroxyl shift reaction, analogous to a diol dehydratase reaction, to form an unstable hemiacetal intermediate. The name polyethylene glycol acetaldehyde lyase is suggested for the responsible enzyme.Abbreviations EG ethylene glycol - DiEG diethylene glycol - TriEG triethylene glycol - TeEG tetraethylene glycol - PEG polyethylene glycol (molecular mass indicated)  相似文献   

9.
Formation of Isoamylase by Pseudomonas   总被引:7,自引:4,他引:3       下载免费PDF全文
We have isolated a Pseudomonas sp. (strain SB15) which produces an isoamylase (EC 3.2.1.9). Highest yields of this enzyme were obtained when the bacterium was grown in shaken culture in a medium containing maltose, dextrin, starch, or isomaltose. Specific carbon and nitrogen sources were required for growth. The most satisfactory medium consisted of 2% maltose, 0.4% sodium glutamate, 0.3% diammonium hydrogen phosphate, and other inorganic salts. The optimal pH for enzyme production was 5 to 6. The enzyme is stable between pH 3 and 6 but is extremely labile above pH 7. It splits amylopectin completely by combined action with beta-amylase but does not attack pullulan.  相似文献   

10.
Isotopic labeling of RNA with 13C and 15N has become a routine procedure in structural studies by NMR spectroscopy. The methodology in this paper describes the random fractional deuteration of RNA using the obligate methylotropic bacterium, Methylophilus methylotrophus. This bacterium was grown using a non-deuterated carbon source in 52:48 D20/H20 and we have shown that all protons in the ribonucleotides except for the ribose H1 become 52% randomly fractionally deuterated. Improved growth conditions for this organism are also described that yield higher cell densities in liquid culture, which is applicable for all labeling procedures.  相似文献   

11.
Moderate cell growth occurred after a long lag phase of about 100 hr when oxygen-sensitive hydrogen bacterium N34 was cultivated chemoautotrophically under 40% O2. A decrease in cell growth or viable count was not observed during the lag phase. These cells grown under 40 % O2 were oxygen-resistant because when used as inocula for fresh 40 % O2-culture, the growth lag period was less than 10 hr. Nine oxygen-sensitive colonies developed from a single oxygen-sensitive cell respectively. When these colonies were inoculated into 40% O2-culture, they showed an almost equal lag period and growth rate. These results suggest that cell growth in 40% O2-culture inoculated with oxygen-sensitive strain N34 occurred not by selection of oxygen-resistant variants which might preexist but by adaptation of very oxygen-sensitive cells to high oxygen tension. Oxygen-resistance thus developed was maintained after successive subcultures under 10% O2 for more than one year.  相似文献   

12.
Microbial metabolism of ethylene   总被引:1,自引:0,他引:1  
The ethylene-oxidizing strain E20 was grown on different carbon sources to obtain information on the metabolism of ethylene from simultaneous adaptation studies and from measurements of specific activities of enzymes in cell-free extracts.From the simultaneous adaptation studies it was concluded that ethylene oxide is a product of ethylene catabolism. The bacterium was also able to grow on the epoxide. From a comparison of the specific activities of isocitrate lyase and malate synthetase in different extracts it was concluded that the glyoxylate cycle was involved in the metabolism of ethylene, indicating that acetyl-CoA is a metabolite of ethylene catabolism. The sequence of reactions leading from ethylene oxide to acetyl-CoA could not be established from the simultaneous adaptation experiments and the enzyme activities in extracts.Support for the research has come in part from grants of the N.V. Nederlandse Gasunie and the VEG Gasinstituut.  相似文献   

13.
The ability of selected bacterial cultures to synthesize ethylene during growth in nutrient broth supplemented with methionine or 2-oxo-4-methylthiobutyric acid (KMBA) was examined. Although most cultures transformed KMBA into ethylene, only those of Escherichia coli SPAO and Chromobacterium violaceum were able to convert exogenously added methionine to ethylene. In chemically defined media, E. coli SPAO produced the highest amounts of ethylene from methionine and KMBA. This capability was affected by the nature of the carbon source and the type and amount of nitrogen source used for growth. When glutamate was used as sole source of carbon and nitrogen for growth, the activity of the ethylenogenic enzymes was reduced to 25% of that observed with cultures grown with glucose and NH4Cl. Neither methionine nor KMBA significantly affected the ethylenogenic capacity of E. coli SPAO. Menadione and paraquat, compounds that generate superoxide radicals, stimulated ethylene synthesis by harvested cells, but not by cell-free extracts of E. coli SPAO. In addition, cells of Pseudomonas aeruginosa, which produced no ethylene in culture in the presence of exogenously added KMBA, yet possessed the necessary enzymes in an active form, were able to synthesize ethylene from KMBA when incubated with menadione or paraquat.  相似文献   

14.
Ethylene production by isolated chick-pea embryonic axes during the initial stages of germination has been studied. Maximum production of ethylene occurs when growth is entirely due to cell elongation and before mitotic activity begins. This peak increases three-fold in the presence of calcium, but it is diminished by osmotic inhibitors, polyamines and abscisic acid (ABA), with a parallel fall in growth rate. Fusicoccin stimulates ethylene production and counteracts the effects of polyethylene glycol; thiourea, which breaks thermodormancy in chick-pea seeds, reduces ethylene production but does not counteract the effects of osmotic inhibitors. Of the polyamines studied, spermine (in low concentrations, 0.1 to 1.0 m M ) is the only one to stimulate ethylene production and cell elongation. It is concluded that there is a close relationship between ethylene production and cell elongation.  相似文献   

15.
SYNOPSIS. Cryoprotectants were tested in both complex and semidefined media for the trypanosomatid Crithidia fasciculata. Near log-phase or end-of-log-phase cultures were frozen for 24–48 hr at ∼ -20 C, then warmed in air to room temperature. Immediate motility was correlated with viability. The best protectant of the 83 tested was glycerol at ∼ 10% (w/v). Survival without cryoprotectant was rare. Outstanding cryoprotectants (perhaps also useful solvents for drugs poorly soluble in water) were: ethylene glycol; 2,2'-dioxyethanol (diethylene glycol); 1,2,4-butanetriol; 1,4-cyclohexanediol; dimethylsulfoxide; propylene glycol; and N -acetylethanolamine. Several sugars were active, e.g., D-arabinose, sucrose, and sorbitol. Trypanosomes tolerated cryoprotectants much less; tolerance was better in growth media than in suspension media. Trypanosoma gambiense was grown in blood-enriched media + 2-2.5% glycerol, suspended in 20% (w/v) glycerol. then frozen; this permitted 3-week survival. T. conorhini survived 4 weeks after growth in media containing glycerol 2.5%+ ethylene glycol 4%+ rutin 1.0 mg per 100 ml.  相似文献   

16.
We previously described a thermophilic (60 degrees C), syntrophic, two-membered culture which converted acetate to methane via a two-step mechanism in which acetate was oxidized to H(2) and CO(2). While the hydrogenotrophic methanogen Methanobacterium sp. strain THF in the biculture was readily isolated, we were unable to find a substrate that was suitable for isolation of the acetate-oxidizing member of the biculture. In this study, we found that the biculture grew on ethylene glycol, and an acetate-oxidizing, rod-shaped bacterium (AOR) was isolated from the biculture by dilution into medium containing ethylene glycol as the growth substrate. When the axenic culture of the AOR was recombined with a pure culture of Methanobacterium sp. strain THF, the reconstituted biculture grew on acetate and converted it to CH(4). The AOR used ethylene glycol, 1,2-propanediol, formate, pyruvate, glycine-betaine, and H(2)-CO(2) as growth substrates. Acetate was the major fermentation product detected from these substrates, except for 1,2-propanediol, which was converted to 1-propanol and propionate. N,N-Dimethylglycine was also formed from glycine-betaine. Acetate was formed in stoichiometric amounts during growth on H(2)-CO(2), demonstrating that the AOR is an acetogen. This reaction, which was carried out by the pure culture of the AOR in the presence of high partial pressures of H(2), was the reverse of the acetate oxidation reaction carried out by the AOR when hydrogen partial pressures were kept low by coculturing it with Methanobacterium sp. strain THF. The DNA base composition of the AOR was 47 mol% guanine plus cytosine, and no cytochromes were detected.  相似文献   

17.
Two yeasts, the salt-tolerant Debaryomyces hansenii and the non-tolerant Saccharomyces cerevisiae were grown in basal media (4 m M NaCl) and also a high salinities that produced a similar salt stress in the two species in terms of growth rate reduction (i.e., 1.4 M NaCl for S. cerevisae and 2.7 M NaCl for D. hansenii ). A study was made of the sterol content, the fatty acid composition of the phospholipids, and the permeation of a series of tritiated ethylene glycols of graded molecular weights. On the basis of cell dry weight the amount of total and free sterols increased in both species when cultured at high salinity. Irrespective of growth medium salinity, the molar ratio of free sterols to phospholipids was higher in D. hansenii than in S. cerevisiae . Increased salinity produced only minor changes in the fatty acid composition of the phospholipids in D. hansenii , whereas in S. cerevisiae there was a marked decrease of linolenic acid with a concomitant increase of linoleic acid.
In both yeasts there was an energy linked component in the uptake of ethylene glycol, which component could be inhibited by sodium azide and N -ethylmaleimide. The passive permeability for ethylene-, diethylene- and triethylene glycol increased for both species at increased salinity. This increase was more pronounced for S. cerevisiae than for D. hansenii . Polyethylene glycol of M , 200 as well as higher polyethylene glycols appeared to be excluded or very slowly admitted by the yeasts.  相似文献   

18.
Summary Although Rhodospirillum rubrum, grown photoheterotrophically on malate, assimilates carbon dioxide less rapidly than it does when grown autotrophically, the difference is less marked than previously suggested.The rate of photoassimilation of carbon dioxide varies during batch culture on malate, reaching a maximum at about mid-exponential phase. It also varies with density and growth rate in a turbidostat continuous-flow culture on malate and increases with decreasing growth rate in a chemostat continuous-flow culture growing with limiting malate concentrations.The changing rates of carbon dioxide photoassimilation during photoheterotrophic growth under the various conditions are paralleled by changing activities of ribulose diphosphate carboxylase.Under conditions of maximum carbon dioxide fixation the rate by photoheterotrophic cultures approaches that shown by the bacterium growing autotrophically and is assimilated eight to ten times more slowly than is malate in chemostat cultures.The rate of carbon dioxide fixation also increases to that shown by autotrophic cells when photoheterotrophic cultures are deprived of malate, but without subjecting them to the conditions required for autotrophic growth.  相似文献   

19.
Frederick Meins Jr. 《Planta》1970,92(3):240-247
Summary Teratoma tissues obtained by inoculating Nicotiana tabacum cv. Turkish with a moderately virulent strain of the crown-gall bacterium require the synthetic auxin, -naphthaleneacetic acid (NAA) when glutamic acid is used as a sole nitrogen source in the culture medium. In contrast, growth on culture media containing ammonium ion, nitrate ion or glutamine as an N source does not require NAA. Moreover, added NAA does not stimulate teratoma tissue grown on these N sources. Glutamic acid did not inhibit growth of teratoma tissue on media containing NO 3 - . Growth on mixtures of glutamic acid and NO 3 - was additive in the presence of NAA indicating that NAA promotes the utilization of glutamic acid in the culture medium. Increased concentration of potassium ion in the culture medium was required for growth on glutamic acid in the absence of added auxin. K+ did not stimulate growth on glutamine. When teratoma tissues were grown on media containing glutamic acid and varying concentrations of both K+ and NAA increasing concentrations of NAA reduced the stimulating effect of K+ and, conversely, increasing concentrations of K+ reduced the stimulating effect of NAA. It is concluded that K+ and auxin act either directly or indirectly at a common site to promote glutamic acid utilization.  相似文献   

20.
AIMS: A morphology transition for the marine bacterium, Teredinobacter turnirae is reported. METHODS AND RESULTS: When grown in the rod-shaped morphology, the cells require high concentrations of NaCl (0.3 mol x l(-1)) and secrete extracellular protease and endoglucanase activity. When this bacterium is grown in a medium containing casein as a sole carbon and nitrogen source, a major change in morphology to a stable aggregated form is obtained. CONCLUSION: In the aggregated morphology, much higher protease production rates (170 Units x ml(-1) x d-1 for aggregates vs. 15 Units x ml(-1) x d(-1) for rods, for the same initial biomass) and negligible endoglucanase titres are obtained. In addition, the aggregated morphology does not require sodium chloride for growth. SIGNIFICANCE AND IMPACT OF THE STUDY: The phenomenon reported here describes a novel relationship between the cell morphology and the biochemical characteristics of the bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号