首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study is aimed at the naphthalene degradation with and without biosurfactant produced from Pseudomonas aeruginosa isolated from oil-contaminated soil. The present study was carried out to isolate the bacterial strains for the naphthalene degradation and also for biosurfactant production. The isolated strains were screened for their ability to degrade the naphthalene by the methods of optimum growth rate test and for the production of biosurfactants by cetyltrimethylammonium bromide, blood agar medium, and thin-layer chromatography. The present study also focused on the effect of biosurfactant for the degradation of naphthalene by isolate-1. Two bacterial strains were isolated and screened, one for biodegradation and another for biosurfactant production. The second organism was identified as Pseudomonas aeruginosa by 16S rRNA analysis. The purified biosurfactant reduces the surface tension of water and also forms stable emulsification with hexadecane and kerosene. The end product of naphthalene degradation was estimated as salicylic acid equivalent by spectrophotometric method. The results demonstrated that Pseudomonas aeruginosa has the potential to produce biosurfactant, which enhances the biodegradation of naphthalene. The study reflects the potential use of biosurfactants for an effective bioremediation in the management of contaminated soils.  相似文献   

2.
Microbial reductive dechlorination of [1,2-14C]trichloroethene to [14C]cis-dichloroethene and [14C]vinyl chloride was observed at 4°C in anoxic microcosms prepared with cold temperature-adapted aquifer and river sediments from Alaska. Microbial anaerobic oxidation of [1,2-14C]cis-dichloroethene and [1,2-14C]vinyl chloride to 14CO2 also was observed under these conditions.  相似文献   

3.

Objective

To test the toxicity of ketoprofen (a commonly-used NSAIDs) using two microalgal strains and Artemia sp. following the isolation of bacterial and microalgal strains and testing their ability to biodegrade and tolerate ketoprofen.

Results

Chlorella sp. was the most resistant to ketoprofen. A defined bacterial consortium (K2) degraded 5 mM ketoprofen as a sole carbon source both in the dark or continuous illumination. Ketoprofen did not undergo photodegradation. In the dark, biodegradation was faster with a lag phase of 10 h, 41% COD removal and 82 % reduction in toxicity. The consortium degraded up to 16 mM ketoprofen. The consortium was composed of four bacterial isolates that were identified. MS/MS analysis suggested a ketoprofen biodegradation pathway that has not been previously reported. Combining Chlorella sp. and the K2 consortium, ketoprofen was degraded within 7 days under a diurnal cycle of 12 h light/12 h dark.

Conclusion

The feasibility of using a microalgal–bacterial system to treat pharmaceutical wastewater is promising for the reduction of the process cost and providing a safer technology for pharmaceutical wastewater treatment.
  相似文献   

4.
Extensive applications of persistent organochlorine pesticides like endosulfan on cotton have led to the contamination of soil and water environments at several sites in Pakistan. Microbial degradation offers an effective approach to remove such toxicants from the environment. This study reports the isolation of highly efficient endosulfan degrading bacterial strains from soil. A total of 29 bacterial strains were isolated through enrichment technique from 15 specific sites using endosulfan as sole sulfur source. The strains differed substantially in their potential to degrade endosulfan in vitro ranging from 40 to 93% of the spiked amount (100 mg l−1). During the initial 3 days of incubation, there was very little degradation but it got accelerated as the incubation period proceeded. Biodegradation of endosulfan by these bacteria also resulted in substantial decrease in pH of the broth from 8.2 to 3.7 within 14 days of incubation. The utilization of endosulfan was accompanied by increased optical densities (OD595) of the broth ranging from 0.511 to 0.890. High performance liquid chromatography analyses revealed that endosulfan diol and endosulfan ether were among the products of endosulfan metabolism by these bacterial strains while endosulfan sulfate, a persistent and toxic metabolite of endosulfan, was not detected in any case. The presence of endosulfan diol and endosulfan ether in the bacterial metabolites was further confirmed by GC-MS. Abiotic degradation contributed up to 21% of the spiked amount. The three bacterial strains, Pseudomonas spinosa, P. aeruginosa, and Burkholderia cepacia, were the most efficient degraders of both α- and β-endosulfan as they consumed more than 90% of the spiked amount (100 mg l−1) in the broth within 14 days of incubation. Maximum biodegradation by these three selected efficient bacterial strains was observed at an initial pH of 8.0 and at an incubation temperature of 30°C. The results of this study may imply that these bacterial strains could be employed for bioremediation of endosulfan polluted soil and water environments.  相似文献   

5.
Biodegradation of azo dyes in a sequential anaerobic–aerobic system   总被引:4,自引:0,他引:4  
A sequential anaerobic–aerobic treatment process based on mixed culture of bacteria isolated from textile dye effluent-contaminated soil was used to degrade sulfonated azo dyes Orange G (OG), Amido black 10B (AB), Direct red 4BS (DR) and Congo red (CR). Under anaerobic conditions in a fixed-bed column using glucose as co-substrate, the azo dyes were reduced and amines were released by the bacterial biomass. The amines were completely mineralized in a subsequent aerobic treatment using the same isolates. The maximum degradation rate observed in the treatment system for OG was 60.9 mg/l per day (16.99 mg/g glucose utilized), for AB 571.3 mg/l per day (14.46 mg/g glucose utilized), for DR 112.5 mg/l per day (32.02 mg/g glucose utilized) and for CR 134.9 mg/l per day (38.9 mg/g glucose utilized). Received: 6 August 1999 / Received revision: 20 December 1999 / Accepted: 24 December 1999  相似文献   

6.
The microalga Scenedesmus obliquus exhibited the ability to biodegrade dichlorophenols (dcps) under specific autotrophic and mixotrophic conditions. According to their biodegradability, the dichlorophenols used can be separated into three distinct groups. Group I (2,4-dcp and 2,6 dcp – no meta-substitution) consisted of quite easily degraded dichlorophenols, since both chloride substituents are in less energetically demanding positions. Group II (2,3-dcp, 2,5-dcp and 3,4-dcp – one meta-chloride) was less susceptible to biodegradation, since one of the two substituents, the meta one, required higher energy for C-Cl-bond cleavage. Group III (3,5-dcp – two meta-chlorides) could not be biodegraded, since both chlorides possessed the most energy demanding positions. In general, when the dcp-toxicity exceeded a certain threshold, the microalga increased the energy offered for biodegradation and decreased the energy invested for biomass production. As a result, the biodegradation per cell volume of group II (higher toxicity) was higher, than group I (lower toxicity) and the biodegradation of dichlorophenols (higher toxicity) was higher than the corresponding monochlorophenols (lower toxicity). The participation of the photosynthetic apparatus and the respiratory mechanism of microalga to biodegrade the group I and the group II, highlighted different bioenergetic strategies for optimal management of the balance between dcp-toxicity, dcp-biodegradability and culture growth. Additionally, we took into consideration the possibility that the intermediates of each dcp-biodegradation pathway could influence differently the whole biodegradation procedures. For this reason, we tested all possible combinations of phenolic intermediates to check cometabolic interactions. The present contribution bring out the possibility of microalgae to operate as “smart” bioenergetic “machines”, that have the ability to continuously “calculate” the energy reserves and “use” the most energetically advantageous dcp-biodegradation strategy. We tried to manipulate the above fact, changing the energy reserves and as a result the chosen strategy, in order to take advantage of their abilities in detoxifying the environment.  相似文献   

7.
8.
9.
Biodegradation of cellulose involves synergistic action of the endoglucanases, exoglucanases and β-glucosidases in cellulase. However, the yield of glucose is limited by the lack of β-glucosidase to hydrolyze cellobiose into glucose. In this study, β-glucosidase as a supplemental enzyme along with cellulase are co-immobilized on a pHresponsive copolymer, poly (MAA-co-DMAEMA-co-BMA) (abbreviated PMDB, where MAA is α-methacrylic acid, DMAEMA is 2-dimethylaminoethyl methacrylate and BMA is butyl methacrylate). The thermal and storage stabilities of PMDB with immobilized enzymes are improved greatly, compared with those of free cellulase. Biodegradation of cellulose is carried out in a pH-responsive recyclable aqueous two-phase system composed of poly (AA-co- DMAEMA-co-BMA) (abbreviated PADB 3.8, where AA is acrylic acid) and PMDB. Insoluble substrate and PMDB with immobilized cellulase and β-glucosidase (Celluclast 1.5L FG and Novozyme 188, respectively) were biased to the bottom phase, while the product was partitioned to the top phase in the presence of 40 mM (NH4)2SO4. When the degradation reaction of cellulose is carried out with PMDB containing immobilized cellulase and β-glucosidase, the concentration of glucose reaches 4.331 mg/mL after 108 h. The yield of glucose is 50.25% after PMDB containing the immobilized enzymes is recycled five times.  相似文献   

10.
A solid–liquid two-phase partitioning bioreactor (TPPB) in which the non-aqueous phase consisted of polymer (HYTREL) beads was used to degrade a model mixture of phenols [phenol, o-cresol, and 4-chlorophenol (4CP)] by a microbial consortium. In one set of experiments, high concentrations (850 mg l−1 of each of the three substrates) were reduced to sub-inhibitory levels within 45 min by the addition of the polymer beads, followed by inoculation and rapid (8 h) consumption of the total phenolics loading. In a second set of experiments, the beneficial effect of using polymer beads to launch a fermentation inhibited by high substrate concentrations was demonstrated by adding 1,300 and 2,000 mg l−1 total substrates (equal concentrations of each phenolic) to a pre-inoculated bioreactor. At these levels, no cell growth and no degradation were observed; however, after adding polymer beads to the systems, the ensuing reduced substrate concentrations permitted complete destruction of the target molecules, demonstrating the essential role played by the polymer sequestering phase when applied to systems facing inhibitory substrate concentrations. In addition to establishing alternative modes of TPPB operation, the present work has demonstrated the differential partitioning of phenols in a mixture between the aqueous and polymeric phases. The polymeric phase was also observed to absorb a degradation intermediate (arising from the incomplete biodegradation of 4CP), which opens the possibility of using solid–liquid TPPBs during biosynthetic transformation to sequester metabolic byproducts.  相似文献   

11.
Aerobic, mesophilic bacteria from coal tar–contaminated soil were analyzed for pyrene utilization capacity and identified by 16S ribosomal DNA sequencing as members of three genera: Bacillus spp., Pseudomonas sp., and Rhodococcus sp. The soil contained nine different hazardous polyaromatic hydrocarbons (PAHs): benzo[g, h, i]perylene, dibenzo[a, h]anthracene, indeno[1,2,3-c,d]pyrene, pyrene, acenaphthylene, fluorene, phenanthrene, benzo[k]fluoranthene, and benzo[b]fluoranthene. Bacillus spp. (PK-6) MTCC 1005 showed 56.4% utilization of pyrene (C16H10) (50 μg ml?1) in 4 days, with growth associated biosurfactant activity and resulted in the formation of five new intermediates: phenanthrene (C14H10), 9,10-diphenylphenanthrene (C26H18), 9-methoxyphenanthrene (C15H12O), 5,6,7,8-tetrahydro-1-naphthoic acid (C11H12O2), and 1,6,7-trimethylnaphthalene (C13H14). The results suggested that Bacillus spp. could be found suitable for practical field application for effective in situ PAH bioremediation.  相似文献   

12.
Bioremediation has been used to treat soils contaminated with complex mixtures of organic compounds such as total petroleum hydrocarbons (TPH), oil and grease (O&G), or polycyclic aromatic hydrocarbons (PAHs). Despite the common use and cost-effectiveness of bioremediation for treating hydrocarbon-contaminated soils, it has been observed that a residual fraction remains undegraded in the soil even when optimal biodegradation conditions have been provided. This paper provides a brief review of the two major conceptual models that have been used to explain why a residual hydrocarbon fraction remains in the soil after bioremediation treatment. The contaminant sequestration model is based on the assumption that a certain fraction of hydrocarbons is “locked up” in small soil pores within soil particles or aggregates. These sorbed hydrocarbons are believed to be inaccessible to soil microorganisms. Consequently, limitations in bioavailability are thought to be the major reason for incomplete hydrocarbon biodegradation, particularly in aged or weathered soils. Alternatively, according to the inherent recalcitrance model, incomplete TPH biodegradation may be caused by the presence of certain hydrocarbons that are inherently recalcitrant to biodegradation or are only extremely slowly degradable even under optimal conditions. Each conceptual model provides different explanations regarding the potential risks of the residual hydrocarbon fraction. If the residual TPH is truly sequestered within the soil pore space, it is unlikely that these compounds will pose any significant risk to human or environmental receptors. By contrast, these risks may be considerably greater if the residual TPH fraction consists of inherently recalcitrant compounds that reside mostly on the surface of soil particles and therefore are much more available to potential receptors. Both conceptual models and their implications for the potential risk of the residual TPH fraction are discussed.  相似文献   

13.
An aliphatic ether (1-phytanyl-1-octadecanyl-ether) of high molecular weight was used as a sole carbon source in degradation experiments with different aerobic bacteria. The enriched culture B5, obtained from fuel contaminated soils, was able to degrade the substance for more than 90%. A culture of Rhodococcus ruber was similarly effective. Detailed investigation of the metabolites allowed us to characterize an unusual degradation pathway via a mid-chain oxidation mechanism (`internal oxidative pathway'). Obviously, formation of intermediate alkenes mainly at the unbranched side chain was a prerequisite for bacterial degradation of the added substrate. Degradation proceeded – in spite of the usually preferred terminal oxidation – via oxidation of the internal double bond and was followed by an ester cleavage. In turn, a series of alcohols was formed which were subsequently oxidized to the respective carboxylic acids and were further metabolized via the normal -oxidation pathway.  相似文献   

14.
《Process Biochemistry》2004,39(8):1001-1006
Thirty filamentous fungal strains were isolated from effluents of a stainless steel industry (Minas Gerais, Brazil) and tested for phenol tolerance. Fifteen strains of the genera Fusarium sp., Aspergillus sp., Penicillium sp. and Graphium sp. tolerants up to 10 mM of phenol were selected and tested for their ability to degrade phenol. Phenol degradation was a function of strain, time of incubation and initial phenol concentration. FIB4, LEA5 and AE2 strains of Graphium sp. and FE11 of Fusarium sp. presented the highest percentage phenol degradation, with 75% degradation of 10 mM phenol in 168 h for FIB4. A higher starting cell density of Graphium sp. FIB4 lead to a decrease in the time needed for full phenol degradation and increased the phenol degradation rate. All strains exhibited activity of catechol 1,2-dioxygenase and phenol hydroxylase in free cell extracts obtained from cells grown on phenol, suggesting that catechol was oxidized by the ortho type of ring fission. These data reported demonstrate the prospect after the application of filamentous fungal strains in protecting the environment from phenol pollution.  相似文献   

15.
In this study, biological degradation of 2,4,6-trinitrotoluene (TNT) which is very highly toxic environmentally and an explosive in nitroaromatic character was researched in minimal medium by Bacillus cereus isolated from North Atlantic Treaty Organization (NATO) TNT-contaminated soils. In contrast to most previous studies, the capability of this bacteria to transform in liquid medium containing TNT was investigated. During degradation, treatment of TNT was followed by high-performance liquid chromatography (HPLC) and achievement of degradation was calculated as percentage. At an initial concentration of 50 and 75 mg L?1, TNT was degraded respectively 68 % and 77 % in 96 h. It transformed into 2,4-dinitrotoluene and 4-aminodinitrotoluene derivates, which could be detected as intermediate metabolites by using thin-layer chromatography and gas chromatography–mass spectrometry analyses. Release of nitrite and nitrate ions were searched by spectrophotometric analyses. Depending upon Meisenheimer complex, while nitrite production was observed, nitrate was detected in none of the cultures. Results of our study propose which environmental pollutant can be removed by using microorganisms that are indigenous to the contaminated site.  相似文献   

16.
In this study, a bacterial Bacillus sp. CGMCC no. 4196 was isolated from mud. This strain exhibited the ability to degrade high concentration of 3-chloropropionate (3-CPA, 120 mM) or 3-chlorobutyrate (30 mM), but not chloroacetate or 2-chloropropionate (2-CPA). The growing cells, resting cells, and cell-free extracts from this bacterium had the capability of 3-CPA degradation. The results indicated that the optimum biocatalyst for 3-CPA biodegradation was the resting cells. The 3-CPA biodegradation pathway was further studied through the metabolites and critical enzymes analysis by HPLC, LC-MS, and colorimetric method. The results demonstrated that the metabolites of 3-CPA were 3-hydroxypropionic acid (3-HP) and malonic acid semialdehyde, and the critical enzymes were 3-CPA dehalogenase and 3-HP dehydroxygenase. Thus, the mechanism of the dehalogenase-catalyzed reaction was inferred as hydrolytic dehalogenation which was coenzyme A-independent and oxygen-independent. Finally, the pathway of β-chlorinated aliphatic acid biodegradation could be concluded as follows: the β-chlorinated acid is first hydrolytically dehalogenated to the β-hydroxyl aliphatic acid, and the hydroxyl aliphatic acid is oxidized to β-carbonyl aliphatic acid by β-hydroxy aliphatic acid dehydroxygenase. It is the first report that 3-HP was produced from 3-CPA by β-chlorinated aliphatic acid dehalogenase.  相似文献   

17.
18.
Experiments have been carried out in Lake Lugano, Switzerland, in order to study the biodegradation of poly(3-hydroxyalkanoates) (PHA) in an aquatic ecosystem under natural conditions. Commercially available plastic articles made from PHA, such as bottles and films, were incubated for 254 days in a water depth of 85 m. Shampoo bottles were positioned precisely on the sediment surface by the use of a small manned submarine. A set of bottles was attached to a buoy in order to incubate plastic material in diffent water depths. When incubated in the water column or on the sediment surface, a life span of five to ten years for this specific bottle type was calculated. In situ degradation rates of 10 to 20 mg/d were determined. PHA films were completely degraded when incubated in the top 20 cm of the sediment. The results clearly demonstrate that in an aquatic ecosystem (water column as well as sediment) under in situ conditions (i.e. low temperatures, seasonal variations of the oxygen concentration) plastic goods made from PHA are degraded.  相似文献   

19.
In this study, fungi isolated from soil were screened for their ability to form clear zones on agar plates with emulsified poly(ε-caprolactone) (PCL). The most active strain, designated as DSYD05, was identified as Penicillium oxalicum on the basis of morphological characteristics and phylogenetic analysis. Mutant DSYD05-1, obtained by ultraviolet-light mutagenesis from strain DSYD05, was more effective in PCL degradation. In liquid cultures of the mutant strain with PCL emulsion, DSYD05-1 showed the highest PCL-degrading activity after 4?days of cultivation. The products of PCL degradation were analysed by mass spectrometry; the results indicated that 6-hydroxyhexanoic acid was produced and assimilated during cultivation. The degradation of PCL film by DSYD05-1 was observed by scanning electron microscopy, and was indicative of a three-stage degradation process. The degradation of amorphous parts of the film preceded that of the crystalline center and then the peripheral crystalline regions. In addition, DSYD05-1 showed a wide range of substrate specificity, with capability to degrade PCL, poly(β-hydroxybutyrate), and poly(butylene succinate), but not poly(lactic acid), indicating that the strain could have potential for application in the treatment or recycling of bio-plastic wastes.  相似文献   

20.
The primary objective of this study was the isolation of low-density polyethylene (LDPE)-degrading microorganisms. Soil samples were obtained from an aged municipal landfill in Tehran, Iran, and enrichment culture procedures were performed using LDPE films and powder. Screening steps were conducted using linear paraffin, liquid ethylene oligomer, and LDPE powder as the sole source of carbon. Two landfill-source isolates, identified as Lysinibacillus xylanilyticus XDB9 (T) strain S7-10F and Aspergillus niger strain F1-16S, were selected as super strains. Photo-oxidation (25 days under ultraviolet [UV] irradiation) was used as a pretreatment of the LDPE samples without pro-oxidant additives. The PE biodegradation process was performed for 56 days in a liquid mineral medium using UV-irradiated pure LDPE films without pro-oxidant additives in the presence of the bacterial isolate, the fungal isolate, and the mixture of the two isolates. The process was monitored by measuring the fungal biomass, the bacterial growth, and the pH of the medium. During the process, the fungal biomass and the bacterial growth increased, and the pH of the medium decreased, which suggests the utilization of the preoxidized PE by the selected isolates as the sole source of carbon. Carbonyl and double bond indices exhibited the highest amount of decrement and increment, respectively, in the presence of the fungal isolate, and the lowest indices were obtained from the treatment of a mixture of both fungal and bacterial isolates. Fourier transform infrared (FT-IR), x-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses showed that the selected isolates modified and colonized preoxidized pure LDPE films without pro-oxidant additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号