首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major collagen-binding glycoprotein from rat L6 skeletal myoblasts, designated gp46, is phosphorylated in vivo. In this report the relative phosphorylation state of gp46 was examined using isoelectric focusing to identify the phosphorylated and unphosphorylated forms of gp46. Two major and one minor isoform of gp46 were identified that could be related to the phosphorylation state of gp46. The relative percentage of unphosphorylated to phosphorylated gp46 increased 10% in myoblasts heat-shocked at 42 degrees C for 24 h. Treatment of myoblasts with phorbol ester or dibutyryl-cAMP had no effect on the phosphorylation ratio of gp46. Transformation of L6 myoblasts with Rous sarcoma virus, likewise, had no effect on the phosphorylation ratio. However, ras-transformed L6 myoblasts showed a 12% increase in phosphorylation of gp46. These results indicate that gp46 does not undergo large changes in phosphorylation status. Pulse-chase labelling showed that the phosphorylation of gp46 occurred either co-translationally or soon after translation, suggesting that gp46 was phosphorylated by a constitutively active protein kinase.  相似文献   

2.
The phosphorylation of eukaryotic ribosomal protein S6 by protein kinase C   总被引:9,自引:0,他引:9  
Purified Ca2+-dependent and phospholipid-dependent protein kinase (protein kinase C) from bovine brain catalysed the phosphorylation of ribosomal protein S6 when incubated with 40S ribosomal subunits from rat liver or from hamster fibroblasts. The phosphorylation was dependent on Ca2+ and phospholipid, and occurred under ionic conditions similar to those which support protein biosynthesis in vitro. Protein kinase C phosphorylated at least three sites on ribosomal protein S6 when incubated with unphosphorylated ribosomes, and increased the extent of phosphorylation of ribosomes previously phosphorylated predominantly on two sites by cyclic-AMP-dependent protein kinase, converting some molecules to the tetraphosphorylated or pentaphosphorylated form. This indicates that protein kinase C can phosphorylate sites on ribosomal protein S6 other than those phosphorylated by the cyclic-AMP-dependent protein kinase, and this conclusion was confirmed by analysis of tryptic phosphopeptides. These results strengthen the possibility that protein kinase C might be involved in catalysing the multisite phosphorylation of ribosomal protein S6 in certain circumstances in vivo.  相似文献   

3.
We examined the ability of protein kinase activities from BHK (baby-hamster kidney) cells infected with pseudorabies virus to catalyse the phosphorylation of ribosomal protein S6 in vitro. When the cytosol from infected cells was fractionated on DEAE-cellulose, 40S ribosomal protein kinase activity was found associated with the two isoforms of the cyclic AMP-dependent protein kinase, protein kinase C and a protein kinase (ViPK, virus-induced protein kinase) only detected in infected cells. The phosphorylation of ribosomal protein by ViPK was of particular interest because the appearance of the protein kinase and the increase in the phosphorylation of protein S6 in infected cells shared a similar time course. At moderate concentrations of KCl the major ribosomal substrate for ViPK was ribosomal protein S7, a protein not found to be phosphorylated in vivo. However, at 600 mM-KCl, or in the presence of 5-10 mM-spermine at 60-150 mM-KCl, the phosphorylation of ribosomal protein S7 was suppressed and ribosomal protein S6 became the major substrate. The maximum stoichiometry of phosphorylation obtained under the latter conditions was 1-2 mol of phosphate/mol of S6, and only mono- and di-phosphorylated forms of S6 were detected on two-dimensional gel electrophoresis. As the infection of BHK cells by pseudorabies virus results in the appearance of phosphorylated species of S6 containing up to 5 mol of phosphate/mol of S6 protein, it appears unlikely that ViPK alone can be responsible for the multiple phosphorylation seen in vivo. Nevertheless, tryptic phosphopeptide analysis did indicate that in vitro ViPK catalysed the phosphorylation of at least one of the sites on ribosomal protein S6 phosphorylated in vivo, so that a contributory role for the enzyme in the phosphorylation in vivo cannot be excluded.  相似文献   

4.
Cells transformed by the McDonough strain of feline sarcoma virus express at their surface a v-fms-specific transmembrane glycoprotein designated gp140v-fms. By labeling with 32Pi, gp140v-fms was shown to be phosphorylated 30-fold more in serine residues than were the cytosolic v-fms polypeptides gp180gag-fms and gp120v-fms. By using the phosphotyrosine phosphatase-specific inhibitor sodium orthovanadate, an additional tyrosine phosphorylation was observed in vivo, again involving predominantly gp140v-fms. In vitro studies showed that the v-fms proteins were phosphorylated by protein kinase C in a calcium- and phosphatidylserine-dependent manner.  相似文献   

5.
In an effort to characterize the signal transduction mechanisms that operate to regulate homeodomain protein function, we have analyzed the phosphorylation state of two homeodomain proteins, Hoxb-6 and Hoxc-8, in vitro and in vivo. The baculovirus expression system was employed to demonstrate that Hoxb-6 is phosphorylated in Sf9 cells while Hoxc-8 is not. Using two-dimensional tryptic phosphopeptide mapping and purified protein kinases, we demonstrate that Hoxb-6 is phosphorylated in vitro by casein kinase II and cAMP-dependent protein kinase. The casein kinase II phosphorylation site was mapped to serine-214. Two-dimensional tryptic phosphopeptide mapping of immunoprecipitated Hoxb-6 from mouse embryonic spinal cords demonstrates that the same peptide phosphorylated in vitro and in Sf9 cells by casein kinase II is also phosphorylated in vivo. The conservation of this site in several homeodomain proteins from various species is discussed.  相似文献   

6.
The in vivo phosphorylation state of glycogen synthase was re-examined by fast-atom-bombardment mass spectrometry and a procedure in which phosphoserine residues are first converted to S-ethylcysteine. In animals injected with the beta-adrenergic antagonist propranolol, the phosphorylation sites in the N-terminal (N) and C-terminal (C) cyanogen bromide peptides were identified as the serine residues at N7, the region C28-C39, C42, C46 and C100. In animals injected with adrenalin, the phosphorylation of N7 increased from 0.6 to 0.8 mol/mol, the region C28-C39 from 0.7 to 1.2 mol/mol and C100 from 0.3 to 0.6 mol/mol. The phosphorylation states of C42 (0.7 mol/mol) and C46 (0.9 mol/mol) were unchanged. In addition, two further serine residues became phosphorylated at positions N10 (0.5 mol/mol) and C87 (0.5 mol/mol), which were not phosphorylated in the absence of adrenalin. Residues N10 and C42 have not been recognized as in vivo sites of phosphorylation previously. The results suggest that N10 is phosphorylated by a novel protein kinase which may be activated by cyclic-AMP-dependent protein kinase. The phosphorylation of C42 is likely to be catalysed by glycogen synthase kinase 3. The protein kinases responsible for phosphorylating N7, the region C28-C39, C46, C87 and C100 in vivo and the molecular mechanisms by which adrenalin inactivates glycogen synthase in vivo are discussed. Residue N3, a major site phosphorylated by casein kinase-I in vitro is not phosphorylated in vivo. This and other evidence indicates that casein kinase-I is not a glycogen synthase kinase in vivo.  相似文献   

7.
Talin is a high molecular weight phosphoprotein that is localized at adhesion plaques. We have found that talin phosphorylation increases 3.0-fold upon exposure of chicken embryo fibroblasts to the tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate. Talin isolated from tumor promoter-treated cells is phosphorylated on serine and threonine residues. Vinculin, a 130 kDa talin-binding protein, also exhibits increased phosphorylation in vivo in response to tumor promoter, but to a lesser degree than does talin. Because tumor-promoting phorbol esters augment protein kinase C activity, we have compared the ability of purified protein kinase C to phosphorylate talin and vinculin in vitro. Both talin and vinculin were found to be substrates for protein kinase C; however, talin was phosphorylated to a greater extent than was vinculin. Cleavage of protein kinase C-phosphorylated talin by the calcium-dependent protease (Type II) revealed that while both the resulting 190-200 and 46 kDa proteolytic peptides were phosphorylated, the majority of label was contained within the 46-kDa fragment. Although incubation of chicken embryo fibroblasts with tumor-promoting phorbol ester induces a dramatic increase in talin phosphorylation, we detected no change in the organization of stress fibers and focal contacts in these cells. Exposure of the cells to tumor promoter did, however, result in a loss of actin and talin-rich cell surface elaborations that resemble focal contact precursor structures.  相似文献   

8.
Native phosphorylated mouse small heat shock protein hsp25 from Ehrlich ascites tumor cells was isolated and the in vivo phosphorylation sites of the protein were determined. Furthermore, native hsp25 was phosphorylated by the endogenous kinase(s) in a cell-free system as well as recombinant hsp25 was phosphorylated in vitro by protein kinase C and catalytic subunit of cAMP-dependent protein kinase. The two major phosphorylation sites of native and recombinant hsp25 were determined as Ser-15 and Ser-86. There are no differences in the hsp25 phosphorylation sites phosphorylated by the protein kinase C, the catalytic subunit of cAMP-dependent protein kinase and the unknown intracellular kinase(s). The serine residues identified exist in all known small mammalian stress proteins and are located in the conserved kinase recognition sequence Arg-X-X-Ser.  相似文献   

9.
High mobility group (HMG) N1 protein, formerly known as HMG 14, is a member of the chromosomal HMG protein family. Protein kinase CK2 was previously reported to be able to phosphorylate bovine HMGN1 in vitro; Ser89 and Ser99, corresponding to Ser88 and Ser98 in human HMGN1, were shown to be major and minor recognition sites, respectively. In this report, we employed mass spectrometry and examined both the extent and the sites of phosphorylation in HMGN1 protein catalyzed by recombinant human protein kinase CK2. We found that five serine residues, i.e., Ser6, Ser7, Ser85, Ser88, and Ser98, in HMGN1 can be phosphorylated by the kinase in vitro. All five sites were previously shown to be phosphorylated in MCF-7 human breast cancer cells in vivo. Among these five sites, Ser6, Ser7, and Ser85 were new sites of phosphorylation induced by protein kinase CK2 in vitro.  相似文献   

10.
A neuroblastoma protein related to the brain microtubule-associated protein, MAP-1B, as determined by immunoprecipitation and coassembly with brain microtubules, becomes phosphorylated when N2A mouse neuroblastoma cells are induced to generate microtubule-containing neurites. To characterize the protein kinases that may be involved in this in vivo phosphorylation of MAP-1B, we have studied its in vitro phosphorylation. In brain microtubule protein, MAP-1B appears to be phosphorylated in vitro by an endogenous casein kinase II-like activity which also phosphorylates the related protein MAP-1A but scarcely phosphorylates MAP-2. A similar kinase activity has been detected in cell-free extracts of differentiating N2A cells. Using brain MAP preparations devoid of endogenous kinase activities and different purified protein kinases, we have found that MAP-1B is barely phosphorylated by cAMP-dependent protein kinase, Ca/calmodulin-dependent protein kinase, or Ca/phospholipid-dependent protein kinase whereas MAP-1B is one of the preferred substrates, together with MAP-1A, for casein kinase II. Brain MAP-1B phosphorylated in vitro by casein kinase II efficiently coassembles with microtubule proteins in the same way as in vivo phosphorylated MAP-1B from neuroblastoma cells. Furthermore, the phosphopeptide patterns of brain MAP-1B phosphorylated in vitro by either purified casein kinase II or an extract obtained from differentiating neuroblastoma cells are identical to each other and similar to that of in vivo phosphorylated neuroblastoma MAP-1B. Thus, we suggest that the observed phosphorylation of a protein identified as MAP-1B during neurite outgrowth is mainly due to the activation of a casein kinase II-related activity in differentiating neuroblastoma cells. This kinase activity, previously implicated in beta-tubulin phosphorylation (Serrano, L., J. Díaz-Nido, F. Wandosell, and J. Avila, 1987. J. Cell Biol. 105: 1731-1739), may consequently have an important role in posttranslational modifications of microtubule proteins required for neuronal differentiation.  相似文献   

11.
The phosphorylation of DNA topoisomerase I in quiescent murine 3T3-L1 fibroblasts treated with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) was characterized by in vivo labeling with [32P] orthophosphate and immunoprecipitation with a scleroderma anti-DNA topoisomerase I autoantibody. DNA topoisomerase I phosphorylation was stimulated 4-fold by 2 h of TPA treatment (TPA at 100 ng/ml maximally enhanced phosphorylation). Purified DNA topoisomerase I was phosphorylated in vitro in a Ca2+ and phospholipid-dependent fashion by types I, II, and III protein kinase C. The phosphorylation reaction was stimulated by TPA and had an apparent K(m) of 0.4 microM. DNA topoisomerase I was phosphorylated in vivo and in vitro predominantly at serine. The major tryptic phosphopeptides from DNA topoisomerase I in TPA-treated fibroblasts and phosphorylated by protein kinase C comigrated in thin-layer electrophoresis. The half-life of incorporated phosphate on DNA topoisomerase I was 40 min in both TPA-treated and control cells. These results suggest that phosphorylation is a mechanism for activating DNA topoisomerase I in fibroblasts treated with TPA and that protein kinase C functions in the phosphorylation.  相似文献   

12.
The products of rap genes (rap1A, rap1B and rap2) are small molecular weight GTP-binding proteins that share approximately 50% homology with ras-p21s. It had previously been shown that a rap1 protein (also named Krev-1 or smg p21) could be phosphorylated on serine residues by the cAMP-dependent protein kinase (PKA) in vitro as well as in intact platelets stimulated by prostaglandin E1. We show here that the rap1A protein purified from recombinant bacteria is phosphorylated in vitro by the catalytic subunit of PKA and that the deletion of the 17 C-terminal amino acids leads to the loss of this phosphorylation. This suggests that the serine residue at position 180 constitutes the site of phosphorylation of the rap1A protein by PKA. The rap1 protein can also be phosphorylated by PKA in intact fibroblasts; this phenomenon is independent of their proliferative state. In contrast, protein kinase C (PKC) does not phosphorylate the rap1 proteins, neither in vitro nor in vivo. Finally, the 60% homologous rap2 protein is neither phosphorylated in vitro nor in vivo by PKA or PKC.  相似文献   

13.
Stimulation of rat pheochromocytoma PC12 cells with ionophore A23187, carbachol, or high K+ medium, agents which increase intracellular Ca2+, results in the phosphorylation and activation of tyrosine hydroxylase (Nose, P., Griffith, L. C., and Schulman, H. (1985) J. Cell Biol. 101, 1182-1190). We have identified three major protein kinases in PC12 cells and investigated their roles in the Ca2+-dependent phosphorylation of tyrosine hydroxylase and other cytosolic proteins. A set of PC12 proteins were phosphorylated in response to both elevation of intracellular Ca2+ and to protein kinase C (Ca2+/phospholipid-dependent protein kinase) activators. In addition, distinct sets of proteins responded to either one or the other stimulus. The three major regulatory kinases, the multifunctional Ca2+/calmodulin-dependent protein kinase, the cAMP-dependent protein kinase, and protein kinase C all phosphorylate tyrosine hydroxylase in vitro. Neither the agents which increase Ca2+ nor the agents which directly activate kinase C (12-O-tetradecanoylphorbol-13-acetate or 1-oleyl-2-acetylglycerol) increase cAMP or activate the cAMP-dependent protein kinase, thereby excluding this pathway as a mediator of these stimuli. The role of protein kinase C was assessed by long term treatment of PC12 cells with 12-O-tetradecanoylphorbol-13-acetate, which causes its "desensitization." In cells pretreated in this manner, agents which increase Ca2+ influx continue to stimulate tyrosine hydroxylase phosphorylation maximally, while protein kinase C activators are completely ineffective. Comparison of tryptic peptide maps of tyrosine hydroxylase phosphorylated by the three protein kinases in vitro with phosphopeptide maps generated from tyrosine hydroxylase phosphorylated in vivo indicates that phosphorylation by the Ca2+/calmodulin-dependent kinase most closely mirrors the in vivo phosphorylation pattern. These results indicate that the multifunctional Ca2+/calmodulin-dependent protein kinase mediates phosphorylation of tyrosine hydroxylase by hormonal and electrical stimuli which elevate intracellular Ca2+ in PC12 cells.  相似文献   

14.
15.
Protein kinase C can autophosphorylate in vitro and has also been shown to be phosphorylated in vivo. In order to investigate the factors that may determine the phosphorylation state of protein kinase C in vivo, we determined the ability of the ATP + Mg2+-dependent phosphatase and the polycation-stimulated (PCS) phosphatases to dephosphorylate protein kinase C in vitro. These studies show that all the oligomeric forms of the PCS phosphatases (PCSH1, PCSH2, PCSM and PCSL phosphatases) are effective in the dephosphorylation of protein kinase C, showing 34-82% of the activity displayed with phosphorylase a as substrate. In contrast both the catalytic subunit of the PCS phosphatase and that of the ATP+Mg2+-dependent phosphatase showed only weak activity with protein kinase C as substrate. All these phosphatases, however, were activated by protamine (Ka 14-16 micrograms/ml) through what appears to be a substrate-directed effect. The relative role of these phosphatases in the control of protein kinase C is discussed.  相似文献   

16.
The 70-kDa neurofilament protein subunit (NF-L) is phosphorylated in vivo on at least three sites (L1 to L3) (Sihag, R. K. and Nixon, R. A. (1989) J. Biol. Chem. 264, 457-464). The turnover of phosphate groups on NF-L during axonal transport was determined after the neurofilaments in retinal ganglion cells were phosphorylated in vivo by injecting mice intravitreally with [32P]orthophosphate. Two-dimensional phosphopeptide maps of NF-L from optic axons of mice 10 to 90 h after injection showed that radiolabel decreased faster from peptides L2 and L3 than from L1 as neurofilaments were transported. To identify phosphorylation sites on peptide L2, axonal cytoskeletons were phosphorylated by protein kinase A in the presence of heparin. After the isolated NF-L subunits were digested with alpha-chymotrypsin, 32P-peptides were separated by high performance liquid chromatography on a reverse-phase C8 column. Two-dimensional peptide mapping showed that the alpha-chymotrypsin 32P-peptide accepting most of the phosphates from protein kinase A migrated identically with the in vivo-labeled phosphopeptide L2. The sequence of this peptide (S-V-R-R-S-Y) analyzed by automated Edman degradation corresponded to amino acid residues 51-56 of the NF-L sequence. A synthetic 13-mer (S-L-S-V-R-R-S-Y-S-S-S-S-G) corresponding to amino acid residues 49-61 of NF-L was also phosphorylated by protein kinase A. alpha-Chymotryptic digestion of the 13-mer generated a peptide which contained most of the phosphates and co-migrated with the phosphopeptide L2 on two-dimensional phosphopeptide maps. Edman degradation of the phosphorylated 13-mer identified serine residue 55 which is located within a consensus phosphorylation sequence for protein kinase A as the major site of phosphorylation. Since protein kinase A-mediated phosphorylation influences intermediate filament assembly/disassembly in vitro, we propose that the phosphopeptide L2 region is a neurofilament-assembly domain and that the cycle of phosphorylation and dephosphorylation of Ser-55 on NF-L, which occurs relatively early after subunit synthesis in vivo, regulaaes a step in neurofilament assembly or initial interactions during axonal transport.  相似文献   

17.
The 27 kDa protein, a major component of rat liver gap junctions, was shown to be phosphorylated in vitro by protein kinase C. The stoichiometry of the phosphorylation indicated that approx. 0.33 mol phosphate was incorporated per mol 27 kDa protein. Phosphorylation was entirely dependent on the presence of calcium and was virtually specific for serine residues. For comparison, the gap junction protein was also examined for its phosphorylation by cAMP-dependent protein kinase, the extent of phosphorylation being one-tenth that exerted by protein kinase C.  相似文献   

18.
The CKI1-encoded choline kinase (ATP:choline phosphotransferase, EC 2.7.1.32) from Saccharomyces cerevisiae was phosphorylated in vivo on multiple serine residues. Activation of protein kinase A activity in vivo resulted in a transient increase in the phosphorylation of choline kinase. This phosphorylation was accompanied by a stimulation in choline kinase activity. In vitro, protein kinase A phosphorylated choline kinase on a serine residue with a stoichiometry (0.44 mol of phosphate/mol of choline kinase) consistent with one phosphorylation site/choline kinase subunit. The major phosphopeptide derived from the enzyme phosphorylated in vitro by protein kinase A was common to one of the major phosphopeptides derived from the enzyme phosphorylated in vivo. Protein kinase A activity was dose- and time-dependent and dependent on the concentrations of ATP (Km 2.1 microM) and choline kinase (Km 0.12 microM). Phosphorylation of choline kinase with protein kinase A resulted in a stimulation (1.9-fold) in choline kinase activity whereas alkaline phosphatase treatment of choline kinase resulted in a 60% decrease in choline kinase activity. The mechanism of the protein kinase A-mediated stimulation in choline kinase activity involved an increase in the apparent Vmax values with respect to ATP (2.6-fold) and choline (2.7-fold). Overall, the results reported here were consistent with the conclusion that choline kinase was regulated by protein kinase A phosphorylation.  相似文献   

19.
The interleukin-2 (IL-2) receptor, the leukocyte-specific membrane glycoprotein, T200, and the class I major histocompatibility antigens (HLA) have been identified as substrates for protein kinase C in vitro. IL-2 receptors on normal human T lymphocytes and the leukemic cell line, HUT102B2, are rapidly phosphorylated in vivo in response to the tumor-promoting phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA). Tryptic peptide analysis showed that the in vitro and in vivo 32P-labeled IL-2 receptors were phosphorylated on the same sites. A synthetic peptide corresponding to the carboxyl-terminal cytoplasmic tail of the IL-2 receptor was shown to be phosphorylated in vitro by protein kinase C. Tryptic digestion of the peptide generated the same 32P-labeled species as those found for the IL-2 receptor. From these studies, it was concluded that Ser-247 is the major site of phosphorylation in the IL-2 receptor and that Thr-250 is a minor site. These results also provide direct evidence that the in vivo phosphorylation of the IL-2 receptor stimulated by TPA is catalyzed by protein kinase C. The sites phosphorylated in the HLA antigens in vitro by protein kinase C or in vivo after TPA stimulation were also localized to the carboxyl-terminal cytoplasmic domain of the heavy chain by limited proteolysis.  相似文献   

20.
1. 6-Phosphofructokinase of both fetal and adult rat lung consists of L, M and C subunits in a ratio of 65:25:10. 2. 6-Phosphofructokinase was purified to homogeneity from adult rat lung and subjected to phosphorylation in vitro by the catalytic subunit of cyclic AMP-dependent protein kinase. 3. This resulted in phosphorylation of the L and M subunit of 6-phosphofructokinase. 4. The C subunit was not phosphorylated. 5. However, if the phosphorylation of 6-phosphofructokinase was studied in the cytosol fraction of either fetal or adult lung using endogenous protein kinase(s), only the L subunit was phosphorylated. 6. This phosphorylation was dependent on cyclic AMP. 7. No influence of calcium, calmodulin or phosphatidylserine/diolein on the phosphorylation was observed. 8. It is concluded that although both L and M subunits of rat lung 6-phosphofructokinase are potential substrates for cyclic AMP-dependent protein kinase, their phosphorylation in situ is differentially regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号