首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Takenaka N  Yokoyama S 《Gene》2007,399(1):26-32
At present, molecular bases of spectral tuning in rhodopsin-like (RH2) pigments are not well understood. Here, we have constructed the RH2 pigments of nocturnal Tokay gecko (Gekko gekko) and diurnal American chameleon (Anolis carolinensis) as well as chimeras between them. The RH2 pigments of the gecko and chameleon reconstituted with 11-cis-retinal had the wavelengths of maximal absorption (lambda(max)'s) of 467 and 496 nm, respectively. Chimeric pigment analyses indicated that 76-86%, 14-24%, and 10% of the spectral difference between them could be explained by amino acid differences in transmembrane (TM) helices I-IV, V-VII, and amino acid interactions between the two segments, respectively. Evolutionary and mutagenesis analyses revealed that the lambda(max)'s of the gecko and chameleon pigments diverged from each other not only by S49A (serine to alanine replacement at residue 49), S49F (serine to phenylalanine), L52M (leucine to methionine), D83N (aspartic acid to asparagine), M86T (methionine to threonine), and T97A (threonine to alanine) but also by other amino acid replacements that cause minor lambda(max)-shifts individually.  相似文献   

2.
Takahashi Y  Ebrey TG 《Biochemistry》2003,42(20):6025-6034
Previously we reported the sequence of the member of the short wavelength sensitive 2 (SWS2) family of vertebrate visual pigments from the retina of the Japanese common newt, Cynops pyrrhogaster[Takahashi, Y. et al. (2001) FEBS Lett. 501, 151-155]. Now we have expressed the apopigment and regenerated it with A1 retinal. Its absorption maximum, 474 nm, is greatly red shifted compared to other known SWS2 pigments (418-455 nm). To determine the amino acid residues that control its spectral tuning, we replaced the residues that were near the chromophore and which differed between the newt and the bullfrog (lambda(max) = 430 nm) wild-type SWS2 pigments: Pro91Ser, Ser94Ala, Ile122Met, Cys127Ser, Ser211Cys, Tyr261Phe, and Ala292Ser. Each of these site-directed mutants led to blue shifts of the newt pigment with five of them causing substantial shifts; their sum was about equal to the difference between the absorption maximum of the bullfrog and newt pigments, 44 nm. The 32 nm shift of the absorption maximum of the multiple seven-residue mutant to 442 nm is fairly close to that of the wild-type bullfrog pigment. Thus, the seven amino acid residues that we replaced are the major cause of the red shift of the newt SWS2 pigment's spectrum. Two of the residues, 91 and 94, have not previously been identified as wavelength regulating sites in visual pigments. One of these, 91, probably regulates color via a new mechanism: altering of a hydrogen bonding network that is connected via a water to the chromophore, in this case its counterion, Glu113.  相似文献   

3.
Takahashi Y  Yokoyama S 《Genetics》2005,171(3):1153-1160
Ultraviolet (UV) and violet vision in vertebrates is mediated by UV and violet visual pigments that absorb light maximally (lambdamax) at approximately 360 and 390-440 nm, respectively. So far, a total of 11 amino acid sites only in transmembrane (TM) helices I-III are known to be involved in the functional differentiation of these short wavelength-sensitive type 1 (SWS1) pigments. Here, we have constructed chimeric pigments between the violet pigment of African clawed frog (Xenopus laevis) and its ancestral UV pigment. The results show that not only are the absorption spectra of these pigments modulated strongly by amino acids in TM I-VII, but also, for unknown reasons, the overall effect of amino acid changes in TM IV-VII on the lambdamax-shift is abolished. The spectral tuning of the contemporary frog pigment is explained by amino acid replacements F86M, V91I, T93P, V109A, E113D, L116V, and S118T, in which V91I and V109A are previously unknown, increasing the total number of critical amino acid sites that are involved in the spectral tuning of SWS1 pigments in vertebrates to 13.  相似文献   

4.
Studies on marsupial color vision have been limited to very few species. There is evidence from behavioral, electroretinographic (ERG), and microspectrophotometric (MSP) measurements for the existence of both dichromatic and trichromatic color vision. No studies have yet investigated the molecular mechanisms of spectral tuning in the visual pigments of marsupials. Our study is the first to determine the mRNA sequence, infer the amino acid sequence, and determine, by in vitro expression, the spectra of the cone opsins of a marsupial, the tammar wallaby (Macropus eugenii). This yielded some information on mechanisms and evolution of spectral tuning of these pigments. The tammar wallaby retina contains only short-wavelength sensitive (SWS) and middle-wavelength sensitive (MWS) pigment mRNAs. This predicts dichromatic color vision, which is consistent with conclusions from previous behavioral studies ( Hemmi 1999). We found that the wallaby has a SWS1 class pigment of 346 amino acids. Sequence comparison with eutherian SWS pigments predicts that this SWS1 pigment absorbs maximally (lambdamax) at 424 nm and, therefore, is a blue rather than a UV pigment. This (lambdamax) is close to that of the in vitro-expressed wallaby SWS pigment (lambdamax of 420 +/- 2 nm) and to that determined behaviorally (420 nm). The difference from the mouse UV pigment (lambdamax of 359 nm) is largely accounted for by the F86Y substitution, in agreement with in vitro results comparing a variety of other SWS pigments. This suggests that spectral tuning employing F86Y substitution most likely arose independently in the marsupials and ungulates as a result of convergent evolution. An apparently different mechanism of spectral tuning of the SWS1 pigments, involving five amino acid positions, evolved in primates. The wallaby MWS pigment has 363 amino acids. Species comparisons at positions critical to spectral tuning predict a lambdamax near 530 nm, which is close to that of the in vitro-expressed pigment (529 +/- 1 nm), but quite different from the value of 539 nm determined by microspectrophotometry. Introns interrupt the coding sequences of the wallaby, mouse, and human MWS pigment sequences at the same corresponding nucleotide positions. However, the length of introns varies widely among these species.  相似文献   

5.
Matsumoto Y  Fukamachi S  Mitani H  Kawamura S 《Gene》2006,371(2):268-278
A variety of visual pigment repertoires present in fish species is believed due to the great variation under the water of light environment. A complete set of visual opsin genes has been isolated and characterized for absorption spectra and expression in the retina only in zebrafish. Medaka (Oryzias latipes) is a fish species phylogenetically distant from zebrafish and has served as an important vertebrate model system in molecular and developmental genetics. We previously isolated a medaka rod opsin gene (RH1). In the present study we isolated all the cone opsin genes of medaka by genome screening of a lambda-phage and bacterial artificial chromosome (BAC) libraries. The medaka genome contains two red, LWS-A and LWS-B, three green, RH2-A, RH2-B and RH2-C, and two blue, SWS2-A and SWS2-B, subtype opsin genes as well as a single-copy of the ultraviolet, SWS1, opsin gene. Previously only one gene was believed present for each opsin type as reported in a cDNA-based study. These subtype opsin genes are closely linked and must be the products of local gene duplications but not of a genome-wide duplication. Peak absorption spectra (lambda(max)) of the reconstituted photopigments with 11-cis retinal varied greatly among the three green opsins, 452 nm for RH2-A, 516 nm for RH2-B and 492 nm for RH2-C, and between the two blue opsins, 439 nm for SWS2-A and 405 nm for SWS2-B. Zebrafish also has multiple opsin subtypes, but phylogenetic analysis revealed that medaka and zebrafish gained the subtype opsins independently. The lambda and BAC DNA clones isolated in this study could be useful for investigating the regulatory mechanisms and evolutionary diversity of fish opsin genes.  相似文献   

6.
The cottoid fishes of Lake Baikal in eastern Siberia provide a unique opportunity to study the evolution of visual pigments in a group of closely related species exposed to different photic environments. Members of this species flock are adapted to different depth habitats down to >1000 m, and both the rod and cone visual pigments display short wave shifts as depth increases. The blue-sensitive cone pigments of the SWS2 class cluster into two species groups with lambda(max) values of 450 and 430 nm, with the pigment in Cottus gobio, a cottoid fish native to Britain, forming a third group with a lambda(max) of 467 nm. The sequences of the SWS2 opsin gene from C. gobio and from two representatives of the 450 and 430 nm Baikal groups are presented. Approximately 6 nm of the spectral difference between C. gobio and the 450 nm Baikal group can be ascribed to the presence of a porphyropsin/rhodopin mixture in C. gobio. Subsequent analysis of amino acid substitutions by site-directed mutagenesis demonstrates that the remainder of the shift from 461 to 450 nm arises from a Thr269Ala substitution and the shift from 450 to 430 nm at least partly from Thr118Ala and Thr118Gly substitutions. The underlying adaptive significance of these substitutions in terms of spectral tuning and signal-to-noise ratio is discussed.  相似文献   

7.
Yokoyama S  Blow NS  Radlwimmer FB 《Gene》2000,259(1-2):17-24
We have isolated and sequenced the RH1(Tg), RH2(Tg), SWS2(Tg), and LWS(Tg) opsin cDNAs from zebra finch retinas. Upon binding to 11-cis-retinal, these opsins regenerate the corresponding photosensitive molecules, visual pigments. The absorption spectra of visual pigments have a broad bell shape, with the peak being called lambda(max). Previously, SWS1(Tg) opsin cDNA was isolated from zebra finch retinal RNA, expressed in cultured COS1 cells, reconstituted with 11-cis-retinal, and the lambda(max) of the resulting visual pigment was shown to be 359nm. Here, the lambda(max) values of the RH1(Tg), RH2(Tg), SWS2(Tg), and LWS(Tg) pigments are determined to be 501, 505, 440, and 560nm, respectively. Molecular evolutionary analyses suggest that specific amino acid replacements in the SWS1 and SWS2 pigments, resulting from accelerated evolution, must have been responsible for their functional divergences among the avian pigments.  相似文献   

8.
The violet- and ultraviolet-sensitive visual pigments of birds belong to the same class of pigments as the violet-sensitive (so-called blue) pigments of mammals. However, unlike the pigments from mammals and other vertebrate taxa which, depending on species, have lambda(max) values of either around 430 nm or around 370 nm, avian pigments are found with lambda(max) values spread across this range. In this paper, we present the sequences of two pigments isolated from Humbolt penguin and pigeon with intermediate lambda(max) values of 403 and 409 nm, respectively. By comparing the amino acid sequences of these pigments with the true UV pigments of budgerigar and canary and with chicken violet with a lambda(max) value of 420 nm, we have been able to identify five amino acid sites that show a pattern of substitution between species that is consistent with differences in lambda(max). Each of these substitutions has been introduced into budgerigar cDNA and expressed in vitro in COS-7 cells. Only three resulted in spectral shifts in the regenerated pigment; two had relatively small effects and may account for the spectral shifts between penguin, pigeon, and chicken whereas one, the replacement of Ser by Cys at site 90 in the UV pigments, produced a 35 nm shortwave shift that could account for the spectral shift from 403 nm in penguin to around 370 nm in budgerigar and canary.  相似文献   

9.
We previously reported that zebrafish have four tandemly duplicated green (RH2) opsin genes (RH2-1, RH2-2, RH2-3, and RH2-4). Absorption spectra vary widely among the four photopigments reconstituted with 11-cis retinal, with their peak absorption spectra (lambda(max)) being 467, 476, 488, and 505 nm, respectively. In this study, we inferred the ancestral amino acid (aa) sequences of the zebrafish RH2 opsins by likelihood-based Bayesian statistics and reconstituted the ancestral opsins by site-directed mutagenesis. The ancestral pigment (A1) to the four zebrafish RH2 pigments and that (A3) to RH2-3 and RH2-4 showed lambda(max) at 506 nm, while that (A2) to RH2-1 and RH2-2 showed a lambda(max) at 474 nm, indicating that a spectral shift had occurred toward the shorter wavelength on the evolutionary lineages A1 to A2 by 32 nm, A2 to RH2-1 by 7 nm, and A3 to RH2-3 by 18 nm. Pigment chimeras and site-directed mutagenesis revealed a large contribution (approximately 15 nm) of glutamic acid to glutamine substitution at residue 122 (E122Q) to the A1 to A2 and A3 to RH2-3 spectral shifts. However, the remaining spectral differences appeared to result from complex interactive effects of a number of aa replacements, each of which has only a minor spectral contribution (1-3 nm). The four zebrafish RH2 pigments cover nearly an entire range of lambda(max) distribution among vertebrate RH2 pigments and provide an excellent model to study spectral tuning mechanisms of RH2 in vertebrates.  相似文献   

10.
Recently, in vitro mutation studies have made it possible to predict the wavelengths of maximum absorbance (λmax) of avian UV/violet sensitive visual pigments (SWS1) from the identity of a few key amino acid residues in the opsin gene. Given that the absorbance spectrum of a cone’s visual pigment and of its pigmented oil droplet can be predicted from just the λmax, it may become possible to predict the entire spectral sensitivity of a bird using genetic samples from live birds or museum specimens. However, whilst this concept is attractive, it must be validated to assess the reliability of the predictions of λmax from opsin amino acid sequences. In this paper, we have obtained partial sequences covering three of the known spectral tuning sites in the SWS1 opsin and predicted λmax of all bird species for which the spectral absorbance has been measured using microspectrophotometry. Our results validate the use of molecular data from genomic DNA to predict the gross differences in λmax between the violet- and ultraviolet-sensitive subtypes of SWS1 opsin. Additionally, we demonstrate that a bird, the bobolink Dolichonyx oryzivorus L., can have more than one SWS1 visual pigment in its retina.  相似文献   

11.
The coelacanth, a "living fossil," lives at a depth of about 200 m near the coast of the Comoros archipelago in the Indian Ocean and receives only a narrow range of light at about 480 nm. To see the entire range of "color" the Comoran coelacanth appears to use only rod-specific RH1 and cone-specific RH2 visual pigments, with the optimum light sensitivities (lambda max) at 478 nm and 485 nm, respectively. These blue-shifted lambda max values of RH1 and RH2 pigments are fully explained by independent double amino acid replacements E122Q/A292S and E122Q/M207L, respectively. More generally, currently available mutagenesis experiments identify only 10 amino acid changes that shift the lambda max values of visual pigments more than 5 nm. Among these, D83N, E1220, M207L, and A292S are associated strongly with the adaptive blue shifts in the lambda max values of RH1 and RH2 pigments in vertebrates.  相似文献   

12.
Fasick JI  Applebury ML  Oprian DD 《Biochemistry》2002,41(21):6860-6865
The wild-type mouse ultraviolet (UV) and bovine blue cone visual pigments have absorption maxima of 358 and 438 nm, respectively, while sharing 87% amino acid identity. To determine the molecular basis underlying the 80 nm spectral shift between these pigments, we selected several amino acids in helices II and III for site-directed mutagenesis. These amino acids included: (1) those that differ between mouse UV and bovine blue; (2) the conserved counterion, Glu113; and (3) Ser90, which is involved in wavelength modulation in avian short-wavelength sensitive cone pigments. These studies resulted in the identification of a single amino acid substitution at position 86 responsible for the majority of the spectral shift between the mouse UV and bovine blue cone pigments. This is the first time that this amino acid by itself has been shown to play a major role in the spectral tuning of the SWS1 cone pigments. A single amino acid substitution appears to be the dominant factor by which the majority of mammalian short-wavelength sensitive cone pigments have shifted their absorption maxima from the UV to the visible regions of the spectrum. Studies investigating the role of the conserved counterion Glu113 suggest that the bovine and mouse SWS1 pigments result from a protonated and unprotonated Schiff base chromophore, respectively.  相似文献   

13.
J Nathans 《Biochemistry》1990,29(4):937-942
I have investigated the effect on bovine rhodopsin's absorbance spectrum of charged amino acid changes in the putative membrane-spanning regions. A total of 14 site-directed mutants were constructed at 6 amino acid positions: 83, 86, 122, 134, 135, and 211. Two of these positions are occupied by charged amino acids that are conserved in all four human visual pigments (positions 134 and 135). In the four variable positions, single and double mutants were constructed to reproduce the intramembrane distribution of charged amino acids predicted for each human cone pigment. Following solubilization in digitonin and reconstitution with 11-cis-retinal, the photobleaching difference spectrum of each pigment was determined in the presence of hydroxylamine. The absorbance spectra of the mutant pigments are all surprisingly close to that of native bovine rhodopsin (lambda max = 498 nm), ruling out a significant role for these residues in spectral tuning.  相似文献   

14.
Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors—historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short‐wavelength‐sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short‐wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch‐like form that colonized from the Old World 15–20 Ma. During this process, the SWS2 gene accumulated six substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch‐like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected.  相似文献   

15.
We studied the optical microhabitat use and visual pigment variation among a group of closely related teleosts (surfperch: Embiotocidae) living along the nearshore central California coast. We employed a diver-operated spectroradiometer to record the optical microhabitat use of eight surfperch species in Monterey Bay. and microspectrophotometry to measure visual pigment absorbance for nine surfperch species. Species were dichromatic with mixtures of A1- and A2-based visual pigments exhibiting extensive maximum absorbance (lambda(max)) variation across species: 455-482 nm for SWS cones and 527-546 nm for LWS cones. Interspecific variation in sidewelling irradiance measurements (mean lambdaFmaxs) significantly accounted for 63% of the variation in surfperch LWS visual pigments and 83% of the interspecific variation in SWS visual pigments using a phylogenetically-corrected regression technique. Optimality models for maximizing relative photon capture of background radiance demonstrate that the LWS cone lambda(max) values are tuned for maximizing photon capture of the species-specific horizontal visual field, while the SWS cone lambda(max), are well offset from the dominant background radiance. This study is one of the first to demonstrate species-specific differences in habitat usage at microhabitat scales accounting for differences in photoreceptor peak absorbance among closely related, sympatric species.  相似文献   

16.
Amino acid changes S180A (S-->A at site 180), H197Y, Y277F, T285A, and A308S are known to shift the maximum wavelength of absorption (lambda max) of red and green visual pigments toward blue, essentially in an additive fashion. To test the generality of this "five-sites" rule, we have determined the partial amino acid sequences of red and green pigments from five mammalian orders (Artiodactyla, Carnivora, Lagomorpha, Perissodactyla, and Rodentia). The result suggests that cat (Felis catus), dog (Canis familiaris), and goat (Capra hircus) pigments all with AHYTA at the five critical sites have lambda max values of approximately 530 nm, whereas rat (Rattus norvegicus) pigment with AYYTS has a lambda max value of approximately 510 nm, which is accurately predicted by the five-sites rule. However, the observed lambda max values of the orthologous pigments of European rabbit (Oryctolagus cuniculus), white-tailed deer (Odocoileus virginianus), gray squirrel (Sciurus carolinensis), and guinea pig (Cavia procellus) are consistently more than 10 nm higher than the predicted values, suggesting the existence of additional molecular mechanisms for red and green color vision. The inferred amino acid sequences of ancestral organisms suggest that the extant mammalian red and green pigments appear to have evolved from a single ancestral green-red hybrid pigment by directed amino acid substitutions.   相似文献   

17.
S Yokoyama  F B Radlwimmer 《Genetics》2001,158(4):1697-1710
To better understand the evolution of red-green color vision in vertebrates, we inferred the amino acid sequences of the ancestral pigments of 11 selected visual pigments: the LWS pigments of cave fish (Astyanax fasciatus), frog (Xenopus laevis), chicken (Gallus gallus), chameleon (Anolis carolinensis), goat (Capra hircus), and human (Homo sapiens);and the MWS pigments of cave fish, gecko (Gekko gekko), mouse (Mus musculus), squirrel (Sciurus carolinensis), and human. We constructed these ancestral pigments by introducing the necessary mutations into contemporary pigments and evaluated their absorption spectra using an in vitro assay. The results show that the common ancestor of vertebrates and most other ancestors had LWS pigments. Multiple regression analyses of ancestral and contemporary MWS and LWS pigments show that single mutations S180A, H197Y, Y277F, T285A, A308S, and double mutations S180A/H197Y shift the lambda(max) of the pigments by -7, -28, -8, -15, -27, and 11 nm, respectively. It is most likely that this "five-sites" rule is the molecular basis of spectral tuning in the MWS and LWS pigments during vertebrate evolution.  相似文献   

18.
Zebrafish and goldfish are both diurnal freshwater fish species belonging to the same family, Cyprinidae, but their visual ecological surroundings considerably differ. Zebrafish are surface swimmers in conditions of broad and shortwave-dominated background spectra and goldfish are generalized swimmers whose light environment extends to a depth of elevated short wavelength absorbance with turbidity. The peak absorption spectrum (lambdamax) of the zebrafish blue (SWS2) visual pigment is consistently shifted to short wavelength (416 nm) compared with that of the goldfish SWS2 (443 nm). Among the amino acid differences between the two pigments, only one (alanine in zebrafish and serine in goldfish at residue 94) was previously known to cause a difference in absorption spectrum (14-nm lambdamax shift in newt SWS2). In this study, we reconstructed the ancestral SWS2 pigment of the two species by applying likelihood-based Bayesian statistics and performing site-directed mutagenesis. The reconstituted ancestral photopigment had a lambdamax of 430 nm, indicating that zebrafish and goldfish achieved short wavelength (-14 nm) and long wavelength (+13 nm) spectral shifts, respectively, from the ancestor. Unexpectedly, the S94A mutation resulted in only a -3-nm spectral shift when introduced into the goldfish SWS2 pigment. Nearly half of the long wavelength shift toward the goldfish pigment was achieved instead by T116L (6 nm). The S295C mutation toward zebrafish SWS2 contributed to creating a ridge of absorbance around 400 nm and broadening its spectral sensitivity in the short wavelength direction. These results indicate that the evolutionary engineering approach is very effective in deciphering the process of functional divergence of visual pigments.  相似文献   

19.
An important unanswered question in phototransduction is how visual pigments (VPs) regulate their wavelength of maximal absorption (lambda max). By constructing the evolutionary tree for 28 opsins with known lambda max values, we can identify the times and directions of lambda max shift of different VPs. A total of 55 amino acid changes are shown to correlate with the directions of lambda max shift and might have been important in determining lambda max of a VP. Among these, three amino acid changes are already proven to be responsible in modifying the green-sensitive VP to the red-sensitive VP. The present evolutionary analysis opens a new direction in understanding the mechanism for the regulation of wavelength absorption by a VP and, more generally, in studying molecular mechanism involved in adaptive evolution.   相似文献   

20.
The peak sensitivities (λ(max)) of the short-wavelength-sensitive-1 (SWS1) pigments in mammals range from the ultraviolet (UV) (360-400 nm) to the violet (400-450 nm) regions of the spectrum. In most cases, a UV or violet peak is determined by the residue present at site 86, with Phe conferring UV sensitivity (UVS) and either Ser, Tyr or Val causing a shift to violet wavelengths. In primates, however, the tuning mechanism of violet-sensitive (VS) pigments would appear to differ. In this study, we examine the tuning mechanisms of prosimian SWS1 pigments. One species, the aye-aye, possesses a pigment with Phe86 but in vitro spectral analysis reveals a VS rather than a UVS pigment. Other residues (Cys, Ser and Val) at site 86 in prosimians also gave VS pigments. Substitution at site 86 is not, therefore, the primary mechanism for the tuning of VS pigments in primates, and phylogenetic analysis indicates that substitutions at site 86 have occurred at least five times in primate evolution. The sole potential tuning site that is conserved in all primate VS pigments is Pro93, which when substituted by Thr (as found in mammalian UVS pigments) in the aye-aye pigment shifted the peak absorbance into the UV region with a λ(max) value at 371 nm. We, therefore, conclude that the tuning of VS pigments in primates depends on Pro93, not Tyr86 as in other mammals. However, it remains uncertain whether the initial event that gave rise to the VS pigment in the ancestral primate was achieved by a Thr93Pro or a Phe86Tyr substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号