首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this study we demonstrate a direct interaction between a cytosolic fibroblast growth factor family member and a sodium channel. A yeast two-hybrid screen for proteins that associate with the cytoplasmic domains of the tetrodotoxin-resistant sodium channel rNa(v)1.9a (NaN) led to the identification of fibroblast growth factor homologous factor 1B (FHF1B), a member of the fibroblast growth factor family, as an interacting partner of rNa(v)1.9a. FHF1B selectively interacts with the C-terminal region but not the other four intracellular segments of rNa(v)1.9a. FHF1B binds directly to the C-terminal polypeptide of rNa(v)1.9a both in vitro and in mammalian cell lines. The N-terminal 5-77 amino acid residues of FHF1B are essential for binding to rNa(v)1.9a. FHF1B did not interact with C termini of two other sodium channels hNa(v)1.7a (hNaNE) and rNa(v)1.8a (SNS), which share 50% similarity to the C-terminal polypeptide of rNa(v)1.9a. FHF1B is the first growth factor found to bind specifically to a sodium channel. Although the functional significance of this interaction is not clear, FHF1B may affect the rNa(v)1.9a channel directly or by recruiting other proteins to the channel complex. Alternatively, it is possible that rNa(v)1.9a may help deliver this factor to the cell membrane, where it exerts its function.  相似文献   

2.
In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull-down experiments confirmed the interaction, and indicated that it depends on the PDZ-domain binding motif of Na(v)1.5. Co-expression experiments in HEK293 cells showed that PTPH1 shifts the Na(v)1.5 availability relationship toward hyperpolarized potentials, whereas an inactive PTPH1 or the tyrosine kinase Fyn does the opposite. The results of this study suggest that tyrosine phosphorylation destabilizes the inactivated state of Na(v)1.5.  相似文献   

3.
Fibroblast growth factor homologous factors (FHFs, FGF11-14) bind to the C termini (CTs) of specific voltage-gated sodium channels (VGSC) and thereby regulate their function. The effect of an individual FHF on a specific VGSC varies greatly depending upon the individual FHF isoform. How individual FHFs impart distinctive effects on specific VGSCs is not known and the specificity of these pairwise interactions is not understood. Using several biochemical approaches combined with functional analysis, we mapped the interaction site for FGF12B on the Na(V)1.5 C terminus and discovered previously unknown determinants necessary for FGF12 interaction. Also, we demonstrated that FGF12B binds to some, but not all Na(V)1 CTs, suggesting specificity of interaction. Exploiting a human single nucleotide polymorphism in the core domain of FGF12 (P149Q), we identified a surface proline that contributes a part of this pairwise specificity. This proline is conserved among all FHFs, and mutation of the homologous residue in FGF13 also leads to loss of interaction with a specific VGSC CT (Na(V)1.1) and loss of modulation of the resultant Na(+) channel function. We hypothesized that some of the specificity mediated by this proline may result from differences in the affinity of the binding partners. Consistent with this hypothesis, surface plasmon resonance data showed that the P149Q mutation decreased the binding affinity between FHFs and VGSC CTs. Moreover, immunocytochemistry revealed that the mutation prevented proper subcellular targeting of FGF12 to the axon initial segment in neurons. Together, these results give new insights into details of the interactions between FHFs and Na(V)1.x CTs, and the consequent regulation of Na(+) channels.  相似文献   

4.
Voltage-gated Na? (Na(V)) channels initiate neuronal action potentials. Na(V) channels are composed of a transmembrane domain responsible for voltage-dependent Na? conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins, including fibroblast growth factor homologous factors (FHFs) and calmodulin (CaM). Most ion channel structural studies have focused on mechanisms of permeation and voltage-dependent gating but less is known about how intracellular domains modulate channel function. Here we report the crystal structure of the ternary complex of a human Na(V) CTD, an FHF, and Ca2?-free CaM at 2.2 ?. Combined with functional experiments based on structural insights, we present a platform for understanding the roles of these auxiliary proteins in Na(V) channel regulation and the molecular basis of mutations that lead to neuronal and cardiac diseases. Furthermore, we identify a critical interaction that contributes to the specificity of individual Na(V) CTD isoforms for distinctive FHFs.  相似文献   

5.
The mechanism by which voltage-gated sodium channels are trafficked to the surface of neurons is not well understood. Our previous work implicated the cytoplasmic N terminus of the sodium channel Na(v)1.6 in this process. We report that the N terminus plus the first transmembrane segment (residues 1-153) is sufficient to direct a reporter to the cell surface. To identify proteins that interact with the 117-residue N-terminal domain, we carried out a yeast two-hybrid screen of a mouse brain cDNA library. Three clones containing overlapping portions of the light chain of microtubule-associated protein Map1b (Mtap1b) were recovered from the screen. Interaction between endogenous Na(v)1.6 channels and Map1b in mouse brain was confirmed by co-immunoprecipitation. Map1b did not interact with the N terminus of the related channel Na(v)1.1. Alanine-scanning mutagenesis of the Na(v)1.6 N terminus demonstrated that residues 77-80 (VAVP) contribute to interaction with Map1b. Co-expression of Na(v)1.6 with Map1b in neuronal cell line ND7/23 resulted in a 50% increase in current density, demonstrating a functional role for this interaction. Mutation of the Map1b binding site of Na(v)1.6 prevented generation of sodium current in transfected cells. The data indicate that Map1b facilitates trafficking of Na(v)1.6 to the neuronal cell surface.  相似文献   

6.
Fibroblast growth factor homologous factors (FHFs) bear strong sequence and structural similarity to fibroblast growth factors (FGFs). However, the biochemical and functional properties of FHFs are largely, if not totally, unrelated to those of FGFs. Whereas FGFs function through binding to the extracellular domains of FGF receptors (FGFRs), FHFs bind to intracellular domains of voltage-gated sodium channels (VGSCs) and to a neuronal MAP kinase scaffold protein, islet-brain-2 (IB2). These findings demonstrate the remarkable functional adaptability during evolution of the FGF gene family. FHF gene mutations in mice result in a range of neurological abnormalities, and at least one of these anomalies, cerebellar ataxia, is linked to FHF mutations in humans. This article reviews the sequences and structure of FHFs, along with our still limited understanding of FHF function.  相似文献   

7.
A novel mutation in the SCN5A gene is associated with Brugada syndrome   总被引:4,自引:0,他引:4  
Shin DJ  Kim E  Park SB  Jang WC  Bae Y  Han J  Jang Y  Joung B  Lee MH  Kim SS  Huang H  Chahine M  Yoon SK 《Life sciences》2007,80(8):716-724
Brugada syndrome (BS) is an inherited cardiac disorder associated with a high risk of sudden cardiac death and is caused by mutations in the SCN5A gene encoding the cardiac sodium channel alpha-subunit (Na(v)1.5). The aim of this study was to identify the genetic cause of familial BS and characterize the electrophysiological properties of a novel SCN5A mutation (W1191X). Four families and one patient with BS were screened for SCN5A mutations by PCR and direct sequencing. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in tsA201 cells, and the sodium currents (I(Na)) were analyzed using the whole-cell patch-clamp technique. A novel mutation, W1191X, was identified in a family with BS. Expression of the WT or the mutant channel (Na(v)1.5/W1191X) co-transfected with the beta(1)-subunit in tsA201 cells resulted in a loss of function of Na(v)1.5 channels. While voltage-clamp recordings of the WT channel showed a distinct acceleration of Na(v)1.5 activation and fast inactivation kinetics, the Na(v)1.5/W1191X mutant failed to generate any currents. Co-expression of the WT channel and the mutant channel resulted in a 50% reduction in I(Na). No effect on activation and inactivation were observed with this heterozygous expression. The W1191X mutation is associated with BS and resulted in the loss of function of the cardiac sodium channel.  相似文献   

8.
The voltage-gated sodium channel Na(v)1.8 is only expressed in subsets of neurons in dorsal root ganglia (DRG) and trigeminal and nodose ganglia. We have isolated mouse partial length Na(v)1.8 cDNA clones spanning the exon 17 sequence, which have 17 nucleotide substitutions and 12 predicted amino acid differences from the published sequence. The absence of a mutually exclusive alternative exon 17 was confirmed by sequencing 4.1 kilobases of genomic DNA spanning exons 16-18 of Scn10a. A novel cDNA isoform was identified, designated Na(v)1.8c, which results from alternative 3'-splice site selection at a CAG/CAG motif to exclude the codon for glutamine 1031 within the interdomain cytoplasmic loop IDII/III. The ratio of Na(v)1.8c (CAG-skipped) to Na(v)1.8 (CAG-inclusive) mRNA in mouse is approximately 2:1 in adult DRG, trigeminal ganglion, and neonatal DRG. A Na(v)1.8c isoform also occurs in rat DRG, but is less common. Of the two other tetrodotoxin-resistant channels, no analogous alternative splicing of mouse Na(v)1.9 was detected, whereas rare alternative splicing of Na(v)1.5 at a CAG/CAG motif resulted in the introduction of a CAG trinucleotide. This isoform, designated Na(v)1.5c, is conserved in rat and encodes an additional glutamine residue that disrupts a putative CK2 phosphorylation site. In summary, novel isoforms of Na(v)1.8 and Na(v)1.5 are each generated by alternative splicing at CAG/CAG motifs, which result in the absence or presence of predicted glutamine residues within the interdomain cytoplasmic loop IDII/III. Mutations of sodium channels within this cytoplasmic loop have previously been demonstrated to alter electrophysiological properties and cause cardiac arrhythmias and epilepsy.  相似文献   

9.
The synthesis and pharmacological characterization of a novel furan-based class of voltage-gated sodium channel blockers is reported. Compounds were evaluated for their ability to block the tetrodotoxin-resistant sodium channel Na(v)1.8 (PN3) as well as the Na(v)1.2 and Na(v)1.5 subtypes. Benchmark compounds from this series possessed enhanced potency, oral bioavailability, and robust efficacy in a rodent model of neuropathic pain, together with improved CNS and cardiovascular safety profiles compared to the clinically used sodium channel blockers mexiletine and lamotrigine.  相似文献   

10.
Brugada syndrome (BrS) is an inherited autosomal dominant cardiac channelopathy. Several mutations on the cardiac sodium channel Nav1.5 which are responsible for BrS lead to misfolded proteins that do not traffic properly to the plasma membrane. In order to mimic patient heterozygosity, a trafficking defective mutant, R1432G was co-expressed with Wild Type (WT) Nav1.5 channels in HEK293T cells. This mutant significantly decreased the membrane Na current density when it was co-transfected with the WT channel. This dominant negative effect did not result in altered biophysical properties of Nav1.5 channels. Luminometric experiments revealed that the expression of mutant proteins induced a significant reduction in membrane expression of WT channels. Interestingly, we have found that the auxiliary Na channel β1-subunit was essential for this dominant negative effect. Indeed, the absence of the β1-subunit prevented the decrease in WT sodium current density and surface proteins associated with the dominant negative effect. Co-immunoprecipitation experiments demonstrated a physical interaction between Na channel α-subunits. This interaction occurred only when the β1-subunit was present. Our findings reveal a new role for β1-subunits in cardiac voltage-gated sodium channels by promoting α-α subunit interaction which can lead to a dominant negative effect when one of the α-subunits shows a trafficking defective mutation.  相似文献   

11.
Duchenne muscular dystrophy (DMD) is a hereditary degenerative disease manifested by the absence of dystrophin, a structural, cytoskeletal protein, leading to muscle degeneration and early death through respiratory and cardiac muscle failure. Whereas the rise of cytosolic Ca(2+) concentrations in muscles of mdx mouse, an animal model of DMD, has been extensively documented, little is known about the mechanisms causing alterations in Na(+) concentrations. Here we show that the skeletal muscle isoform of the voltage-gated sodium channel, Na(v)1.4, which represents over 90% of voltage-gated sodium channels in muscle, plays an important role in development of abnormally high Na(+) concentrations found in muscle from mdx mice. The absence of dystrophin modifies the expression level and gating properties of Na(v)1.4, leading to an increased Na(+) concentration under the sarcolemma. Moreover, the distribution of Na(v)1.4 is altered in mdx muscle while maintaining the colocalization with one of the dystrophin-associated proteins, syntrophin alpha-1, thus suggesting that syntrophin is an important linker between dystrophin and Na(v)1.4. Additionally, we show that these modifications of Na(v)1.4 gating properties and increased Na(+) concentrations are strongly correlated with increased cell death in mdx fibers and that both cell death and Na(+) overload can be reversed by 3 nM tetrodotoxin, a specific Na(v)1.4 blocker.  相似文献   

12.
FGF13 (FHF2), the major fibroblast growth factor homologous factor (FHF) in rodent heart, directly binds to the C-terminus of the main cardiac sodium channel, NaV1.5. Knockdown of FGF13 in cardiomyocytes induces slowed ventricular conduction by altering NaV1.5 function. FGF13 has five splice variants, each of which possess the same core region and C terminus but differing in their respective N termini. Whether and how these alternatively spliced N termini impart isoform-specific regulation of NaV1.5, however, has not been reported. Here, we exploited a heterologous expression to explore the specific modulatory effects of FGF13 splice variants FGF13S, FGF13U and FGF13YV on NaV1.5 function. We found these three splice variants differentially modulated NaV1.5 current density. Although steady-state activation was unaltered by any of the FGF13 isoforms (compared to control cells expressing Nav1.5 but not expressing FGF13), open-state fast inactivation and closed-state fast inactivation were markedly slowed, steady-state availability was significantly shifted toward the depolarizing direction, and the window current was increased by each of FGF13 isoforms. Most strikingly, FGF13S hastened the rate of NaV1.5 entry into the slow inactivation state and induced a dramatic slowing of recovery from inactivation, which caused a large decrease in current after either low or high frequency stimulation. Overall, these data showed the diversity of the roles of the FGF13 N-termini in NaV1.5 channel modulation and suggested the importance of isoform-specific regulation.  相似文献   

13.
In the present study, we identified a novel splice variant of the human cardiac Na(+) channel Na(v)1.5 (Na(v)1.5d), in which a 40-amino acid sequence of the DII/DIII intracellular linker is missing due to a partial deletion of exon 17. Expression of Na(v)1.5d occurred in embryonic and adult hearts of either sex, indicating that the respective alternative splicing is neither age-dependent nor gender-specific. In contrast, Na(v)1.5d was not detected in the mouse heart, indicating that alternative splicing of Na(v)1.5 is species-dependent. In HEK293 cells, splice variant Na(v)1.5d generated voltage-dependent Na(+) currents that were markedly reduced compared with wild-type Na(v)1.5. Experiments with mexiletine and 8-bromo-cyclic AMP suggested that the trafficking of Na(v)1.5d channels was not impaired. However, single-channel recordings showed that the whole-cell current reduction was largely due to a significantly reduced open probability. Additionally, steady-state activation and inactivation were shifted to depolarized potentials by 15.9 and 5.1 mV, respectively. Systematic mutagenesis analysis of the spliced region provided evidence that a short amphiphilic region in the DII/DIII linker resembling an S4 voltage sensor of voltage-gated ion channels is an important determinant of Na(v)1.5 channel gating. Moreover, the present study identified novel short sequence motifs within this amphiphilic region that specifically affect the voltage dependence of steady-state activation and inactivation and current amplitude of human Na(v)1.5.  相似文献   

14.
The α subunit of the cardiac sodium channel (Na(v)1.5) is an essential protein in the initial depolarization phase of the cardiomyocyte action potential. Post-translational modifications such as phosphorylation are known to regulate Na(v)1.5 function. Here, we used a proteomic approach for the study of the post-translational modifications of Na(v)1.5 using tsA201 cells as a model system. We generated a stable cell line expressing Na(v)1.5, purified the sodium channel, and analyzed Na(v)1.5 by MALDI-TOF and LC-MS/MS. We report the identification of arginine methylation as a novel post-translational modification of Na(v)1.5. R513, R526, and R680, located in the linker between domains I and II in Na(v)1.5, were found in mono- or dimethylated states. The functional relevance of arginine methylation in Na(v)1.5 is underscored by the fact that R526H and R680H are known Na(v)1.5 mutations causing Brugada and long QT type 3 syndromes, respectively. Our work describes for the first time arginine methylation in the voltage-gated ion channel superfamily.  相似文献   

15.
The Bacillus halodurans voltage-gated sodium-selective channel (NaChBac) (Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. 2001b. SCIENCE: 294:2372-2375), is an ideal candidate for high resolution structural studies because it can be expressed in mammalian cells and its functional properties studied in detail. It has the added advantage of being a single six transmembrane (6TM) orthologue of a single repeat of mammalian voltage-gated Ca(2+) (Ca(V)) and Na(+) (Na(V)) channels. Here we report that six amino acids in the pore domain (LESWAS) participate in the selectivity filter. Replacing the amino acid residues adjacent to glutamatic acid (E) by a negatively charged aspartate (D; LEDWAS) converted the Na(+)-selective NaChBac to a Ca(2+)- and Na(+)-permeant channel. When additional aspartates were incorporated (LDDWAD), the mutant channel resulted in a highly expressing voltage-gated Ca(2+)-selective conductance.  相似文献   

16.
Advances in pain therapeutics   总被引:5,自引:0,他引:5  
Recent work in defining molecular targets for neuropathic pain has been plentiful and varied. Three novel targets have received much attention recently: N-methyl-D-aspartate receptor subtypes such as the glycine and NR2B sites, and the tetrodotoxin-resistant voltage-gated sodium channel (Na(v) 1.8; SNS/PN3). Preclinical data have been encouraging as a number of selective NR2B and glycine site antagonists have shown efficacy in animal models. Selective Na(v) 1.8 channel blockers have yet to emerge; however, strong genetic evidence and data from non-selective Na channel blockers indicate that this target too may hold much promise.  相似文献   

17.
Tetrodotoxin (TTX) is a highly potent neurotoxin that selectively binds to the outer vestibule of voltage-gated sodium channels. Pufferfishes accumulate extremely high concentrations of TTX without any adverse effect. A nonaromatic amino acid (Asn) residue present in domain I of the pufferfish, Takifugu pardalis, Na v1.4 channel has been implicated in the TTX resistance of pufferfishes . However, the effect of this residue on TTX sensitivity has not been investigated, and it is not known if this residue is conserved in all pufferfishes. We have investigated the genetic basis of TTX resistance in pufferfishes by comparing the sodium channels from two pufferfishes (Takifugu rubripes [fugu] and Tetraodon nigroviridis) and the TTX-sensitive zebrafish. Although all three fishes contain duplicate copies of Na v1.4 channels (Na v1.4a and Na v1.4b), several substitutions were found in the TTX binding outer vestibule of the two pufferfish channels. Electrophysiological studies showed that the nonaromatic residue (Asn in fugu and Cys in Tetraodon) in domain I of Na v1.4a channels confers TTX resistance. The Glu-to-Asp mutation in domain II of Tetraodon channel Na v1.4b is similar to that in the saxitoxin- and TTX-resistant Na+ channels of softshell clams . Besides helping to deter predators, TTX resistance enables pufferfishes to selectively feed on TTX-bearing organisms.  相似文献   

18.
The mechanisms that target various sodium channels within different regions of the neuronal membrane, which they endow with different physiological properties, are not yet understood. To examine this issue we studied the voltage-gated sodium channel Na(v)1.9/NaN, which is preferentially expressed in small sensory neurons of dorsal root ganglia and trigeminal ganglia and the nonmyelinated axons that arise from them. Our results show that the cell adhesion molecule contactin binds directly to Na(v)1.9/NaN and recruits tenascin to the protein complex in vitro. Na(v)1.9/NaN and contactin co-immunoprecipitate from dorsal root ganglia and transfected Chinese hamster ovary cell line, and co-localize in the C-type neuron soma and along nonmyelinated C-fibers and at nerve endings in the skin. Co-transfection of Chinese hamster ovary cells with Na(v)1.9/NaN and contactin enhances the surface expression of the sodium channel over that of Na(v)1.9/NaN alone. Thus contactin binds directly to Na(v)1.9/NaN and participates in the surface localization of this channel along nonmyelinated axons.  相似文献   

19.
Isolation of an amino terminal extended form of basic fibroblast growth factor   总被引:10,自引:0,他引:10  
Extraction of bovine pituitaries in the presence of enzyme inhibitors (2 mM PMSF, 2 mM sodium tetrathionate, 15 microM pepstatin A, and 1 mM EDTA) resulted in the isolation of two distinct forms of basic fibroblast growth factor. Partial characterization of both molecules showed one form to be identical to basic FGF(1-146) which has already been reported by our laboratory. The second form was estimated by SDS-PAGE to have a molecular weight of 17,000 Daltons which is slightly larger than that of basic FGF(1-146). Amino acid analysis shows the presence of 8 new residues more than basic FGF(1-146) which accounts for the difference in molecular weight. Gas-phase sequencing of this molecule indicated that it bears a blocked amino terminus. Furthermore, this higher molecular weight form of basic FGF did not show immunoreactivity with antibodies specific for the amino terminus of basic FGF(1-146) but cross reacted with antibodies generated against midportion fragments of basic FGF(1-146), indicating that the molecule is amino terminally extended. Like basic FGF(1-146), the molecule is a potent mitogenic factor for vascular endothelial cells. Taken together these results demonstrate the existence of a precursor form of basic FGF which is extended by 8 residues at the amino terminus with the first residue being blocked.  相似文献   

20.
The Alzheimer BACE1 enzyme cleaves numerous substrates, with largely unknown physiological consequences. We have previously identified the contribution of elevated BACE1 activity to voltage-gated sodium channel Na(v)1.1 density and neuronal function. Here, we analyzed physiological changes in sodium channel metabolism in BACE1-null mice. Mechanistically, we first confirmed that endogenous BACE1 requires its substrate, the β-subunit Na(v)β(2), to regulate levels of the pore-forming α-subunit Na(v)1.1 in cultured primary neurons. Next, we analyzed sodium channel α-subunit levels in brains of BACE1-null mice at 1 and 3 months of age. At both ages, we found that Na(v)1.1 protein levels were significantly decreased in BACE1-null versus wild-type mouse brains, remaining unchanged in BACE1-heterozygous mouse brains. Interestingly, levels of Na(v)1.2 and Na(v)1.6 α-subunits also decreased in 1-month-old BACE1-null mice. In the hippocampus of BACE1-null mice, we found a robust 57% decrease of Na(v)1.1 levels. Next, we performed surface biotinylation studies in acutely dissociated hippocampal slices from BACE1-null mice. Hippocampal surface Na(v)1.1 levels were significantly decreased, but Na(v)1.2 surface levels were increased in BACE1-null mice perhaps as a compensatory mechanism for reduced surface Na(v)1.1. We also found that Na(v)β(2) processing and Na(v)1.1 mRNA levels were significantly decreased in brains of BACE1-null mice. This suggests a mechanism consistent with BACE1 activity regulating mRNA levels of the α-subunit Na(v)1.1 via cleavage of cell-surface Na(v)β(2). Together, our data show that endogenous BACE1 activity regulates total and surface levels of voltage-gated sodium channels in mouse brains. Both decreased Na(v)1.1 and elevated surface Na(v)1.2 may result in a seizure phenotype. Our data caution that therapeutic BACE1 activity inhibition in Alzheimer disease patients may affect Na(v)1 metabolism and alter neuronal membrane excitability in Alzheimer disease patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号